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ABSTRACT: The dehydration of cations is generally accepted as the rate-limiting step in
many processes. Molecular dynamics (MD) can be used to investigate the dynamics of water
molecules around cations, and two different methods exist to obtain trajectory-based water
dehydration frequencies. Here, these two different post-processing methods (direct method
versus survival function) have been implemented to obtain calcium dehydration frequencies
from a series of trajectories obtained using a range of accepted force fields. None of the
method combinations reproduced the commonly accepted experimental water exchange frequency of 10−8.2 s−1. Instead, our
results suggest much faster water dynamics, comparable with more accurate ab initio MD simulations and with experimental
values obtained using neutron scattering techniques. We obtained the best agreement using the survival function method to
characterize the water dynamics, and we show that different method combinations significantly affect the outcome. Our work
strongly suggests that the fast water exchange kinetics around the calcium ions is not rate-limiting for reactions involving
dissolved/solvated calcium. Our results further suggest that, for alkali and most of the earth alkali metals, mechanistic rate laws
for growth, dissolution, and adsorption, which are based on the principle of rate-limiting cation dehydration, need careful
reconsideration.

1. INTRODUCTION

The dynamics of water molecules surrounding reacting cations
is generally considered as rate-determining for the reactions
involving these ions in aqueous solutions.1−6 Almost 60 years
ago, ultrasonic sound adsorption experiments performed by
Eigen indicated a large range of water exchange frequencies
around cations.7,8 Years later, Nielsen found a correlation
between the frequency of ions entering surface kink sites and
the dehydration frequencies of the cations in this surface where
the attachment frequency of the ions was approximately 10−3

times its dehydration frequency. Nielsen proposed that this
difference was due to the ion diffusion from solution to a kink
site, a process included in his overall attachment frequency.
Nevertheless, as anions dehydrate faster, cations are considered
to control the reaction rate.9−11 These general findings have
been incorporated into mechanistic models explaining crystal
dissolution (e.g., Lasaga and Lüttge)12,13 and crystal
growth.14−22 Essentially, in such models, it is assumed that
the exchange frequency of water molecules between the first
hydration shell around cation surface sites and bulk water
controls the reaction rate.
The dynamics of water molecules can be investigated using

molecular dynamics (MD) simulations, for example, of water
molecules around dissolved ions,3,23−25 at mineral−water
interfaces,26−29 and in amorphous materials.30 Several studies

have employed MD to study ion complexation and dynamics
in water,31−34 whereas the technique has also been used to
analyze adsorption of small organics on mineral−water
interfaces,30,35 the structural changes in (water near) mineral
interfaces,36,37 and the influence of ion impurities on the
kinetic stability of amorphous materials.38

In the case of calcite, combined experimental and computa-
tional work has shown that electrolyte ions impact water
exchange frequencies and the crystal growth rate.3 MD
simulations also confirmed that the formation of the kink
sites on the dissolving edge of the obtuse step of calcite is the
rate-limiting step and the dissolution of this edge is
thermodynamically favored39 and the addition of the first
units of calcium carbonate is enthalpically unfavorable.40 Also,
there is good agreement in the description of the structure of
water at the calcite−water interface, as observed computation-
ally,41,42 using force-modulated atomic force microscopy,43,44

small-angle X-ray reflectivity,42 and neutron diffraction.45

Despite the promising agreement on the structure of the
calcite−water interface obtained computationally and exper-
imentally, large discrepancies remain in observations of water
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dynamics. Recent studies using ab initio MD (AIMD)
calculations46,47 show that exchange frequencies around
dissolved calcium are almost 3 orders of magnitude higher
than Eigen’s value. Comparably high frequencies have also
been observed around dissolved calcium using incoherent
quasi-elastic neutron scattering (IQUENS),48 from which the
authors concluded that the water exchange frequency around
calcium ions is faster than 1010 s−1. Other MD simulations have
indicated frequencies much closer to those measured by
Eigen,28 while classical MD simulations have resulted in water
exchange frequencies around dissolved calcium and calcium in
calcite surfaces37 that are similar to those observed in ab initio
MD and IQUENS. Besides, it is still debated if dehydration of
the attaching species is rate-limiting in crystal growth5 or that
step-migration of carbonate ions is rate-limiting for kink
nucleation.49

While an evaluation of the differences between the various
experimentally observed frequencies is beyond the scope of the
paper, the large range in computationally determined water
exchange frequencies may be explained by differences between
the force fields used in MD methods and/or the approach
followed to obtain exchange frequencies from the MD output.
Here, we present our evaluation of both potential areas for
discrepancy. We have simulated identical systems of dissolved
calcium using four sets of force fields, some of which have
previously provided contradictory results. We next evaluated
two generally accepted methods to determine water exchange
frequencies. The results from our simulations and calculations
provide new insights into the impact of the water dynamics
around calcium on the reactivity of materials containing this
cation. Our results dispute that calcium dehydration is the rate-
limiting step in mineral formation and dissolution and suggest
that other processes are rate-determining instead. We discuss
implications for mechanistic growth models.

2. COMPUTATIONAL METHODS
2.1. Classical Molecular Dynamics. The MD simulations

were conducted on a cubic simulation cell containing 809
water molecules and a single calcium ion. They were
performed with DL_POLY 4.09,50 which was modified to
include a tail required for the SPC/fw-tail force field.27 The
Verlet leapfrog scheme and the Nose−́Hoover algorithm51,52

were used to integrate the equations of motion with a time step
of 0.2 fs and to maintain the temperature at 300 K with 0.5 ps
relaxation time. The simulations were carried out in the
isothermal-isobaric (constant NPT) ensemble using a Nose−́
Hoover thermostat to maintain the average temperature and
pressure at T = 300 K and P = 1 atm. The total simulation time
for each of the systems was 144 ns including 200 ps of
equilibration. An 8.0 Å cutoff was used for the van der Waals
forces, except for the SPC/fw-tail force field in which the cutoff
was defined at 9.0 Å with a tail from 6.0 Å.27

We tested four different force fields to analyze the water
dynamics around the calcium cation: first, the shell-model
(SM-lj) developed by de Leeuw and Parker and revised by
Kerisit and Parker;53,54 second, the simple point charge flexible
water model (SPC/fw-tail).55 Comparison between these first
two is the focus of the main paper. However, in order to
guarantee the robustness and comparability of these two water
force fields, we also included an in-depth assessment of the
dynamics and structures produced by SM-lj and SPC/Fw in
comparison with two further force fields, that is, SWM4-
NDP56,57 and TIP3P,58,59 which are also commonly used for

simulations of calcium-containing systems or in electrolyte
solutions. The full assessment of all four force fields can be
found in the Supporting Information, which includes a study of
the different structural parameters, including the dipole
moment, and the three- and four-body order parameters.
The dynamics of the system, such as diffusion coefficients and
vibrational spectra, can also be found in the Supporting
Information, as well as further details and a table with
parameters for the different force fields used in this study.

2.2. Ab Initio Molecular Dynamics. AIMD simulations
of one Ca2+ in 63 water molecules were conducted with the
electronic structure code CP2K/Quickstep version 2.7.60

CP2K implements the density functional theory (DFT)
based on a hybrid Gaussian plane wave. The BLYP, PBE,
and revPBE generalized gradient approximations for the
exchange and correlation terms were used together with the
general dispersion-correction DFT-D3.61−65 Goedecker−
Teter−Hutter pseudopotentials66 were used to describe the
core−valence interactions. All atomic species were represented
using a double-ζ valence polarized basis set. The plane wave
kinetic energy cutoff was set to 1000 Ry. k-sampling was
restricted to the Γ point of the Brillouin zone. Simulations
were carried out with a wave function optimization tolerance of
10−6 hartree that allows for 1.0 fs time steps with reasonable
energy conservation. Periodic boundary conditions were
applied throughout. Starting from the last configuration of
200 ps of classical MD simulation of 64 water molecules, one
H2O molecule was replaced by one Ca2+, and we conducted 1
ns of classical MD simulations in the NPT ensemble (T = 300
K and P = 1 atm). The last configuration was taken as the
starting point for AIMD simulations, which were carried out in
the NVT ensemble using a Nose−́Hoover chain thermostat to
maintain the average temperature at T = 300 K. The total
simulation times for the different functionals were 500 ps for
BLYP, PBE, and 40 ps revPBE. For comparison, AIMD
simulations of pure bulk water were performed following the
same approach.

2.3. Calculations of the Water Exchange Frequencies.
To investigate the water dynamics around dissolved calcium
ions, the mean residence time (MRT) of water molecules in
the first hydration shell of the cation was determined, using
both the “direct method”46 and the Impey method.67 An in-
house Python code was developed to calculate the MRT using
the direct method from the classical and ab initio MD
trajectories (see the Supporting Information). The software
tracks all the water molecules that leave or enter the first shell
and, subsequently, stay outside or inside the first shell for a
time longer than τDM = 0.5 ps.46 In the direct method (DM),
τDM = 0.5 ps is a generally accepted value, based on the average
lifetime of a hydrogen bond between the solvent mole-
cules.3,26,46 The first hydration shell is taken to be within the
distance from the Ca ion to the position of the first minimum
in the Ca2+-Owater radial distribution function (RDF)46 and is
3.5 Å for all force fields used here (see also Di Tommaso and
de Leeuw33 for the specific case of calcium).47 The inverse of
the average exchange frequency is taken to calculate the MRT

t
N

MRT
CNsim av

ex
DM

= τ
(1)

where tsim is the total simulation time, CNav is the average
coordination number for calcium (i.e., the number of water
molecules around calcium obtained from integrating the RDF
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of calcium-oxygen), and Nex
τDM is the number of exchanges

counted that lasted longer than 0.5 ps.
The survival function (SF) method (or the Impey method)

determines the survival function for water molecules in the first
shell. The first shell is defined in the same way as in the direct
method, within 3.5 Å from the calcium ion. The SF method
measures the residence time (RT) for each water molecule that
enters the first shell. RT is recorded only when the leaving time
τSF of a water molecule from the first shell meets the minimum
time limit. τSF is advised to be set at 2 ps to guarantee that the
water molecule truly moved to the bulk,54,67 although a τSF of 1
ps has sometimes been used as well.28 In this study, we adopt
the initial proposal of the method and used τSF = 2 ps. After
extracting all the residence times for all water molecules
around calcium over the entire simulation period, the
frequency (occurrences) of each RT is normalized by the
total number of RT counted. When plotting the normalized
frequencies against time, the survival function is constructed.
This function gives the probability that a water molecule stays
in the first shell as a function of time. A best fit exponential
decay can then be plotted, and the MRT can be calculated by
taking the integral of the function:

tMRT e drt
0

/MRT∫=
∞ −

(2)

3. RESULTS AND DISCUSSION
Four different force fields were assessed with respect to
structural parameters, diffusion coefficients, and vibrational
properties (see the Supporting Information for all details).
Here, we focus on the results regarding water dynamics, as
reflected by calculated exchange frequencies and mean
residence times (MRTs) for water molecules in the first shell
around the calcium cation, and the implications for the crystal
growth rate.
3.1. Water Dynamics around Calcium Cations. The

MRT values obtained using the direct method46 and the
survival function67 are compared with other theoretical and
experimental MRT evaluations in Table 1. There are large
differences in MRT values obtained with different water force
fields while using the same methodology to determine the
residence time. For example, MRTSF from SM-lj (56 ps) is less
than half the one obtained from MD simulations using the
same Ca2+-Owater interaction potential but using the SPC/fw-
buck water model (125 ps). The longest MRTSF is obtained
based on the SPC/fw-tail (333 ps). The MRTSF value obtained
from SM-lj output is the only value to agree with the
experimental IQUENS results. The MRTDM follows a similar
trend where the value obtained from SPC/fw-buck output
reproduces the ab initio results.
It was mentioned in earlier work that the higher number of

water molecules in the first shell of calcium in SM-lj causes
more exchanges and therefore shorter MRT, suggesting that
the higher water density simulated with this force field is
responsible for the higher coordination number (CN) of
Ca2+.28 We can add that the structure of the water around the
cation in SM-lj is also more distorted with a CN = 8.4, whereas
according to ab initio MD, the coordination geometry is
octahedral (CN = 647); the addition of extra molecules
probably destabilizes this ideal geometry around Ca2+,
contributing to the shorter MRTSF for SM-lj.
When comparing the two methodologies used to extract

MRT from MD simulations, we note that the values obtained

using the DM are consistently smaller than those produced by
the SF, irrespective of the force field used in the MD
simulations (Table 1). Since the definition of the size of the
first shell is the same for both DM and SF (3.5 Å, see Section
2.3), the observed discrepancy can be explained by differences
between the two methodologies to calculate (mean) residence
times, as well as the different “time constraints” considered
(τDM versus τSF).
In the direct method, an exchange event is counted when a

water molecule enters or leaves the first shell around the
cation, and this water molecule remains in/outside the first
shell for at least 0.5 ps, a value for τDM that is commonly used46

(see also Section 2.3). The MRTDM is the mean of all residence
times (RTs) observed, assuming that the RT distribution is a
simple Gaussian distribution. However, the SF method shows
that this distribution follows an exponential decay function
(Figure 1a), suggesting that the Gaussian distribution is not a
valid assumption. As a result, the MRTDM preferentially reflects
fast exchanging molecules, resulting in shorter values of
MRTDM.
In contrast, in the SF method, the MRTSF takes into account

the actual distribution of normalized RT frequencies. Such a
distribution is shown in Figure 1a, based on MD simulations
using SPC/fw-tail (SF based on results from SM-lj are shown
in Figure S4). The MRTSF was calculated by taking the integral
of the survival function (i.e., the integral of the fit to these
graphs). In our survival functions for all RT probability
distributions, a combination of two exponential functions gives
the best fit to explain the data (e.g., Figure S6). This fit
indicates that two underlying distributions are responsible for
the observed MRTSF, one distribution corresponding to short
MRTSF (<20 ps) and a second group of long MRTSF (>20 ps).
A similar biexponential distribution of RTs for the calcium
solvation shell was previously reported by De La Pierre et al.,28

Table 1. Mean Residence Times Calculated Using either the
Direct Method (MRTDM) or the Survival Function
(MRTSF)

a

method
NH2O/
Ca2+

MRTDM
(ps) CN

MRTSF
(ps) R2 ref

SM-lj 809 14.9 8.4 56 0.997 this
work

SPC/fw-tail 809 116 7.0 333 0.999 this
work

SPC/fw-buck 809 46 6.9 125 0.999 this
work

BLYP-D3/
CP2K

63 73.8 6.8 this
work

revPBE-D3/
CP2K

63 60.2 6.1 this
work

CPMD 53 23.2 6 47
QM/MM-MD 199 42.5 7.8 3
SPC/fw-tail 200 28
SPC/E/
TIP4P

158 68

SM-buck 2027 7.0 37
adsorption
exp.

6310 [*]7,8

IQUENS exp. <100 <100 48
aNH2O/Ca

2+ is the number of water molecules per calcium in the
simulation cell; the coordination number (CN) was used to normalize
the exchange frequency for calculation of MRTDM, and the correlation
coefficient R2 is for MRTSF. [*] Obtained using the exchange
frequency of a molecule4,5 using equation 1.
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who related the short RTs to water librations and excluded
those in their MRTSF calculations. Additionally, this bimodal
MRTSF distribution may be due to differences in the average
Ca2+-Owater distance. When the average distance is plotted
against the RT (Figure 1b), one can see that, while generally all
long RTs are found for water molecules at a distance of ≤2.40
Å, short RTs are found for water molecules in the full range of
distances, from 2.50 Å to shorter than 2.40 Å. This suggests
that another property affects RT besides the Ca2+-Owater
distance, for example, the H-bonding network. To investigate
if this is the case, we determined the percentage of H-bonds
between first-shell water molecules and those outside the first
shell (referred to as bulk water molecules) for short versus long
RT water molecules (Figure 2), following the definition of a
hydrogen bond proposed by Chandra.69 We used an in-house
Python script to count the number of hydrogen bonds in the
trajectory file. The molecules having a short RT show a larger
number of H-bonds with bulk water molecules than those with
long RT, suggesting that the H-bond network may affect
residence time as well. Furthermore, SPC/fw-tail shows a
larger number of H-bonds with bulk water than SM-lj (Figure
2; Figure S7a). This more pronounced H-bond network
around the cation leads to a less disturbed water structure and
could therefore explain the longer MRTSF obtained from SPC/
fw simulations.
If we group the distance-to-cation data based on their RTs,

the average distance of the short RTs is 2.97 Å, while the
average distance of the long RTs is only 2.48 Å (averaged over

the first 20 ps after entering the first shell or, in the case of
short RT, water molecules that left the first shell within these
20 ps, as long as they remained).
Besides the H-bond network and Ca2+-Owater distance, it is

worth considering the structure of the first coordination shell.
The average coordination number of SPC/fw water is found to
be 7.3 (Table 1). For 96% of the configurations, the short RT
is only observed when the CN is +1 above this average (Table
2). As mentioned above, CN is larger for SM-lj (Table 1), and
the coordination distances are on average also larger (Figure
3), leading to greater distortion of the ideal bipyramid
(octahedral) coordination for calcium. Moreover, the width
of the first coordination shell is also controlled by the van der
Waals interaction when comparing the different interactions
using the same water model (SPC/fw-buck and SPC/fw-tail,
Figure 3). Using the Buckingham potential and the related
parameters leads to a wider first shell, and the first maximum in
the RDF is at a slightly larger distance from the cation
compared to the tailed Lennard-Jones interaction proposed by
Raiteri et al.27 Based on the results for both force fields, it may
be suggested that longer Ca2+-Owater coordination distances
reflect first-shell water molecules in excess of the ideal for Ca2+

(CN = 6) that will be more liable to exchange than in the rigid
model. Therefore, force fields yielding higher CN for calcium
expectedly give rise to shorter average MRT.

Both the direct and survival function methods have
advantages and disadvantages. The direct method results in
shorter mean residence times because the fast exchanges are
over-represented. Nevertheless, the relative differences in
MRTDM we observe between the force fields tested (Table
1) are very similar to those obtained with MRTSF. Moreover,
the DM needs shorter simulation times than SF to obtain
statistically meaningful output, and it can therefore also be
used to investigate shorter trajectories generated by ab initio

Figure 1. (a) Probability distribution of different residence times (RT, black triangles) for first-shell water molecules obtained using SPC/fw-tail
where the survival function is represented by the red and blue lines, which are two exponential fits. (b) Average distance between a coordinated
water molecule and the calcium cation as a function of the residence time of that water molecule.

Figure 2. Relative time a water molecule has H-bonds with bulk water
molecules, during the 20 ps of each residence time (RT); the two
gaussians represent the two different populations (short and long RT
H2O).

Table 2. Coordination Number of Calcium in Relation to
Residence Time of the Water Molecules in the First Shell
Using SPC/fw-tail

first shell configuration

CN only long RT-water 1 ≥ short RT-water all

6 1% 1%
7 75% 1% 70%
8 25% 96% 29%
9 0% 3% 0.16%
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and QM/MM MD methods. However, due to the definition of
a water exchange event in the DM method, it is likely to be less
accurate. Nonetheless, this method can provide insight into the
relative variations in local dynamics, such as a comparative
assessment of the reactivity of (i.e., water dynamics around)
different ions in aqueous solution or of the change in the
reactivity of an ion in aqueous solutions with changing
composition.3

In contrast, the survival function needs simulation times long
enough to capture enough long residence times for the
probability distribution function. Depending on the system
investigated, this may be hundreds of nanoseconds, even
microseconds. However, the SF results facilitate detailed
differentiation of the MRT distribution in relation to CN,
geometry, and H-bond network, but most importantly, the SF
approach closely resembles the data post-processing, in terms
of fitting exponential decay functions to determine MRT, used
in experiments of Eigen and reviewed by Petrucci.70,78 It is also
similar to the theory behind the interpretation of IQUENS
signals48 to obtain MRT from neutron scattering data. As such,
the SF results are in principle more comparable to available
experimental data for 2 to 3 m calcium dissolved in water.
When we compare the MRT’s extracted from our MD

results with those reported from experiments (Table 1),
neither methodology (irrespective of the force fields adopted)
is able to reproduce the estimation of Eigen.78 The MRT
values obtained here are closer to IQUENS measurements,48

ab initio,47 and QM/MM MD simulations.46 The different
computer simulation methods still generate a range of water
exchange frequencies, and comparability is hampered (i)
because the SF cannot be used on the output generated by
computationally demanding AIMD and QM/MM MD
methods, which are generally limited to few hundreds of ps,
and (ii) partly because of the intrinsic limitations of the
classical MD force fields, such as the different ways of
expressing the structure of the water with the different
interatomic potentials.
The simulations conducted in this study considered a

calcium ion in pure liquid water. However, Di Tommaso et al.3

have shown that the frequency of water exchange in the first
hydration shell of Ca2+ is reduced in the presence of halide
ions; this effect is observed not only when the halide anions are
directly coordinated to calcium but also when the alkali and
halide ions are placed at or outside the second coordination
shell of Ca2+. As natural aqueous solutions are far from pure

water but rich in ions, in such environments, the water
exchange dynamics around Ca2+ is likely to be influenced by
the formation of contact and solvent shared ion pairs. An
extended model, also considering the effect of solution
speciation on the residence times of water around Ca2+, will
therefore be part of future studies.
To summarize, residence times are affected by Ca-Owater

distance and H-bonding network and therefore depend on
which force field is used. The direct method can be used on
MD as well as AIMD and QM/MM-MD output to obtain
relative differences in dynamics. Based on the current
comparison, we recommend the SPC/fw-buck force field to
determine MRTDM since it most closely reproduces the ab
initio results in MRTDM. However, the MRTSF based on this
force field is too long compared to experimental IQUENS data
where the SM-lj provides the best agreement. Furthermore, if
at all feasible, we suggest that the use of the SF method to
extract the MRTSF from the MD simulation output obtains the
most accurate (absolute) value of the mean residence time.

3.2. Comparison with Water Exchange Kinetics
around Carbonate Ions. Our atomistic simulations agree
with recent experiments, supporting exchange frequency values
for calcium that are 2 orders of magnitude larger than
previously thought (Eigen). Consequently, the water exchange
kinetics around Ca2+ approach has expected values around
anions, for example, the carbonate ion (>1010 s−1).37 To test
this hypothesis, we ran a 13 ns simulation using SPC/FW and
carbonate (details in the Supporting Information) to
determine the MRT around a carbonate ion. We obtained
an MRTSF of 8.4 ps (R2 0.999) and MRTDM of 9.2, which are
both a factor of 5−40 shorter than for water residence times
around calcium obtained with the same force field. As such, the
difference in water exchange kinetics around the carbonate ion
is not orders of magnitude faster than that around the calcium
ion, although it remains noticeably faster. The slightly longer
MRT around calcium is expected because the anion
interactions are through hydrogen-bonds with a relatively
shorter lifetime (∼2.5 ps)71 than the metal-oxygen interactions
as estimated by ab initio MD.47 Furthermore, the free energy
of hydration for calcium is larger than that for carbonate
(−1447 ± 2 and −1301 ± 2 kJ mol−1, respectively),72

indicating a stronger interaction between calcium and water
than between carbonate and water.

3.3. Implications for Crystal Growth Rate. In order to
discuss the impact of a smaller difference in water dynamics
around calcium and carbonate ions than has been suggested
thus far, we relate to crystal growth via ion-by-ion attachment.
While there is strong evidence of ion-pair attachment during
growth, for example, by the attachment of CaCO3(aq) pairs
during calcite growth,5,49,73,74 such a growth mechanism
cannot explain the dependency of the growth rate on the
solution stoichiometry at a constant degree of supersaturation
observed in bulk75,76 and microscopically.17−19 According to
thermodynamic equilibrium calculations, the concentration of
the CaCO3(aq) ion pair is constant at a constant degree of
supersaturation, irrespective of the solution stoichiometry, and
the growth step velocity and bulk growth rate dependency on
solution stoichiometry are therefore assumed to be caused by
an ion-by-ion growth mechanism.16,20−22

In the ion-by-ion growth mechanism, the ion attachment
frequencies are controlled by several, potentially simultaneous
processes: cation and anion diffusion to lattice sites (surface
anions and cations, respectively), dehydration of solvated ions,

Figure 3. Radial distribution function reflecting Ca2+-Owater
coordination distances for the different models.
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and surface lattice sites. Various experiments investigating
calcite10−14 surface growth strongly suggest that these
processes are different for the structurally distinct growth
steps at the calcite surface.17−21 While obtuse step edges
propagate through direct attachment of ions delivered via
solution diffusion, the acute steps grow by attachment of ions
delivered through surface diffusion. Moreover, Hong and
Teng18 have proposed, based on their atomic force microscopy
observations, that obtuse step growth is limited by calcium
dehydration and acute step propagation is limited by surface
adsorption, reorientation, and rearrangement of carbonate
ions. We would like also to indicate that interpretation of the
kinetics of crystal growth, deconvolved from experimental data,
using molecular simulations computer models is very
challenging because the mechanisms controlling these
processes (nucleation and growth) can be significantly more
complex than those considered in simplified computer models.
One of the first direct relationships between crystal growth

kinetics and ion dehydration was presented by Nielsen.11 He
obtained the values for the cation dehydration frequency νdh
related to various minerals from Petrucci et al.8 and obtained
the correlation with ion integration frequency νin, as illustrated
with blue dots and line in Figure 4. Expressing this correlation

as an Eyring equation, it was found that the integration rate is
approximately a thousand times smaller than the dehydration
frequency
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This correlation (Figure 4) supported the notion that the
cation dehydration is the limiting factor for growth (and
dissolution). The cations retain water molecules longer than
anions and are therefore rate-limiting.3,28,37

In general, the MRTs obtained with DM and SF support this
notion, although the difference between cation and anion
dehydration is not as extreme (orders of magnitude) as

considered previously. Both cation and anion dehydration
frequencies are in the order of, or slightly smaller than, the
reported diffusion rate (νD) ∼1010 s−1.11 However, adding our
water exchange frequencies as well as the other values from
Table 1 to Figure 4 reveals that the correlation previously
reported by Nielsen11 is not very strong, in particular in the
case of cations with a dehydration frequency higher than 108

s−1 (Figure 4).
Furthermore, if we use the updated values of dehydration

frequencies, measured with the IQUENS method, and the
values of the ion integration frequency νin, then the term D

0

ν
ν
(eq

3) is not 10−3 for calcium anymore, but a factor of 10−5 is
needed to correlate νdh with νin. This indicates that another
process is affecting νin. Furthermore, the dehydration
frequency derived from ab initio MD (Table 1) is smaller
than the diffusion frequency (νD), which suggests that the
diffusion of the cation into the lattice site from a neighboring
position is the rate-limiting step, in agreement with various
experimental works.17,18,78 Additionally, Petrucci8 proposed
based among others on data from Eigen and Wilkens7 that, for
some ions, including Ca2+, dehydration was not the limiting
factor. Petrucci concluded that substitution of water by any
ligand is the rate-limiting step only if the ligand’s exchange rate
is less than 107 s−1. The latter is undoubtedly the case for most
cations with small radii (<100 pm) such as Mg2+, Ni2+, Co3+,
Zn2+, and Fe2+. Petrucci8 compared the substitution rates of
different ligands; for Mg2+, which has a very low water
exchange frequency compared to Ca2+, there is indeed no
difference in the reaction rate with a range of ligands,
indicating that the dehydration of magnesium is the rate-
controlling step. In contrast, he observed different reaction
rates between Ca2+ and the same selection of ligands,
suggesting that calcium dehydration is not the rate-
determining step. Alternatively, it may also suggest that
calcium dehydration can be affected differently by different
ligands, as has been shown for halide ions.3

To summarize, the water exchange kinetics of Ca2+ and
CO3

2− are more comparable than previously thought, which is
substantiated by maximum bulk growth rates and step
propagation rates in near-stoichiometric solutions.16,75 Fur-
thermore, the MRTs reported here, combined with the
experimental IQUENS values for the dehydration frequency
of calcium,48 and the ligand experiments8 shed a different light
on the most likely rate-limiting step for calcium carbonate
crystal growth. Rather than cation dehydration, (surface)
diffusion of the cation into the lattice site from a neighboring
position is the rate-limiting step, which is in agreement with
the work by Hong and Teng,18 Bracco et al.,17 and Stack et
al.78 Alternatively, our results may support the proposition of
De La Pierre et al.49 that the attachment of the carbonate ion
to the kink site is the rate-determining step of the calcium
carbonate crystal growth.

4. CONCLUSIONS

The mean residence time of water molecules around dissolved
calcium ions, obtained from our classical MD simulations, does
not agree with the experimental mean residence time values
around calcium estimated by Eigen,7 as used in Nielsen’s
analysis of crystal growth11 and adopted by many recent calcite
growth rate studies. In contrast, our MRT values are in the
same order of magnitude as more accurate ab initio MD,
whereas QM/MM-MD agrees with the limit obtained from

Figure 4. Logarithm of the cation integration frequency versus the
logarithm of the cation dehydration frequency. Circles: as determined
from parabolic function fitted to the dehydration frequency;11

triangles based on IQUENS measurements;48,77 cross based on
QM/MM-MD simulations and DM;3 gray square based on ab initio
calculations (BLYP-D3 functional) and DM (this study); diamond
from classical MD using SF (this study).
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IQUENS experiments. This finding indicates that calcium falls
in the group of cations with fast water exchanges and its
dehydration is therefore not rate-limiting during calcite crystal
growth. This study also revealed that, of the two methods we
tested to calculate the MRT from MD simulation output, only
the survival function method provides accurate absolute values
and can distinguish two different groups of water molecules
around calcium, revealing that ion-water distance and H-
bonding networks affect MRT values. Additionally, our work
suggests that the direct method can be used to obtain relative
differences in MRT, rather than accurate values, and is most
suitable to post-process output from MD simulations of larger
systems and ab initio calculations, as it can be implemented on
shorter production runs.
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