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ABSTRACT

This paper presents an improved transfer learning framework ap-

plied to robust personalised speech recognition models for speakers

with dysarthria. As the baseline of transfer learning, a state-of-the-

art CNN-TDNN-F ASR acoustic model trained solely on source

domain data is adapted onto the target domain via neural net-

work weight adaptation with the limited available data from target

dysarthric speakers. Results show that linear weights in neural

layers play the most important role for an improved modelling

of dysarthric speech evaluated using UASpeech corpus, achieving

averaged 11.6% and 7.6% relative recognition improvement in

comparison to the conventional speaker-dependent training and data

combination, respectively. To further improve the transferability to-

wards target domain, we propose an utterance-based data selection

of the source domain data based on the entropy of posterior proba-

bility, which is analysed to statistically obey a Gaussian distribution.

Compared to a speaker-based data selection via dysarthria similarity

measure, this allows for a more accurate selection of the potentially

beneficial source domain data for either increasing the target domain

training pool or constructing an intermediate domain for incre-

mental transfer learning, resulting in a further absolute recognition

performance improvement of nearly 2% added to transfer learning

baseline for speakers with moderate to severe dysarthria.

Index Terms— Transfer learning, data selection, entropy, pos-

terior probability, dysarthric speech recognition

1. INTRODUCTION

The high inter- and intra-speaker variability inherent in dysarthric

speech [1, 2] severely hinders the application of state-of-the-art au-

tomatic speech recognition (ASR) systems usually constructed us-

ing typical speech (cf. [3, 4]). Recent progresses in ASR perfor-

mance have been achieved mainly via the use of deep neural net-

works (DNNs) [5], which require a large amount of data for a satis-

factory recognition performance. However, the difficulty in collect-

ing dysarthric speech data [6] means that obtaining sufficient data is

a major challenge.

Research has been conducted for developing dysarthric speech

recognition systems by better modelling of the dysarthric speech

variability (cf. [7, 8]), or by focusing on dysarthric speech data col-

lection [9, 10, 11, 12]. There has also been increasing interest in re-

cent years in porting the advances from DNNs seen for mainstream

ASR to that of dysarthric ASR, particularly through making best
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use of the often limited amount of dysarthric data. For instance,

to reduce the influence caused by dysarthric speech variability in

tandem ASR systems, bottleneck features have been proposed via

DNNs using a large amount out-of-domain data [13], or convolu-

tional neural networks have been employed [14]. Various advanced

forms of DNN architecture were tested in [15] for both tandem and

hybrid ASR systems for dysarthric speech. To fully exploit DNN-

based acoustic modelling, data augmentation was successfully ap-

plied based on speed and tempo perturbation in the signal domain

for dysarthric speech recognition [16].

In this paper, we first investigate the use of transfer learning

(cf. [17]) to adapt DNN models towards specific target speakers in

personalised dysarthric speech recognition. This is motivated by

the observation that it is common to have access to a large amount

of data from typical speakers (out-of-domain), but a much smaller

amount of data from dysarthric speakers (in-domain), and in effect,

that out-of-domain data is not entirely unrelated to the in-domain

dysarthric data due to the shared lexical knowledge. Transfer learn-

ing is capable of transferring knowledge from one (source) domain

to another related (target) domain to avoid re-building a new ASR

system from scratch, which is desirable for dysarthric speech recog-

nition, as i) the small amount of target data from a specific dysarthric

speaker could easily lead to over-fitting during speaker-dependent

training; ii) data combination scheme [18] like multi-condition or

multi-style training may not always be feasible to use due to the

probable large bias between the source domain and the target domain

data. Actually, transfer learning has already been successfully ap-

plied to speaker adaption using DNNs in ASR system (cf. [19, 20]),

however, to our best knowledge, this work is the first study to ap-

ply transfer learning to dysarthric speech recognition. DNN weight

adaptation [21] is employed to form the transfer learning baseline,

and its effectiveness in terms of the transferred layers will be com-

pared to the data combination scheme with speaker-independent and

dependent scenarios evaluated using the UASpeech corpus [11].

Next, to further improve the efficiency of transfer learning for

personalised dysarthric speech recognition, it is crucial to have suf-

ficient good training data to force the senone distribution (DNN

posterior probability) from the source domain data to be close to

that from the target domain data. To this end, we propose a novel

data selection strategy to actively pick up the potentially good data

from available source domain data to add to the training data of a

particular dysarthric target speaker. The approach is motivated by

analysis of the entropy of the posterior probabilities of a specific

speaker-dependent DNN model. It is observed that across speech

portions, these entropies follow a Gaussian distribution and could

then serve as a selector of good data for improved transfer learn-

ing through data combination in a re-training or via an incremental

learning chain [22] to move towards the target domain. Further,

compared to the speaker-based data selection in our earlier work [6]



which showed that data from other speakers with similar severity

of dysarthria are not necessarily guaranteed to improve ASR per-

formance due to very individual speech characteristics of different

speaker with dysarthria, the proposed data selection performing

in utterance-based mode provides dedicated selection on source

domain data to avoid negative transfer.

In the remainder of this paper, the transfer learning framework is

briefly introduced in Section 2, together with the UASpeech database

and its ASR setup. The proposed data selection method is introduced

in Section 3, and experimental results will be presented in Section 4

before Section 5 concludes the paper.

2. SYSTEM OVERVIEW

Fig. 1 depicts the processing chain of transfer learning in terms of

data and model interaction for dysarthric speech recognition. The

limited target domain data is from a target speaker with specific

severity of dysarthria, while the source domain data is usually com-

prised of typical speech in transfer learning baseline, which gener-

ates a personalised target domain DNN model for recognition. The

conventional data combination scheme and speaker-dependent train-

ing under common ASR setup are used to test the effectiveness of

transfer learning. When the proposed data selection is performed on

source domain data pool (usually data from other dysarthric speak-

ers), transfer learning will be processed again after the selected data

has been added to target domain data (motivated by active learn-

ing [23]) for a re-training, or be done via incremental learning [22]

(2-step transfer learning with an intermediate domain).

Data

Source domain

Data

Target domain

Model

Source domain

Model

Target domain

Transfer learning baseline

Data selection

Data Pool

Source domain

Data

Intermediate 

domain

utterance-based

Improved Transfer learning

Data combination

+ Target domain

Transfer learning

Target domain

speaker-based

Incremental  learning

for comparison

Transfer learning

Intermediate 

domain

Transfer learning

Target domain

Fig. 1. Processing chain of transfer learning baseline and its im-

proved version with the proposed data selection scheme.

2.1. Data Description

The UASpeech corpus [11] is employed to construct the source and

the target data. It consists of data from 15 dysarthric speakers with

cerebral palsy and 13 control (typical) speakers. There are 3 blocks

of words for each speaker, and following previous published work

(e.g., [4]), CTL (typical) and DYS (dysarthric) datasets are divided

into training using blocks 1 and 3, and test data with block 2. DYS

speakers were grouped in four severity levels based on a subjective

estimate of perceptual speech intelligibility ratings (cf. [11]), namely

Severe (speaker label as ’M04’, ’F03’, ’M12’, ’M01’), Moderate-

Severe (’M07’, ’F02’, ’M16’), Moderate (’M05’, ’M11’, ’F04’) and

Mild (’M09’, ’M14’, ’M10’, ’M08’, ’F05’, cf. Fig. 4). Three base-

line acoustic models are constructed as follows:

• CTL: the training data only contains the typical speech from

13 control speakers (total duration of 22.7 hours), which can

be considered as a general trained model that might be widely

available in public. CTL will serve as source domain model

in transfer learning baseline in the following experiments;

• Speaker-independent (SI): the training data contains the other

14 DYS speakers (with duration of approximated 3 hours

for each speaker) except for the particular target dysarthric

speaker in the test stage. Hence, SI model is specific for each

dysarthric speaker, i.e., personalised. Due to the dysarthria

similarity to some extent, the SI training data will serve as

source domain data pool for data selection;

• Speaker-dependent (SD): the training data is only comprised

of the data from the target DYS speaker (target domain), split

into training and test set. SD model is also personalised.

2.2. ASR Setup

The hybrid DNN-HMM ASR training is used, and the alignment for

DNN senones (context-dependent phonemic states) is provided by

an auxiliary GMM-HMM training, where 13-dimensional MFCCs

incorporating a spliced context window of length 9 frames are used,

and these are subsequently transformed into a 40-dimensional vec-

tor via linear discriminant analysis and maximum likelihood linear

transform. In addition, speaker adaptive training is employed based

on feature-space maximum likelihood linear regression (cf. [24, 25]).

A uniform language model is generated based on the transcriptions

of speech files, as well as a word grammar network containing a si-

lence model followed by a single word, denoted as ’< sil > word’.

The factored form of time delay neural networks (TDNN-

F) [26] incorporating convolutional neural networks (CNNs) is used

as state-of-the-art DNN architecture. It contains 6 CNN layers at the

bottom, fed with 40-dimensional log-mel-spectrogram features, and

9 following TDNN-F layers, as well as one linear layer before the

output layer, trained with lattice-free maximum mutual information

criterion [27]. Note that this linear layer is similar to linear hidden

network (LHN) [28], which instead was added as a new layer for

speaker adaption. Further, the linear bottleneck of each TDNN-F

layer [26] allows for additional transfer beside the sole linear layer.

The learning rates for training with 4 epochs are chosen initially

from 0.001 ending at 0.0002 for CTL and SI, and from 0.0005
to 0.0001 for SD (with smaller amount of data), respectively. All

setups use 3-fold speed perturbation with SoX resampling algo-

rithm [29]. For more detailed experimental setup, the reader is

directed to our released Kaldi scripts1.

3. DATA SELECTION

Data selection aims to actively choose the samples from an available

data pool that could assist the target domain data to further improve

the transferability of transfer learning. It is hypothesised that the

selected data share a similar distribution to the target domain data

in terms of the DNN senone distribution. Entropy analysis of the

DNN posterior probability has been shown to be capable of provid-

ing a strong correlation to the final recognition accuracy but without

the complex decoding process (cf. [30]). The posterior probability

P (s, t) with s, t as (monophone) state and frame index, respectively,

is calculated by a DNN forward-pass and an accumulation that maps

1We have released our Kaldi scripts for this paper’s experiments in
https://github.com/ffxiong/uaspeech/s5 transfer



Fig. 2. Histogram (fitting to a Gaussian distribution) of utterance-

based entropy of training sets from all 15 DYS speakers w.r.t. SD

model of two specific dysarthric speakers, ’M08’ and ’M07’ (cf. Sec-

tion 2.1) for example.

context-dependent senones to monophones, and the entropy E(t) of

P (s, t) is determined by

E(t) = −
∑

s

(P (s, t) · log
2
P (s, t)) . (1)

Utterance-based entropy E(t) is calculated as the average value over

frames t, and the silence portion is omitted by introducing a thresh-

old of 0.05 due to the emphasis of the entropy w.r.t. speech phones.

It is observed that utterance-based entropy of the target data fol-

lows a Gaussian distribution when its SD model is used, as clearly il-

lustrated in Fig. 2, where two dysarthric speakers ’M07’ (Moderate-

Severe) and ’M08’ (Mild) are presented for illustration. Model-

based selection can be straightforwardly derived when the mean µ
and the standard deviation σ are determined based on the available

target data. It is worthwhile noting that µ (0.44 to 0.46) and σ
(0.14 to 0.15) behave almost consistent for SD models with different

speakers, indicating that one Gaussian distribution with µ = 0.45
and σ = 0.15 is sufficient to model the entropy of DNN posterior

probability from target domain data. Thereafter, the utterances with

entropy values located inside the Gaussian distribution will be se-

lected as potential good data for improved transfer learning process

(cf. Fig. 1), represented as

|(E(t)− µ)/σ| < x , (2)

where x derives from x-sigma rule (µ ± xσ) denoting different

ranges of Gaussian distribution.

4. RESULTS AND DISCUSSION

4.1. Effect of transfer learning

Motivated by the findings in [31] that the first layers of neural net-

work usually learn general features, while last layers transit features

to specific to a particular task. It is therefore of interest to analyse

the impact of individual neural network layer during transfer learn-

ing via weight adaptation. From preliminary experiments, compared

to the source model which was trained with 4 epochs, 1 epoch dur-

ing transfer learning is sufficient to avoid an over-fitting. With the

small amount of target data, the learning rate in transfer learning is

best reduced by half, and it is also suggested that the untransferred

Fig. 3. Impact of the transferred layers in terms of individual layer,

only linear component of individual layer (not in CNN layers), and

the combined linear components from layer n gradually to the output

layer (denoted as [n, output]).

layers still need to be re-trained with an even smaller learning rate

(quarter) rather than being absolutely frozen (learning rate equals 0).

As shown in Fig. 3, it seems that hidden layers in TDNN-F lay-

ers are more transferable than CNN layers, particularly than the out-

put layer. This is probably because CNN layers act more like feature

extraction layer and the output layer is forced to be updated using the

limited target data with a sparse distribution w.r.t. the large amount

of senone-based states, easily leading to negative transfer [17]. Per-

formance can be improved when only the linear component in each

hidden TDNN-F layer is transferred, indicating that neural network

weight adaptation is mainly accomplished via linear transfer, which

performs similar to LHN speaker adaptation (cf. Section 2.2). Fur-

ther, it is preferable to gradually add the transferred layers starting

from the output layer towards the input layer, and it is found that it

could be a good choice to transfer all the linear components in neural

networks.

With the fine-tuned neural network parameters for transfer learn-

ing, the performance comparison between different models, in terms

of the DYS test data from all 15 dysarthric speakers, is summarized

in Table 1. In general, without target SD data for speakers with mod-

erate and severer dysarthria, ASR systems would not achieve ac-

ceptable performance. SI outperforms CTL except for Mild group,

indicating that data from other DYS speakers usually improve the

recognition accuracy for the DYS speakers with moderate or sev-

erer dysarthria. On the other hand, a weak CTL model probably ex-

hibits more transferability than SI model, resulting in the best overall

performance. It also shows that transfer learning outperforms data

combination, except for Severe group that might be too dissimilar

to source model so that a brute-force transfer might be not the best

option. Note that the best overall result in Table 1 is better than the

result 37.5% in [32] or 34.8% in [13], and is comparable to the result

30.6% reported in [15].

Table 1. Averaged word error rates (WERs) for 4 DYS Groups in

terms of different acoustic models. Data combination (denoted as

’+’) is done by combining source domain data (CTL/SI) and target

domain data (SD) for a re-training from scratch. Transfer learning

(denoted as ’→’) is achieved using target domain data (SD) to re-

train CTL or SI model.

Systems Severe Mod.-Severe Moderate Mild Overall

CTL 97.21 78.49 56.35 19.26 56.80

SI 90.75 71.27 51.86 32.40 57.66

SD 70.94 33.72 31.43 14.60 34.79

SD + CTL 67.14 34.43 25.68 13.31 32.42

SD + SI 63.02 30.90 28.15 18.90 33.29

SD→CTL 68.24 33.15 22.84 10.35 30.76

SD→SI 65.68 36.80 27.15 17.18 34.28



Fig. 4. Confusion matrix for 15 DYS speakers in terms of (a) mu-

tual differences of perceptual speech intelligibility; (b) mutual differ-

ences of speaker-based entropy using CTL model; (c) mutual differ-

ence of speaker-based entropy using individual SD model; (d) WERs

using individual SD model with test data (oracle scenario).

4.2. Effect of data selection

To investigate how to make good use of the available transcribed data

from other dysarthric speakers for one specific target speaker, data

selection is applied, both in terms of selecting data from a whole

speaker (speaker-based) and from individual utterances (utterance-

based). Intuitively, data from speakers with similar dysarthria sever-

ity could mutually benefit from each other in transfer learning, how-

ever it has been shown that this is not always the case [6]. We in-

vestigate a number of similarity measures: perceptual speech intel-

ligibility scores, the speaker-based entropy value averaged over all

the training utterances using CTL model and individual SD model,

as well as an oracle case where WERs from the test data are used.

As seen on the plots of between-speaker similarity in Fig. 4,

a higher similarity is seen between speakers with similar severity

levels. In the plots, the speakers are ordered according to intelligi-

bility [11], and hence high similarity scores concentrate along the

diagonal line (the actual diagonal being the self-score of the tar-

get speaker). This is seen with respect to speech intelligibility and

speaker-based entropy with the CTL model, because the underlying

principle of these two estimation methods is based on the typical

speech data. On the other hand, when the SD model is used for

an individual dysarthric speaker, the confusion matrix becomes dis-

persive, particularly for moderate and severe speakers, indicating a

large inter-speaker variability. This phenomenon was also observed

in Fig. 2 where some similarity with other speakers is seen for the

Mild speaker ’M08’, but not for Moderate-Severe speaker ’M07’.

The data from the speaker with the nearest similarity is selected for

improved transfer learning, as shown in the lower panel of Fig. 1.

Fig. 5 (a) shows the results of adding data based on selecting

from a whole speaker. It is seen that selection based on speech intel-

ligibility and CTL model cannot provide further improvement com-

pared to the base transferred model, indicating that such similarity

measures solely using typical speech data is not sufficient for speak-

ers with varying degrees of dysarthria. No further improvement ob-

tained by the oracle case indicates that speaker-based data selection

is not effective nor sufficient, since most of the utterance-based en-

tropy is still out of the target distribution (cf. Fig. 2). Further, incre-

Fig. 5. Data selection for improved transfer learning in speaker-

base and utterance-based modes. Base system is SD→CTL with

best overall result in Table 1.

mental learning consistently outperforms data combination.

For fair comparison, the amount of selected data using the

utterance-based data selection is capped so that the added data

is of a similar size to the amount available in speaker-based data

selection (training data amount from 1x DYS speaker, rather

14x used in SI system in Table 1) for target domain data. We

also choose different ranges of Gaussian distribution according to

x = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} in Equation (2). Fig. 5 (b) shows

that data with utterance-based entropy located in µ ± σ (x = 1.0)

contributes the most to the improved transfer learning both with

respect to data combination and incremental learning. Further,

Fig. 5 (c)-(f) depict the WER of each dysarthric speaker grouped

in four groups to pinpoint the individual advantage. For speakers

with severe dysarthria, data combination outperforms incremental

learning, resulting in an averaged 2.1% absolute WER reduction

compared to the base transferred model. This also indicates that it

might be difficult to generate an intermediate domain being close to

target domain for speech variability from very severe dysarthria. On

the other hand, for Moderate-Severe and Moderate groups, incre-

mental learning is superior in general. However, no further transfer

gain is observed for Mild group as the original CTL model is close

enough to the target domain.

5. CONCLUSIONS

This paper investigated the use of transfer learning applied for

improving personalised dysarthric speech recognition. Consistent

transfer gain can be observed when source domain data is from

typical speech for speakers with various severity of dysarthria, and

transfer learning performs more effectively than conventional data

combination and speaker-dependent training. To further optimise

the use of available data from other dysarthric speakers, a data se-

lection scheme has been proposed based on entropy distribution of

posterior probability. We found that speaker-based data selection via

similarity measure easily raises negative transfer, and it is preferable

to conduct utterance-based data selection within 1-sigma range of

a determined Gaussian distribution to exploit further transfer gain,

particularly for test scenarios with moderate to severe dysarthria.

Further, incremental learning outperforms data combination in gen-

eral, except for the case with very severe dysarthria.
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