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ABSTRACT

There has been much recent interest in building continuous

speech recognition systems for people with severe speech impair-

ments, e.g., dysarthria. However, the datasets that are commonly

used are typically designed for tasks other than ASR development,

or they contain only isolated words. As such, they contain much

overlap in the prompts read by the speakers. Previous ASR evalua-

tions have often neglected this, using language models (LMs) trained

on non-disjoint training and test data, potentially producing unreal-

istically optimistic results. In this paper, we investigate the impact

of LM design using the widely used TORGO database. We combine

state-of-the-art acoustic models with LMs trained with data originat-

ing from LibriSpeech. Using LMs with varying vocabulary size, we

examine the trade-off between the out-of-vocabulary rate and recog-

nition confusions for speakers with varying degrees of dysarthria.

It is found that the optimal LM complexity is highly speaker de-

pendent, highlighting the need to design speaker-dependent LMs

alongside speaker-dependent acoustic models when considering

atypical speech.

Index Terms— Continuous dysarthric speech recognition, lan-

guage modelling, out-of-domain data

1. INTRODUCTION

Dysarthria is a speech disorder caused by a disruption in the neuro-

motor interface [1] which impedes the physical production of

speech. People with moderate to severe dysarthria are often only in-

telligible to close friends and family, and in general, communicating

with others can be very challenging. This extends to communi-

cating with machines, and although some progress has been made

in recent years, dysarthric automatic speech recognition (ASR) re-

mains a challenging research area that is lagging decades behind

the sustained progress seen for mainstream automatic ASR tailored

for typical voices. The large systematic differences between typical

and dysarthric speech, coupled with the high degree of variability

between speakers with dysarthria (depending on severity and type)

means that large resources are required for training adequate acoustic

models. However, very few dysarthric speech datasets are available.

Further, the databases that do exist, have usually not been collected

for the purpose of training ASR systems but instead for purposes

such as diagnosis and impairment severity assessment. This means

that researchers are faced with challenging choices when attempting

to set up experimental frameworks aimed at facilitating meaningful

research on improving continuous dysarthric speech recognition.

This work is supported under the European Union’s H2020 Marie
Skłodowska-Curie programme TAPAS (Training Network for PAthological
Speech processing; Grant Agreement No. 766287).

Early work on dysarthric speech has focused on isolated word

recognition using the highly influential UASpeech corpus [2].

More recently, focus has moved on to continuous speech recog-

nition. Here, the two widely available datasets are Nemours [3]

and TORGO [4]. Research has focused on improving the acoustic

modelling to better handle the mismatch to typical speech, e.g., the

use of adaptation techniques to generate speaker dependent models

using limited amounts of data [5], and demonstrating the benefit

of adding articulatory information to improve traditional acoustic

modeling of dysarthric speech [6]. Recently, further ASR perfor-

mance improvements have been made by exploring neural network

architectures such as DNNs, CNNs, TDNNs and LSTMs [7, 8].

However, unlike UASpeech and the smaller homeService cor-

pus (recorded isolated command word interactions, [9]), neither

Nemours nor TORGO were designed for ASR research. Nemours

was motivated by intelligibility assessment and TORGO for compar-

ative study of dysarthric and typical speech. As such, although they

may allow a partitioning of speakers into training and testing sets,

they do not provide a disjoint set of training and test sentences. For

example TORGO features a lot of repeated prompts. This is sensible

for assessment or across speaker comparisons, but not convenient for

ASR. In fact, the standard approach of using a leave-one-speaker-

out cross-validation setup with this dataset has encouraged previous

researchers to train language models on training sets that is almost

completely overlapping with the test set.

Working with TORGO, [4], [5] and [6] employed a back-off bi-

gram LM while [7] and [8] applied a standard trigram LM with in-

terpolated Kneser-Ney discounting [10] to the training data prompts

– despite the overlap with the test data. Studies on the phrase-based

dysarthria corpus Nemours [3] such as [11] simply utilized the bi-

gram statistical LM trained on the whole corpus itself. [12] em-

ployed external text from the TIMIT dataset for LM training, but

without providing any details of the LM setups. We believe that

many of the reported ASR performances have been achieved with

LMs unfairly biases towards the language specifics of that corpus

(both the train and test part) and hence will have been overly opti-

mistic, and less able to generalise to truly unseen utterances.

In this work, we aim to develop a reproducible benchmark for

state-of-the-art continuous speech ASR using open tools and fairly

designed language models. We re-evaluate the state-of-the-art for

TORGO, building LMs over a range of vocabulary sizes for differ-

ent utterance types by introducing the external, out-of-domain Lib-

riSpeech corpus [13] as the source for LM estimation. Then, com-

bined with state-of-the-art acoustic models (AMs), we analyze the

influence of the LM vocabulary size on speakers with varying sever-

ity of dysarthria to find the trade-off between acoustic and language

modelling constraints.



Severe M/S Moderate Mild

F01 M01 M02 M04 M05 F03 F04 M03

Number of utterances in the training set 16158 15647 15620 15735 15814 15314 15719 15586

Number of utterances in the test set 228 739 766 651 572 1072 667 800

% Prompt overlap between train and test set 100% 99.1% 98.2% 98.2% 98.9% 95.7% 98.6% 99.7%

Table 1: TORGO dataset statistics per (F)emale and (M)ale speaker. ‘M/S’: moderate to severe intelligibility.

2. CHALLENGES OF USING DYSARTHRIC SPEECH

CORPORA FOR CONTINUOUS SPEECH RECOGNITION

Two corpora are commonly used for continuous dysarthric ASR:

Nemours [3] and TORGO [4]. The Nemours dataset consists of 74

sentences spoken by each of 11 male speakers with different sever-

ity of dysarthria and 11 male typical speakers. The repetition in the

dataset and the small amount of utterances make the Nemours not

suitable for the ASR task. The TORGO dataset contains 21 hours of

aligned acoustic and articulatory recordings collected from 15 speak-

ers [4]. Eight of the speakers (5 males, 3 females) have different

degrees of dysarthria, while the other seven are non-dysarthric typ-

ical speakers (4 males, 3 females). Compared with other existing

American/Canadian English dysarthria datasets including Nemours

[3] (continuous sentences) and UAspeech [2] (isolated words only),

TORGO comprises both word and sentence prompts: 615 unique

words and 354 unique sentences. The total vocabulary size is 1573,

of which the vocabulary size for the sentence prompts on their own

is 1083. Together with the articulatory recordings, this makes this

dataset particularly interesting.

TORGO does not come with a pre-defined training and test

partition. Instead researchers have used the leave-one-speaker-out

approach to maximise the available training data. There is a large

overlap between any given speaker’s utterances (in response to

word and sentence prompts) and those seen in their training set

(provided by the remaining 14 speakers) as all speakers have had

the same prompts and contributed very similar utterances. Table 1

summarises the number of utterances in the leave-one-speaker-

out TORGO training and test sets per speaker (after excluding the

recordings that are shorter than 25 ms and any wrongly annotated au-

dio). Although the corpus contains from 15,314 to 16,158 recorded

utterances per speaker, only a fraction of these (between 951 and

969) are in fact unique, indicating the high degree of repetition

within and across speakers. The extremely high number of over-

lapping prompts between training and test sets means that any LM

trained on any speaker’s corresponding training part of the dataset

will be highly tuned to the test set.

When setting up an evaluation framework within which to ex-

plore e.g., acoustic model improvements, it is essential that the cho-

sen LM reflects a realistic scenario as best as possible. We propose to

use out-of-domain (OOD) data to train LMs with a higher perplexity

to allow for a more reasonable decoding space (in terms of WER).

Note, this will evidently result in a worse baseline performance than

previously assumed, but one which is more meaningful in terms of

evaluating success of acoustic modelling strategies in general, not

just fitting the (non-ASR) database available for research.

3. LANGUAGE MODELLING

Language models impose a syntactic and semantic constraint on the

ASR decoding process by assigning probabilistic estimates for the

occurrence of short word sequences (‘n-grams’) [14]. The LM is

represented as a prior probability in the computation of the posterior

estimates, which is typically trained using large amounts of natural

language text data [15]. When it comes to low resource data, care

has to be taken to not unfairly design the LM so as to give over-

optimistic results by training it on within-corpora data.

To explore the effect of using different LMs we first evaluate the

ASR system using the LM used in previous TORGO-based studies

[7, 8] (from hereon referred to as TORGO LM). This LM covers both

the word and the sentence prompts, but in order to assess the WER

for each of those two separate ASR tasks separately, we further train

task-specific TORGO LMs for the word and sentence recognition

tasks separately, to see how these two distinct tasks are affected by

the choice of LM. Finally, we build out-of-domain LMs originating

from LibriSpeech to explore the optimal complexity of the language

model.

The acoustic models (AMs) used in our experiments are GMM-

HMMs and DNN-HMMs trained with both dysarthric and typical

speech [5, 7, 8]. In particular, the GMM-HMM employs a triphone

model with speaker adapted transformation, and the DNN-HMM

uses a DNN network trained using cross-entropy following setups

from [7]. The experiments are conducted in Kaldi [16] using the

SRILM [17] toolkit for language modelling. Specific training details

for the LMs are presented in Sections 3.1 - 3.3. Leave-one-speaker-

out cross validation is employed to perform speaker-independent

speech recognition, i.e., for each split, 14 speakers are used for train-

ing and testing is performed on a single held out speaker.

3.1. TORGO LM

The TORGO LM is reproduced from [7, 8]), which is a trigram LM

built on prompts of the training stage data in TORGO. In addition to

testing the whole test set, we also inspect the ASR performance by

prompt type, i.e., considering word and sentence recognition as two

different tasks.

Results summarised in Table 2, show that both GMM-HMM and

DNN-HMM systems give a much better performance on sentence

than on word tasks for each severity level, with a 26.0% higher per-

formance on average. We believe that this is due to the strong LM.

The DNN provides varied benefit across the tasks in comparison to

the GMM-based AM. It is noticeable that for severely dysarthric

speech, although the DNN decreases the overall WER on the full

test set by 12%, when the results are reported per task (last two rows

of Table 2), it is evident that this overall decrease is the result of a

(modest) increase in the word task (2.2%), and a large decrease for

the sentence task (13.7%). Overall, the results show that reporting

task-specific results gives a more nuanced picture of the performance

(and the confluence between the AM and LM), and that the severity

level further affects how the AM and LM interact.

3.2. Task-specific TORGO LMs

The task-specific TORGO LM for the isolated word utterances is

built as a standard unigram LM (TORGO unigram LM), whereas



TORGO LM

Severe Moderate Mild

Task GMM DNN GMM DNN GMM DNN

Full Test set 69.6 57.6 35.9 33.0 15.1 14.3

Isolated words 79.8 82.0 66.3 65.5 22.4 19.5

Sentences 62.0 48.3 23.3 22.7 11.2 12.2

Table 2: ASR performance [WER] using different AMs and the

TORGO LM for full, isolated words and sentences tasks and av-

eraged for speakers with different dysarthria severity.

the sentence specific LM is a trigram model (TORGO trigram LM).

The TORGO unigram LM is constructed on the 615 unique isolated

words utterances in TORGO, and is a uniform word grammar net-

work where all words in the corpora are in parallel and assigned the

same log probability following similar setups for .e.g., the isolated

word tasks in UASpeech [18].

The TORGO trigram LM is built on 313 to 354 (depending on

speaker) unique training sentence prompts as defined by the speaker-

specific TORGO training data split, applying Witten-Bell discount-

ing [19]. The two LMs are evaluated on word and sentence utter-

ances respectively as two specific tasks.

Task-specific TORGO LMs

Severe Moderate Mild

LM GMM DNN GMM DNN GMM DNN

TORGO unigram LM 61.5 62.8 54.9 48.2 19.2 15.9

TORGO trigram LM 59.7 41.8 16.0 12.8 3.1 2.0

Table 3: ASR performance [WER] using different AMs and the

task-specific TORGO LMs for isolated words (TORGO unigram

LM) and sentences (TORGO trigram LM) tasks and averaged for

speakers with different dysarthria severity.

Table 3 shows the results of testing with the task-specific LMs,

and Figure 1 compares the results in Table 3 with Table 2 (the sec-

ond and the third rows) and draws the improvement lines for both

tasks. Not surprisingly, both of the two task-specific TORGO LMs

give better results than the general TORGO LM evaluated on the

corresponding utterance type subset. It is seen that as the dysarthric

severity increases, the improvement made by the TORGO unigram

LM on the isolated word task increases, while the opposite is the

case for the TORGO trigram LM for the sentence task. The con-

sistent improvement across speakers on the words performance is

caused by the constraint made by the unigram LM, which forces the

ASR system to output a single word. It can also eliminated some of

the insertion errors caused by the slow speaking rate characterised

by the moderate and severe group. The sentences performance of

the mild speakers drops from 12.2% to an extremely optimistic value

(2.0%), indicating that the constraint (e.g., reduction of training cor-

pus) makes the trigram LMs stronger to result in overly optimistic

evaluation.

3.3. Out-of-domain LibriSpeech LMs

To measure the impact of the biases introduced by the TORGO LMs,

we compare the ASR performances to those obtained with LMs built

from non-TORGO texts. For this purpose we introduce the Lib-

riSpeech corpus[13] as the out-of-domain text corpus in our experi-

ments. It is a read speech dataset based on LibriVox’s audio books,
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Fig. 1: Comparing task-specific and full TORGO LMs.

containing 1000 hours of speech and around 803 million tokens from

14,500 public domain books used for LM training. A vocabulary size

of the 200,000 most frequent words is selected to be in the lexicon.

By gradually extending the vocabulary originating from Lib-

riSpeech in line with the decreasing order of word frequency, we

can build LibriSpeech unigram LMs (for the isolated word task)

over a range of vocabulary sizes: {2k, 5k, 10k, 15k, 20k, 25k, 30k,

35k, 40k, 45k, 50k, 100k, 150k, 200k}. Likewise, a series of Lib-

riSpeech trigram LMs is built for the sentence task by pruning the

pre-trained official 3-gram LibriSpeech LM using the CHANGE-LM-

VOCAB method in SRILM toolkit [17], which modifies the LM size

by limiting the vocabulary to variously sizes subsets. The OOV

words are converted to <UNK> tag in the unigram while any N-

grams containing OOV words are removed, then the model is re-

normalized. To achieve comparable OOV rates for the smaller vo-

cabulary sized LM for both the word and the sentence tasks, vocab-

ulary sizes starting from 0.1k are introduced for the sentence task.

4. ANALYSIS OF LIBRISPEECH LANGUAGE MODELS

In this section we further analyse the results obtained using the out-

of-domain LibriSpeech LMs. In addition to the standard WER we

also report the out-of-vocabulary rate (OOV rate), together with the

recognition confusion to explore the LM complexity for different

severity levels of dysarthria. Specifically, the recognition confu-

sion measures how much confusion the system experiences when

attempting to recognise words it is aware of, i.e., the in-vocabulary

words. The recognition confusion, x can be calculated as follows

x =
i− c

i
= 1−

c

i
(1)

where c denotes the number of correctly recognized words, and i is

the number of in-vocabulary words.

Figure 2a and 2b shows the WER, OOV rate and recognition

confusion for the range of vocabulary sizes. It allows us to compare

the relationship between the impaired speech severity and complex-

ity of the LibriSpeech LMs, by means of WER, OOV rate. The

colored circles on each line denotes the lowest WER of the LM with

certain vocabulary size. Table 4 shows the results from these se-

lected vocabulary sizes (indicated by ‘optimal vocab size’) for the

LibriSpeech LM1. Comparing the results in Table 4 with the TORGO

LM (Table 2) for the DNN AM on the isolated word task, the Lib-

riSpeech unigram LM showed improvements across speakers with

moderate and severe dysarthria. This might be because it reduces

a large number of insertion errors, resulting from the slow speak-

ing rate, by constraining the output to be a single word. However,

1We use the lowest WER instead of the ‘knee’ of each WER line for
results comparison.



LibriSpeech unigram LMs; isolated word task

Severe Moderate Mild

Measurements GMM DNN GMM DNN GMM DNN

The lowest WER (%) 84.5 80.2 66.4 64.5 34.5 27.0

Optimal vocab size 5k 15k 30k 30k 50k 50k

LibriSpeech trigram LMs; sentences task

Severe Moderate Mild

Measurements GMM DNN GMM DNN GMM DNN

The lowest WER (%) 92.3 86.4 67.3 65.6 36.4 38.4

Optimal vocab size 100k 20k 50k 200k 150k 150k

Table 4: ASR performance [WER] using different AMs and the

task-specific LibriSpeech LMs for isolated words (LibriSpeech uni-

gram LM) and sentences (LibriSpeech trigram LM) tasks and aver-

aged for speakers with different dysarthria severity.

for mildly impaired speakers, since their speaking rate is similar to

the typical speakers, although the LibriSpeech unigram LM con-

strains the output to make the task easier, it still degrades the per-

formance due to the reduced complexity. Comparing the sentence

performances in Table 4 (86.4, 65.6 and 38.4% WER) and those with

previous TORGO LM (the last row of Table 2 (48.3, 22.7 and 12.2%

WER)), the WER obtained by LibriSpeech trigram LMs are on aver-

age 40.5% worse for moderate and severe speakers and even 26.2%

for mild speakers. In contrast to the unrealistically small WERs of

the TORGO LM, these results present a fairer evaluation.

It is seen that in general speakers with different severity of

dysarthria require the LibriSpeech LMs with different vocabulary

sizes: the greater the severity of the dysarthria, the smaller the op-

timal vocabulary size. To explain the possible reasons, we plot the

recognition confusion rate across speakers with different degrees of

dysarthria in Figure 2c and 2d. We found that at more severe levels

there is more confusability in the speech, therefore reducing the

vocabulary size reduces the chance of poorly pronounced common

words being mistaken for low frequency words that might be better

acoustic matches. Typically, for the word recognition task, as the

vocabulary size increases, the confusion sees a monotonic increase

across all the speakers. While in the sentence recognition task, the

confusion rates reach the minimum point with 0.1k, 10k and 20k

vocabulary sizes individually for speakers with severe, moderate and

mild dysarthria. This might be because that the continually reducing

OOV rate, and the increasing number of utterances available, offsets

the extra confusions (i.e., some of the extended words are in a rec-

ognizable range to reduce some substitution errors caused by OOV

words). The greater the severity of dysarthria, the less compensate is

made by the decreasing OOV rate. Comparing different AMs, when

further increasing the vocabulary size after the optimal vocabulary

sizes required by the LibriSpeech LMs, the recognition confusion of

the GMM systems will increase more than that of the DNN models.

5. CONCLUSIONS

Very few datasets exists that allows researchers to develop speaker-

specific continuous speech recognition systems for people with

dysarthria, and they are mostly not designed for ASR, meaning great

care has to be taken to choose an appropriate experimental setup.

Working on TORGO, this paper presented an in-depth analysis

comparing LMs trained on TORGO text prompts with LMs trained

on varying vocabulary-sized subsets of LibriSpeech. We found that

TORGO LMs (used widely in literature) give a hugely overestimated
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Fig. 2: WER, recognition confusion and OOV rate for LibriSpeech

LMs for speakers with different dysarthria severity.

performance of dysarthric ASR because of prompt overlap between

training and test parts. In comparison, the LibriSpeech models gives

a lower — but we believe — fairer performance which will better

allow for a more reasonable decoding space (in terms of WER). We

also found that reporting results on individual tasks (isolated word

vs sentence) enabled a more nuanced view of AM performance.

Exploring different vocabulary sizes for the LibriSpeech LMs,

we found that for the most severe cases, performance levels off

at about 1000 words. However, in general, the lowest WERs are

achieved with the largest vocabulary size, i.e., the continually reduc-

ing OOV rate, and the increasing number of utterances available,

offsets the extra confusions. In real applications, speaker-specific

LMs may be appropriate as, depending on severity and when not

asked to read prompts, speakers would choose to use different

language constructs and words to counteract specific speech impair-

ments.

We believe the results here represent a fair benchmark for

the current state-of-the-art for dysarthric read speech ASR. Our

results are fully reproducible and Kaldi recipes are available at

https://github.com/zhengjunyue/CADSR-LM. TORGO

remains the best database for exploring continuous dysarthric ASR.

Future work will investigate state-of-the-art AMs and end-to-end

approaches within this new framework, as well as the free-text

recognition task, also available in TORGO.
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