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Abstract Equilibrium climate sensitivity, the global surface temperature response to CO2 doubling,
has been persistently uncertain. Recent consensus places it likely within 1.5–4.5 K. Global climate models
(GCMs), which attempt to represent all relevant physical processes, provide the most direct means of
estimating climate sensitivity via CO2 quadrupling experiments. Here we show that the closely related
effective climate sensitivity has increased substantially in Coupled Model Intercomparison Project phase 6
(CMIP6), with values spanning 1.8–5.6 K across 27 GCMs and exceeding 4.5 K in 10 of them. This
(statistically insignificant) increase is primarily due to stronger positive cloud feedbacks from decreasing
extratropical low cloud coverage and albedo. Both of these are tied to the physical representation of clouds
which in CMIP6 models lead to weaker responses of extratropical low cloud cover and water content to
unforced variations in surface temperature. Establishing the plausibility of these higher sensitivity models
is imperative given their implied societal ramifications.

Plain Language Summary The severity of climate change is closely related to how much the
Earth warms in response to greenhouse gas increases. Here we find that the temperature response to an
abrupt quadrupling of atmospheric carbon dioxide has increased substantially in the latest generation
of global climate models. This is primarily because low cloud water content and coverage decrease more
strongly with global warming, causing enhanced planetary absorption of sunlight—an amplifying feedback
that ultimately results in more warming. Differences in the physical representation of clouds in models
drive this enhanced sensitivity relative to the previous generation of models. It is crucial to establish
whether the latest models, which presumably represent the climate system better than their predecessors,
are also providing a more realistic picture of future climate warming.

1. Introduction
Determining the sensitivity of Earth's climate to changes in atmospheric carbon dioxide (CO2) is a funda-
mental goal of climate science. A typical approach for doing so is to consider the planetary energy balance
at the top of the atmosphere (TOA), represented as

R = F + 𝜆T, (1)

where R is the net TOA radiative flux anomaly, F is the radiative forcing, 𝜆 is the radiative feedback param-
eter, and T is the global mean surface air temperature anomaly. The sign convention is that R is positive
down and 𝜆 is negative for a stable system. Conceptually, this equation states that the TOA energy imbal-
ance can be expressed as the sum of the radiative forcing and the radiative response of the system to a global
surface temperature anomaly. The assumption that the radiative damping can be expressed as a product of a
time-invariant 𝜆 and global mean surface temperature anomaly is useful but imperfect (Armour et al., 2013;
Ceppi & Gregory, 2019). Under this assumption, one can estimate the effective climate sensitivity (ECS), the
ultimate global surface temperature change that would restore TOA energy balance (R = 0) in response to
an instantaneous doubling of CO2, as

ECS = −F2×∕𝜆, (2)

where F2× is the radiative forcing due to doubled CO2.

ECS therefore depends on the magnitude of the CO2 radiative forcing and on how strongly the climate
system radiatively damps planetary warming. A climate system that more effectively radiates thermal energy
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to space or more strongly reflects sunlight back to space as it warms (larger magnitude 𝜆) will require less
warming to restore planetary energy balance in response to a positive radiative forcing, and vice versa.

Hence despite being a simple scalar quantity, ECS encapsulates substantial information about the climate
system and how it responds to perturbations. Moreover, despite being defined based on a hypothetical sce-
nario, it has been shown to be a highly relevant measure of future climate impacts under more realistic
scenarios (Grose et al., 2018) and for determining CO2 stabilization targets to avoid crossing dangerous
global temperature thresholds (Collins et al., 2013; Rogelj et al., 2014). A wide range of ECS values produced
by global climate models (GCMs) or inferred using other approaches has persisted for decades (Knutti et al.,
2017), though attempts to narrow this uncertainty by combining multiple lines of evidence appear promising
(Stevens et al., 2016).

Because GCMs attempt to represent all relevant processes governing Earth's response to CO2, they provide
the most direct means of estimating ECS. ECS values diagnosed from CO2 quadrupling experiments per-
formed in fully coupled GCMs as part of the fifth phase of the Coupled Model Intercomparison Project
(CMIP5; Taylor et al., 2012) ranged from 2.1 to 4.7 K (Andrews et al., 2012; Flato et al., 2014). It is already
known that several models taking part in CMIP6 (Eyring et al., 2016) have values of ECS exceeding the
upper limit of this range. These include CanESM5.0.3 (Swart et al., 2019), CESM2 (Gettelman et al., 2019),
CNRM-CM6-1 (Voldoire et al., 2019), E3SMv1 (Golaz et al., 2019), and both HadGEM3-GC3.1 and UKESM1
(Andrews et al., 2019). In all of these models, high ECS values are at least partly attributed to larger cloud
feedbacks than their predecessors.

In this study, we diagnose the forcings, feedbacks, and ECS values in all available CMIP6 models. We assess
in each model the individual components that make up the climate feedback parameter and quantify the
contributors to intermodel differences in ECS. We also compare these results with those from CMIP5 to
determine whether the multimodel mean or spread in ECS, feedbacks, and forcings have changed.

2. Data and Methodology
We use output from fully coupled GCM experiments in which atmospheric CO2 concentrations are abruptly
quadrupled from their preindustrial concentrations and held fixed (abrupt-4xCO2). Anomalies are com-
puted with respect to the corresponding time period in the preindustrial control simulations (piControl).
Following Caldwell et al. (2016), we compute anomalies relative to a 21-year running average from piCon-
trol. This is done in an attempt to compute anomalies due to CO2 while avoiding anomalies due solely to
model drift, which we assume is equally present in both simulations but may not necessarily be monotonic.

Following Gregory et al. (2004), we regress global- and annual-mean TOA net downwelling radiative flux
anomalies (R) on global- and annual-mean surface air temperature anomalies (T) to estimate effective radia-
tive forcing (ERF2×, y-intercept divided by 2), radiative feedback (𝜆, regression slope), and effective climate
sensitivity (ECS, x-intercept divided by 2). The division by 2 is done so as to express ERF and ECS with
respect to a CO2 doubling, as is standard practice. The radiative forcing derived as such represents the net
TOA imbalance due to the step change in CO2 and rapid responses of the stratosphere and troposphere to
the forcing, hence the qualifier “effective” (Sherwood et al., 2015). In many simulations, 𝜆 weakens as global
temperature increases owing to evolving surface warming patterns (Andrews et al., 2015; Armour et al.,
2013; Ceppi & Gregory, 2017) and to state-dependence in feedbacks (Bloch-Johnson et al., 2015; Meraner
et al., 2013). Hence, the climate sensitivity derived using these 150-year simulations generally underesti-
mates the warming that would be achieved at equilibrium (Rugenstein et al., 2019), which is why here
and subsequently we refer to ECS as effective rather than equilibrium climate sensitivity (Gregory et al.,
2004; Murphy, 1995). Scatterplots of R against T for all available CMIP6 models are shown in supporting
information Figure S1, indicating the utility of equation (1) in diagnosing forcing, feedback, and ECS from
abrupt-4xCO2 simulations.

To break down the feedback into individual components, we employ radiative kernels that quantify the
sensitivity of TOA radiation to small perturbations in surface and atmospheric temperature, water vapor,
and surface albedo (Soden et al., 2008; Shell et al., 2008). For each month of the 150-year experiment,
spatially-resolved kernels are multiplied by the relevant climate field anomalies. These are then vertically
integrated (in the case of feedbacks due to atmospheric temperature and water vapor) up to a time-varying
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tropopause (Reichler et al., 2003) and then annually averaged to produce a 150-year time series of TOA radia-
tive flux anomalies due to each field. These are then regressed on T to yield the individual radiative feedback
components.

The cloud feedback is computed by adjusting the cloud radiative effect (CRE; clear- minus all-sky upwelling
TOA flux) feedback for noncloud influences (Soden et al., 2008; Shell et al., 2008). In addition to the tradi-
tional temperature and water vapor feedbacks, we also consider an alternative formulation that decomposes
these radiative feedbacks into a component due to warming and moistening at constant relative humidity
and a component due to relative humidity changes (Held & Shell, 2012). Assumptions and approximations
in the kernel technique require that we keep a residual feedback term. We use the Huang et al. (2017) ker-
nels because they yield the smallest residuals, but all results are qualitatively unchanged when using Soden
et al. (2008), Shell et al. (2008), Block and Mauritsen (2013), Pendergrass et al. (2018), or Smith et al. (2018)
kernels (Figure S2 and Text S1).

To gain additional insights into the cloud feedback, we implement the approximate partial radiative pertur-
bation (APRP) technique (Taylor et al., 2007), which yields estimates of the shortwave (SW) cloud feedback
and its amount, scattering, and absorption components. The scattering component dominates the absorption
component, so we combine these and refer to their sum as the “scattering” component, which is compa-
rable to an optical depth feedback. Further details are provided in Text S2. Following Soden and Vecchi
(2011), we separate cloud feedbacks into those due to low and non-low clouds using the Webb et al. (2006)
method, which infers the cloud change responsible for the feedback by comparing the relative strengths of
local longwave (LW) and SW cloud feedback components. Further details are provided in Text S3.

Throughout, we determine the statistical significance of CMIP5-to-CMIP6 differences using Welch's t-test
for equal means and Bartlett's test for equal variances. Several modeling centers provided results from two or
more closely related models. To avoid overstating statistical significance (Caldwell et al., 2014), we average
results from all models from single modeling centers as a last step before performing all significance tests.
This reduces the CMIP5 and CMIP6 sample sizes from 28 to 17 and from 27 to 19, respectively. Despite the
fact that models from different centers may also be related (Knutti et al., 2013; Sanderson et al., 2015), we use
this approach because accurately defining model independence is still an area of ongoing research and the
required machinery would distract from the focus of this work. While we determine statistical significance
using a 95% confidence level, we caution that changes can still be large and worthy of attention despite not
reaching this threshold. Therefore, for several key results, we also report p values.

3. Results
3.1. Global Mean Quantities
In Figures 1a to 1c, we show estimates of ECS, ERF2×, and global mean radiative feedbacks from all CMIP5
and CMIP6 models that provided the necessary diagnostics as of 27 November 2019. The traditional feedback
breakdown, in which Planck and LR feedbacks are computed holding specific humidity fixed and the water
vapor feedback is due solely to specific humidity changes, is shown in Figure S3. Feedback, forcing, and ECS
values for each model are provided in Tables S1 and S2.

The range of ECS values across models has widened in CMIP6, particularly on the high end, and now
includes nine models with values exceeding the CMIP5 maximum (Figure 1a). Specifically, the range has
increased from 2.1–4.7 K in CMIP5 to 1.8–5.6 K in CMIP6, and the intermodel variance has significantly
increased (p = 0.04). One model's ECS is below the CMIP5 minimum (INM-CM4-8). This increased popu-
lation of high ECS models has caused the multimodel mean ECS to increase from 3.3 K in CMIP5 to 3.9 K
in CMIP6. Though substantial, this increase is not statistically significant (p = 0.16). ERF2× has increased
slightly on average in CMIP6 and its intermodel standard deviation has been reduced by nearly 30% from
0.50 Wm−2 in CMIP5 to 0.36 Wm−2 in CMIP6 (Figure 1b).

With the exception of a slight decrease in the variance of the surface albedo feedback, the mean and vari-
ance in noncloud feedbacks are essentially unchanged between collections (Figure 1c). In contrast, average
net cloud feedback is more positive in CMIP6. This increase is due primarily to the SW component, which
has a noticeably bimodal distribution, and is slightly opposed by the LW component. Hence the apparent
but statistically insignificant increase in mean 𝜆 (i.e., toward weaker radiative damping) is solely due to the
strengthened positive cloud feedback. As with previous generations of models (Cess et al., 1989; Cess, 1990;
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Figure 1. Estimates of (a) ECS, (b) ERF2×, and (c) radiative feedbacks from abrupt-4xCO2 experiments. Individual CMIP5 and CMIP6 models are shown with
unfilled blue and orange circles, respectively, and their multimodel averages are shown with filled circles. The total radiative feedback is broken down into
Planck, lapse rate, relative humidity, surface albedo, and net cloud components. The cloud feedback is further broken down into its SW and LW components.
Net refers to the net radiative feedback computed directly from TOA fluxes. The residual is the difference between the directly calculated net feedback and that
estimated by summing kernel-derived components. (d) Net radiative feedback parameter plotted against ERF2×. Dashed lines indicate constant ECS isopleths
calculated using equation (2). Filled markers indicate models with ECS exceeding the maximum value in CMIP5. (e) Breakdown of the cloud feedback into net
non-low, net low, and SW low components. The SW low component is further broken down into amount and scattering components, with tropical and
extratropical means shown in triangles and global means shown in circles. Multimodel means that are significantly different (p < 0.05) are connected with a
solid line. Intermodel variances that are significantly smaller or larger in CMIP6 (p < 0.05) are indicated with arrows pointing toward or away from the CMIP6
mean, respectively.

Dufresne & Bony, 2008; Soden & Held, 2006; Webb et al., 2013), the cloud feedback exhibits the largest inter-
model spread of all feedbacks and is highly correlated with ECS in both collections (Figure S4A). Residuals
in the kernel decomposition can be substantial in some models, but on average, they are near-zero in both
collections. Kernel- and APRP-computed SW cloud feedbacks agree closely (Figure S5), indicating that the
kernel decomposition is accurate.

Whereas both ERF2× and 𝜆 have increased on average in CMIP6, their distributions do not extend beyond
the CMIP5 range. Given these relatively subtle changes, how do nine CMIP6 models achieve higher ECS
than seen in CMIP5? This result arises because these models have an unprecedented combination of forcing
and feedback (Figure 1d; filled markers), as also noted by Andrews et al. (2019) for the HadGEM3-GC3.1
and UKESM1 models: CMIP6 models with the smallest magnitude 𝜆 (i.e., those having the strongest pos-
itive feedbacks offsetting Planck cooling) exhibit near-average ERF2×. In contrast, the CMIP5 models with
smallest magnitude 𝜆 had the weakest forcing. This feature is apparent from Figure 1d, where the ERF2× −𝜆

space occupied by the models crosses more ECS isopleths in CMIP6 than in CMIP5.

Given that ERF2× and 𝜆 have both increased on average in CMIP6, it is important to determine their relative
importance in causing mean ECS to increase. We compute the hypothetical ECS distribution that would
exist if the CMIP5 mean ERF2× were increased to equal that in CMIP6 but the CMIP5 mean 𝜆 and ERF2×-𝜆
anticorrelation remained fixed. To do so, we shift each CMIP5 model's ERF2× by the mean ERF2× difference
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between CMIP6 and CMIP5. We do the same transformation of the CMIP6 distribution (in reverse) and
average the two results (Figure S6). Shifting ERF2× changes ECS by 0.11 K on average, which is only 20% of
the actual CMIP5-to-CMIP6 mean ECS difference of 0.55 K. In contrast, when we instead uniformly shift
each model's 𝜆 so that the multimodel mean 𝜆 equals that in the other collection while keeping all else
fixed, the mean ECS changes by 0.33 K, which is 61% of the actual difference. Shifting both ERF2× and 𝜆

together changes mean ECS by 0.44 K, 81% of the difference. The remainder is accounted for by changes in
the strength of the covariance between ERF2× and 𝜆.

From this, we conclude that while the highest ECS values in CMIP6 result from a combination of moderate
forcing and weak negative feedback that did not occur in CMIP5, increased mean feedback alone (which
arises from a stronger positive cloud feedback) is capable of increasing the multimodel mean ECS by most of
the observed amount. Its contribution to increased ECS is three times larger than that of increased forcing.
Consequently, we now turn to understanding what drives the increase in CMIP6 cloud feedback strength.

3.2. Detailing the Cloud Feedbacks
Whereas the net non-low cloud feedback is positive in all but two models with a mean that is slightly reduced
from CMIP5, the distribution of net low cloud feedback is shifted toward larger positive values (with the
mean increasing from 0.09 to 0.21 Wm−2 K−1; Figure 1e). As expected, the increase in mean low cloud
feedback is almost entirely due to the SW component, which exhibits significantly larger intermodel vari-
ance than in CMIP5 (p = 0.046) and is highly correlated with ECS in both collections (Figure S4B). Both
amount and scattering components contribute to the increase in multimodel mean SW low cloud feedback
(Figure 1e). Notably, the positive feedback from decreasing low cloud coverage has strengthened in CMIP6,
and there are no longer any models with negative low cloud amount feedbacks. Additionally, the previously
small negative feedback from changes in low cloud scattering is now positive on average in CMIP6.

To better understand how these feedbacks have changed, Figure 2a shows the zonally averaged SW low
cloud feedback for the CMIP5 and CMIP6 multimodel means and their difference. Whereas the zonal mean
SW low cloud feedback in CMIP5 exhibited a nearly symmetric latitudinal dipole centered at about 50◦ S,
this feature is much less symmetric in CMIP6, with large positive values between 30–50◦ S and only a small
region of weak negative values poleward of 60◦ S. The weak negative SW low cloud feedback poleward of
about 50◦ N in CMIP5 is now weak and positive in CMIP6. Hence throughout the extratropics, the mul-
timodel mean feedback is substantially more positive in CMIP6 (Figure 2a black line). These changes are
similar to those seen in CESM1-CAM5 experiments in which the treatment of mean-state supercooled liquid
fraction is modified to better match observations (Frey & Kay, 2017; Tan et al., 2016), and in the evolu-
tion of HadGEM3-GC2 to HadGEM3-GC3.1 (Bodas-Salcedo et al., 2019) and CESM1 to CESM2 (Gettelman
et al., 2019).

Both the amount and scattering components are responsible for these extratropical increases. The multi-
model mean SW low cloud amount component has increased by about 50% near its peak at 40◦ S and exhibits
a much weaker and nonrobust negative feedback poleward of about 60◦ S (Figure 2b). This feedback is
positive everywhere except poleward of 60◦ S and 75◦ N in the CMIP6 multimodel mean. Whereas CMIP5
models exhibited strong and robust negative extratropical scattering feedbacks, in CMIP6, these have been
dramatically reduced (Figure 2c). Moreover, the CMIP6 mean SW low cloud scattering feedback is robustly
positive between 30◦ and 45◦ S, with a large peak at about 40◦ S.

In sum, extratropical (poleward of 30◦ ) mean SW low cloud amount feedback has increased markedly and
significantly in CMIP6 (p = 0.01; Figure 1e). The extratropical mean SW low cloud scattering feedback has
increased by roughly the same amount, but the change is not statistically significant (p = 0.11). In contrast,
the change in tropical (equatorward of 30◦ ) components is much smaller. Notably, the mean extratropi-
cal SW low cloud scattering feedback changes sign from negative in CMIP5 to positive in CMIP6, and the
CMIP6 mean low cloud amount feedback is actually larger in the extratropics than in the tropics, which
is remarkable given the latitudinal gradient of insolation (Figure 1e). Following Dufresne and Bony (2008)
and Vial et al. (2013) as detailed in Text S4, we estimate that on average across CMIP6 models, the extra-
tropical cloud feedback contributes 0.4 K of the 1.0 K cloud feedback-induced global temperature change
(Figure S7). This proportion is roughly three times larger than in CMIP5 (0.1 K of 0.7 K). It is also clear from
Figure S7, which shows the global temperature change induced by the forcing and each feedback in individ-
ual models, that large positive extratropical cloud feedbacks play a crucial role in allowing several CMIP6
models to achieve very high ECS. While the cloud feedback is on average the dominant cause of increased
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Figure 2. (a) Zonal mean SW low cloud feedback and its breakdown into (b) amount and (c) scattering components for
the (blue) CMIP5 and (orange) CMIP6 multimodel means. Latitudes where at least 80% of the models agree on the sign
of the feedback are plotted with a solid line. Multimodel mean differences are shown in black lines, which are solid
where differences are significant (p < 0.05). Results are plotted against the sine of latitude to display uniform area
weighting.

ECS in CMIP6, changes in other feedbacks and forcing can play non-negligible roles in driving higher ECS
in individual models (Figure S7). Similarly, our explanation for the increase in CMIP6 mean cloud feedback
need not apply to each individual model (Figure S8).

Finally, we find that the tropical SW low cloud amount feedback is positive in all but one CMIP6 model
and its intermodel spread has decreased (p = 0.08). This may indicate the long-standing uncertainty in
this feedback (Bony & Dufresne, 2005) is decreasing as tighter observational and high resolution modeling
targets are established (Bretherton, 2015; Klein et al., 2017).

3.3. Physical Mechanisms for Larger Cloud Feedbacks in CMIP6
Why have the extratropical low cloud amount and scattering feedbacks increased in CMIP6? Across models,
changes in low cloud amount, optical depth, and radiative effects with global warming have been shown
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Figure 3. Sensitivities of (a) LCC and (b) LWPlow to sea surface temperature (SST), estimated inversion strength (EIS), surface temperature advection (Tadv),
relative humidity at 700 hPa (RH700), and pressure vertical velocity at 700 hPa (𝜔700) estimated from climate variability over the SH midlatitude oceans
(30◦ –60◦ S) in the piControl simulation. The changes in these factors per unit global warming from the abrupt-4xCO2 simulation are shown in (c) and (d).
Predicted changes in (e) LCC and (f) LWPlow due to each cloud controlling factor, estimated as the product of the sensitivities shown in (a) and (b) with the
multimodel mean responses of the quantities shown in (c) and (d). Black boxplots show the actual model-produced changes in LCC and LWPlow for (left)
CMIP5 and (right) CMIP6, above which the across-model correlations between actual and predicted changes are printed. Asterisks indicate statistically
significant correlation coefficients (p < 0.05). Boxes extend from the 17th to 83rd percentiles of the model values, with a line at the multimodel average.
Whiskers extend to the 5th and 95th percentiles. Anomalies in cloud controlling factors are normalized by the standard deviation of their interannual variations
in ERA5 (Copernicus Climate Change Service, 2017) and are therefore expressed in 𝜎 units, which aids intercomparison of quantities having different units.

to be well-predicted by the product of two terms: the sensitivity of cloud properties to cloud controlling
factors (CCFs; Stevens & Brenguier, 2009) and the change in the CCFs with warming (Brient & Schneider,
2016, Klein et al., 2017; Myers & Norris, 2016; McCoy et al., 2017; Qu et al., 2014, 2015). SST and estimated
inversion strength (EIS; Wood & Bretherton, 2006) are commonly found to be the most important CCFs
for driving future cloud changes. The sensitivities of cloud properties to CCFs are typically estimated via
multilinear regression applied to interannual covariations of meteorology and clouds in the unperturbed
climate. Models exhibit widely varying cloud sensitivities owing to diversity in how clouds, convection, and
turbulence are represented via parameterized physics (Geoffroy et al., 2017; Qu et al., 2014). In contrast,
changes in CCFs in response to global warming are in relatively better agreement among models as they are
less dependent on unresolved processes (Klein et al., 2017; Myers & Norris, 2016; Qu et al., 2014). Hence
intermodel differences in how cloud properties change with global warming are largely driven by widely
varying sensitivities of clouds to CCFs.

Several recent studies have demonstrated the utility of cloud controlling factor analyses for understanding
changes in extratropical low-level cloud properties. These include Gordon and Klein (2014) and Terai et al.
(2016) for cloud optical depth, Ceppi et al. (2016) for liquid water path (LWP), Grise and Medeiros (2016)
and Kelleher and Grise (2019) for SWCRE, and Zelinka et al. (2018) and Miyamoto et al. (2018) for low
cloud cover (LCC). Encouraged by these studies, we apply CCF analysis to estimate how LCC and in-cloud
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LWP for low clouds (LWPlow) depend on five CCFs in the piControl simulations. LCC and LWPlow anoma-
lies are defined as total cloud cover and LWP anomalies, respectively, where local radiation anomalies are
attributable to low clouds, following Webb et al. (2006). These cloud properties are chosen because their
changes are strongly anticorrelated across models with low cloud amount and scattering feedbacks (Figure
S9). We perform the analysis within the 30–60◦ S latitude band where the low cloud feedback exhibits largest
changes from CMIP5 to CMIP6. Further details are provided in Text S5.

The multilinear regression model, while imperfect, predicts LCC and LWPlow feedbacks that are significantly
correlated across models with actual model-produced values (see correlations printed in Figures 3e and
3f). It also correctly predicts both that LCC decreases are larger on average in CMIP6 and that the average
LWPlow response changes sign from positive in CMIP5 to negative in CMIP6. These changes are primarily
due to the SST-driven component: The positive dependence of both LCC and LWPlow on SST has weakened
in CMIP6 (Figures 3a and 3b). This weakened SST sensitivity overwhelms the slightly larger increase in
30–60◦ S SST in CMIP6 (Figures 3c and 3d), causing the SST-driven increases in LCC and LWPlow to be
markedly weaker in CMIP6 (Figures 3e and 3f). Hence increased extratropical cloud feedback can be traced
primarily to the fact that, on average, low cloud cover and water content increase with SST in CMIP5 but
exhibit little sensitivity to SST in CMIP6.

4. Conclusions and Discussion
In this study, we investigated forcing, feedbacks, and climate sensitivity in abrupt CO2 quadrupling exper-
iments conducted in the latest generation of fully coupled GCMs as part of CMIP6, with an eye toward
determining similarities with and differences from the previous generation of models. Both the multimodel
mean and intermodel variance in ECS have increased substantially in CMIP6 relative to CMIP5, though only
the latter change is statistically significant at 95% confidence. This ECS increase is primarily attributable
to an increased multimodel mean feedback parameter due to strengthened positive cloud feedbacks, as all
noncloud feedbacks are essentially unchanged on average in CMIP6. However, it is the unique combina-
tion of weak overall negative feedback and moderate radiative forcing that allows several CMIP6 models to
achieve high ECS values beyond the CMIP5 range.

The increase in cloud feedback arises solely from the strengthened SW low cloud component, while the
non-low cloud feedback has slightly decreased. The SW low cloud feedback is larger on average in CMIP6
due to larger reductions in low cloud cover and weaker increases in cloud liquid water path with warming.
Both of these changes are much more dramatic in the extratropics, such that the CMIP6 mean low cloud
amount feedback is now stronger in the extratropics than in the tropics, and the fraction of multimodel
mean ECS attributable to extratropical cloud feedback has roughly tripled.

The aforementioned increase in CMIP6 mean cloud feedback is related to changes in model representation
of clouds. Specifically, both low cloud cover and water content increase less dramatically with SST in the mid-
dle latitudes as estimated from unforced climate variability in CMIP6. A plausible reason for these responses
is an increase in mean-state supercooled liquid water in mixed-phase clouds—manifest as an increased liq-
uid condensate fraction (LCF)—in CMIP6 (Text S6 and Figure S10). Models with larger mean-state LCF
have been shown to experience weaker LWP increases with warming (Bodas-Salcedo et al., 2019; Gettelman
et al., 2019; McCoy et al., 2015; Tan et al., 2016), qualitatively consistent with CMIP6 versus CMIP5 differ-
ences. To the extent that condensate sinks related to ice processes weaken with warming (Ceppi et al., 2016),
condensate lifetime increases, thereby increasing cloud cover or opposing cloud cover reductions caused
by other processes. This effect should be weaker in models with larger mean-state LCF (i.e., CMIP6 mod-
els), potentially allowing them to experience larger cloud cover reductions with warming. Establishing more
rigorously the reasons for these changes and evaluating them against observations is important future work.

Despite the fact that small deviations from a linear relationship between R and T can be seen to varying
degrees among models in Figure S1, in this work, we have computed ECS assuming invariant 𝜆. ECS diag-
nosed ignoring the first 20 years of abrupt-4xCO2 anomalies (Andrews et al., 2015) is 6% larger on average,
roughly half as large as the CMIP5 inflation factor of 11% (Figure S11). Future work should elucidate this
in greater detail.

Relatedly, ERF2× estimated via equation (1) is subject to substantial uncertainties (Andrews et al.,
2012; Chung & Soden, 2015). Future studies should better quantify ERF2× using fixed SST experiments
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(Forster et al., 2016; Pincus et al., 2016). These experiments will also allow for a clearer elucidation of the
various components of the rapid tropospheric adjustments to CO2 that drive intermodel spread in ERF2×.
These could also confirm whether the strengthened anticorrelation between ERF2× and𝜆 and the substantial
reduction in intermodel spread in ERF2× found here are robust results and provide reasons for them.

As more output from CMIP6 models becomes available, more detailed analysis of the cloud feedback will be
possible (Cesana et al., 2019; Gordon & Klein, 2014; Terai et al., 2016; Tsushima et al., 2016; Zelinka et al.,
2012a, 2012b, 2013, 2016), permitting better understanding of why the low cloud feedback has strengthened.
Output from additional models might also refine the statistical significance of several intriguing results
reported here, which based on the limited sample of models fall just short of being statistically significant.
Because the number of models analyzed in this study (27 CMIP6 models from 19 distinct modeling cen-
ters) is much less than the 102 models from 35 centers expected to perform abrupt-4xCO2 and piControl
experiments, we caution that some conclusions may change as more data become available.

ECS is higher on average in CMIP6 due primarily to strengthened cloud feedbacks. Tropical low cloud
feedbacks and global non-low cloud feedbacks are positive in nearly every model. Extratropical low cloud
scattering feedbacks have shifted to more positive values, which may be related to increases in mean-state
supercooled liquid water in mixed-phase clouds. All of these are consistent with GCMs achieving a bet-
ter qualitative match with theoretical, observational, and/or high-resolution modeling evidence for positive
high cloud altitude feedback (Hartmann & Larson, 2002; Kuang & Hartmann, 2007; Thompson et al., 2017;
Zelinka & Hartmann, 2011), positive tropical low cloud feedback (Bretherton, 2015; Klein et al., 2017), and
weak negative or even positive extratropical low cloud scattering feedback (McCoy et al., 2015; Tan et al.,
2016; Terai et al., 2016). This raises the possibility that ECS is indeed high in the real world, but it first needs
to be established that CMIP6 feedbacks and forcing are in quantitative agreement with these constraints.
It is possible, for example, that higher ECS in models from larger extratropical low cloud feedbacks might
simply be revealing (as yet unknown) errors in other feedbacks. Such a conclusion would also need to be
evaluated in light of other evidence. For example, how well do high ECS models simulate past climates
or the historical record? While some high ECS models closely match the observed record (e.g., Gettelman
et al., 2019), others do not (e.g., Golaz et al., 2019). Do the former models achieve their results via unreason-
ably large negative aerosol forcings and/or substantial pattern effects (Kiehl, 2007; Stevens et al., 2016)? It
is worth noting that cloud feedbacks are enhanced in CMIP6 primarily over the Southern Ocean, a region
of efficient ocean heat uptake (Armour et al., 2016). This implies that the enhanced surface SW heating is
less likely to manifest as surface warming during transient climate change than if the heating were focused
elsewhere (Frey et al., 2017). This cloud feedback pattern could make it easier for high ECS models to simu-
late the observed surface temperature record without requiring a large negative aerosol radiative forcing or
large historical era pattern effects.
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