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ABSTRACT 51 

 52 

Aim 53 

The sorting of functional traits along environmental gradients is an important driver of 54 

community and landscape scale patterns of functional diversity. However, the significance of 55 

environmental factors in driving functional gradients within biomes and across continents 56 

remains poorly understood. Here, we evaluate the relationship of soil nutrients and climate to 57 

leaf traits in grasses (Poaceae) that are hypothesised to reflect different strategies of resource-58 

use along gradients of resource availability. 59 

  60 

Location 61 

Global 62 

 63 

Taxon 64 

Poaceae 65 

 66 

Methods 67 

We made direct measurements on herbarium specimens to compile a global dataset of 68 

functional traits and realised environmental niche for 279 grass species that are common in 69 

grassland and savanna biomes. We examined the strength and direction of correlations 70 

between pairwise trait combinations and measured the distribution of traits in relation to 71 

gradients of soil properties and climate, while accounting for phylogenetic relatedness.  72 

 73 

Results 74 

Leaf trait variation among species follows two orthogonal axes. One axis represents leaf size 75 

and plant height, and we showed positive scaling relationships between these size-related 76 

traits. The other axis corresponds to economic traits associated with resource acquisition and 77 

allocation, including leaf tensile strength (LTS), specific leaf area (SLA) and leaf nitrogen 78 

content (LNC). Global-scale variation in LNC was primarily correlated with soil nutrients, 79 

whilst LTS, SLA and size related traits showed weak relationships to environment.  80 

However, most of the trait variation occurred within different vegetation types, independent 81 

of large-scale environmental gradients. 82 

 83 

Main conclusions 84 

Our work provides evidence among grasses for relationships at the global scale between leaf 85 

economic traits and soil fertility, and for an influence of aridity on traits related to plant size. 86 

However, large unexplained variance and strong phylogenetic signal in the model residuals 87 

imply that at this scale the evolution of functional traits is driven by factors beyond 88 

contemporary environmental or climatic conditions.  89 

 90 

Keywords: functional traits, soil fertility, climate, phylogenetic conservatism, biomes, 91 

grasses 92 
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INTRODUCTION 101 

 102 

 Functional traits govern competitive interactions and differences in growth and 103 

survival, which are responsible for variation in abundance and distributions across 104 

environmental gradients. Plant functional types (for example evergreen, deciduous, C3 and 105 

C4) have been widely used to group plants from geographically separate communities which 106 

are thought to share response to environmental variation (Woodward, Lomas, & Kelly, 107 

2004). However, there can be significant variation in functional traits within these plant 108 

functional groups (Liu, Edwards, Freckleton, & Osborne, 2012). Crucially, the environmental 109 

responses and biotic interactions of a plant functional type may not apply across all 110 

ecological settings in which it is found (Keith, Holman, Rodoreda, Lemmon, & Bedward, 111 

2007), and there is growing interest in how traits vary within plant functional types, and how 112 

they differ among and within biomes and continents (Lehmann et al., 2014). To address these 113 

issues, we investigate the relationships between functional traits that reflect different 114 

strategies of resource capture and allocation, and investigate whether these correlate with 115 

environmental gradients across the globe, focusing on the grasses that characterise global 116 

grassy biomes (grasslands and savannas). 117 

Functional traits of species contribute to ecosystem function according to their 118 

relative abundance / biomass in the community, so that dominant species contribute the most, 119 

and a number of studies have supported this view (Garnier, Navas, & Grigulis, 2015; Grime, 120 

1998). Globally there are ~1,000 species of grass that are dominant within grassy vegetation 121 

types in at least part of their range, and their dominance may reflect the evolution of 122 

particular sets of functional traits that give each species advantages in terms of competition 123 

and survival (Edwards, Osborne, Strömberg, Smith, & Consortium, 2010). Physiological and 124 

morphological constraints mean there are limits to the trait combinations that a species can 125 

deploy, resulting in economic trade-offs between the investment of resources (i.e. water, 126 

light, nutrients and CO2) in fast, but cheaply constructed leaves, versus the conservation of 127 

these resources in slow growing, yet long lived tissues (Diaz et al., 2004; Grime et al., 1997; 128 

Ian J. Wright et al., 2004). It has been proposed that trade-offs reflecting differences in the 129 

way plants acquire and allocate resources to growth or conservation of tissues provide 130 

mechanisms that can determine distribution patterns across resource gradients (Fine et al., 131 

2006; Herms & Mattson, 1992).  132 

In environments where resources are limited, species are predicted to have a slow 133 

growth rate, high investment in carbon-based compounds, low leaf nitrogen content (LNC), 134 

long leaf lifespan and low specific leaf area (SLA) (Craine et al., 2002; Grime et al., 1997; 135 

Reich, Walters, & Ellsworth, 1997; Westoby, Falster, Moles, Vesk, & Wright, 2002). These 136 

traits reflect the high cost of tissue loss to for example herbivory, for individuals where 137 

growth is resource limited (Coley, Bryant, & Chapin, 1985; Herms & Mattson, 1992). 138 

Conversely in resource-rich environments (where water, light or nutrients are not limiting), 139 

community assembly is determined by the ability to rapidly acquire and allocate resources to 140 

growth and thereby out-compete neighbouring individuals (Grime, 1977). Traits including 141 

low investment in secondary metabolites, high SLA, high maximum photosynthetic rate, 142 

short leaf lifespan, high relative growth rate and high LNC are predicted to promote 143 

dominance in environments where resource availability does not limit growth (Craine et al., 144 

2002; Grime et al., 1997; Reich et al., 1997; Westoby et al., 2002) .  145 

Functional traits that reflect different strategies of resource acquisition and allocation 146 

correlate strongly with resource availability at the community scale (Katabuchi, Kurokawa, 147 

Davies, Tan, & Nakashizuka, 2012; Kraft & Ackerly, 2010). Recent studies spanning 148 

environmental gradients have shown that similar sorting processes also drive economic trait 149 

distribution in predictable ways at a landscape scale (Asner et al., 2014; Fortunel, Paine, Fine, 150 
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Kraft, & Baraloto, 2014). However, environmental trait relationships may not vary 151 

predictably across biomes and continents, and can be specific to areas of unique evolutionary 152 

history when considered at larger scales (Knapp et al., 2004; Lehmann et al., 2014). The 153 

relationships between traits and environment at these large scales may, in fact, be in large 154 

part explained by evolutionary history. For example, in tropical forests, trait variation is 155 

phylogenetically partitioned independently of variation in contemporary environmental 156 

conditions (Asner et al., 2014), and yet global-scale analyses rarely consider the role of 157 

evolutionary history when examining the relationships of traits to environment. 158 

Current estimates of the global extent of tropical savannas and temperate grasslands 159 

suggest that ~40% of the Earth’s terrestrial surface is covered in grassy ecosystems (White, 160 

Murray, & Rohweder, 2000). These store large amounts of carbon, and support livelihoods 161 

and food security globally (Parr, Lehmann, Bond, Hoffmann, & Andersen, 2014). Grassy 162 

biomes are an ideal system for studying the global-scale relationships of functional traits with 163 

environment, as they occur on every continent and most climates. Since these systems are 164 

each typically dominated by relatively few species, these traits are also crucial determinants 165 

of ecosystem function. Here, we investigate the global distribution of functional traits linked 166 

to resource economics in grassy systems, and their relationship to soil fertility and climate, 167 

whilst accounting for the role of evolutionary history in trait distribution. We first measure 168 

the strength and direction of pairwise correlations between traits to test whether co-variation 169 

is consistent with the hypothesis of trade-offs. Secondly, we investigate the distribution of 170 

traits in relation to the environment, testing whether ecological theory explaining the sorting 171 

of species among communities at the landscape scale can be applied to explain the equivalent 172 

sorting along global environmental gradients. Specifically, we test the hypothesis that 173 

dominant species in resource rich grassy environments are characterised by traits associated 174 

with fast acquisition and the maximum allocation of resources to growth. Conversely in 175 

environments where soil nutrients or climate limit plant growth we expect dominant species 176 

to exhibit traits that reflect the conservation of long-lived tissues. 177 

  178 

MATERIALS AND METHODS 179 

 180 

Species sampling 181 

A global database of the species that characterise grassy biomes was compiled from 182 

regional maps of potential vegetation (Lehmann et al., 2019) using the taxonomy of 183 

Grassbase (Clayton, 2006 onwards). Within the map of Lehmann et al grassy vegetation was 184 

defined as grasslands, savannas or woodland with a continuous grassy underlayer. Grassy 185 

vegetation types and also their characteristic grass species were identified from the 186 

description and metadata associated within original vegetation maps. These species were 187 

therefore based on the expert opinion of vegetation mappers, however, they showed good 188 

correspondence to lists of dominant species generated for each vegetation units from plot 189 

survey datasets (Lehmann et al., 2019). The maps documented 1635 grassy vegetation types, 190 

characterised by, 1154 species of which 841 were identified to species level. This map was 191 

used as the basis for our species sampling (Appendix S1 in Supporting Information). 192 

 We first generated a randomly ordered list, without replacement, of the 841 globally 193 

dominant grass species. Random draws were weighted by the area over which each species is 194 

common, to ensure that globally important species were represented higher up the list. We 195 

searched the herbarium collection of the Royal Botanic Gardens, Kew, for as many species as 196 

time would feasibly allow, starting from the top of the list and working down. We were able 197 

to search for herbarium specimens for the first 300 species on the list, of which 279 were 198 

present within the herbarium and could therefore be included in our sample. These 279 199 

species represent around one quarter of the world’s dominant grass species and can be found 200 



 5 

within 1012 of the vegetation types (Appendix S2 in Supporting Information). Vegetation 201 

types were characterised by between 1 to 19 dominant species and on average 4. A map 202 

showing the global distribution of our species sample is in Appendix S3. 203 

 204 

Traits measured and their significance 205 

The following traits were selected for study because they reflect different strategies of 206 

resource use along gradients of resource availability and can be measured from herbarium 207 

specimens. SLA is a good predictor of growth rate (Rees et al., 2010) and reflects the return 208 

on previously acquired resources, since there is a trade-off between quickly growing large, 209 

light-capturing, yet vulnerable leaves and producing strong, long-lived leaves (Westoby et al., 210 

2002; Westoby & Wright, 2006). Maximum leaf size is associated with light capture (Poorter 211 

& Rozendaal, 2008). Plant height declines along gradients of decreasing moisture and/or 212 

nutrient availability (I. J. Wright, Reich, & Westoby, 2001), and is also thought to reflect 213 

different ecological strategies among species in relation to disturbance (Weiher et al., 1999; 214 

Westoby, 1998). Taller plants compete more effectively for light (Cavender-Bares, Ackerly, 215 

Baum, & Bazzaz, 2004; Tilman, 1988), however, smaller plants may be selected for in highly 216 

disturbed environments since there is a trade-off between fast reproduction and competitive 217 

ability (Westoby, 1998).  Foliar nitrogen is positively correlated with maximum 218 

photosynthetic rates (Field, Merino, & Mooney, 1983). Leaf tensile strength is an important 219 

form of defence against herbivory (Choong et al., 1992) and is strongly correlated with leaf 220 

life span (Onoda et al., 2011).  221 

 222 

Trait measurements from herbarium specimens 223 

Protocols for measuring functional traits usually prescribe the use of fresh leaf 224 

material. However, access to a global range of species was not possible from fresh material, 225 

and so we developed methods for taking measurements from herbarium specimens. 226 

Measurements taken from herbarium specimens have the additional advantage of being from 227 

plants grown in their native range under natural soil and climatic conditions. Prior to 228 

gathering our data, we conducted preliminary tests (Appendix S4 in Supporting Information), 229 

showing that measurements taken from fresh grass leaves correlate strongly with those from 230 

rehydrated herbarium material for SLA (r2 = 0.90) and LTS (r2 = 0.84) (Appendix S4 in 231 

Supporting Information).  LNC is typically measured using dried leaf material and can be 232 

estimated directly from dried herbarium samples. 233 

 234 

Trait measurements 235 

Herbarium specimens were only selected for sampling from areas where the species 236 

formed a dominant part of the vegetation. Herbarium sheets were also selected, where 237 

possible, to be distributed along the extent of the range where each species was dominant. 238 

SLA: A full leaf where possible or, if not, a section of leaf was removed from the 239 

herbarium sheet, weighed using a five-point balance, and rehydrated for 24 hours in distilled 240 

water. The rehydrated leaf was photographed and the one-sided surface area calculated using 241 

image analysis software (WINDIAS, Delta-T Devices Ltd, Cambridge, UK). The SLA 242 

(expressed in cm2 g-1 of dry mass) was calculated by dividing the value of the leaf area by the 243 

dry leaf mass. LNC: Leaf material was ground to a fine powder for 15 minutes at 25 beats per 244 

second using a tissue lyser (Tissuelyser II, Qiagen, Netherlands). Between 10-20mg was 245 

weighed into tin capsules and analysed using an elemental analyser (Vario EL Cube, 246 

Elementar, Germany). LTS: Leaves collected from herbarium specimens were rehydrated in 247 

distilled water for 24 hours. A section cut away from the midrib was clamped using a texture 248 
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analyser (Lloyds TA500, AMETEK Test & Calibration Instruments), and the force measured 249 

at point of tearing (expressed in MPa). Three replicates per species were measured. 250 

Values for maximum culm height, leaf length and leaf width were established from 251 

GrassBase, the Kew taxonomic database (Clayton, 2006 onwards). The former was used as a 252 

measure of plant height, while maximum leaf length and width were used to estimate leaf 253 

size, assuming an elliptical shape.  254 

 255 

Environmental variables 256 

All mapping of environmental variables was implemented in R (Core Development 257 

Team R, 2016). Global maps of the total topsoil exchangeable bases, soil pH, topsoil and sand 258 

content (an indicator of drainage), were obtained from the Harmonized World Soils Database 259 

(IIASA, 2008). These were used to calculate the mean soil pH, percentage topsoil sand content 260 

and total topsoil exchangeable bases (a measure of fertility, and hereafter referred to as “soil 261 

nutrients”), across the geographical area in which each species dominated grassy vegetation. 262 

The total topsoil exchangeable bases is defined as the sum of exchangeable cations, including 263 

sodium (Na+), calcium (Ca2+), magnesium (Mg2+) and potassium (K+). 264 

Global data for nineteen climatic variables was obtained from the Worldclim database 265 

(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) and summarised as a mean for each species 266 

across the geographical area in which it dominated vegetation. Climatic variables can be 267 

highly correlated with one another. We therefore used principal components analysis (PCA) 268 

to reduce the dimensionality of the nineteen climate variables to axes that describe general 269 

patterns. The full results of the PCA are in Table 1. In summary, the first six principal 270 

component (PC) axes accounted for 95% of the total climatic variation and were used in 271 

multiple regression models of trait ~ soil + climate. PC1 was a gradient relating to 272 

temperature, PC2 was an axis of dryness and diurnal temperature range. PC3 relates to 273 

precipitation of the warmest and wettest months. PC4 is an axis of temperature and 274 

isothermality, PC5 is a gradient of temperature in combination with precipitation, and PC6 is 275 

a gradient of temperature, moisture and temperature range (Table 1). 276 

 277 

 278 

Table 1. Climate variables with the highest loadings following principal components analysis 279 

(PCA). Mean diurnal range is the mean of monthly (max temp - min temp) and isothermality 280 

is the mean diurnal range/ temperature annual range (*100). 281 

Highest Loading Climate Variables 

  Negatively Loading Positively Loading 

PC1 
Mean annual temperature, Min. temperature of coldest 

Month, Mean temperature of coldest quarter 

Temperature seasonality 

PC2 
Precipitation of Driest Quarter, Precipitation of driest 

month 

Mean Diurnal Range 

PC3 
Precipitation of Warmest Quarter, Precipitation of 

Wettest Month  

 Precipitation of Driest Month 

PC4 Mean Temperature of Warmest Quarter   Isothermality 

PC5 Precipitation of Warmest Quarter Precipitation of coldest quarter 

PC6 Mean temperature of wettest quarter Temperature annual range 

 282 

 283 

Phylogenetic hypothesis 284 

A Bayesian distribution of one hundred phylogenetic trees was constructed of 285 

hypothesised relationships between all 279 dominant species in this study, including 94 C3 286 
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and 185 C4 species. Molecular data from 39 genes for all Poaceae species present in Genbank 287 

was downloaded using PHLAWD (Smith & Dunn, 2008) in April of 2014 to build an initial 288 

phylogeny including all grass species with sufficient genetic coverage (Forrestel et al. 289 

unpublished). There was no genetic data available for 66 of the species included in the study, 290 

and these species were therefore included using a set of taxonomic constraints based on 291 

existing expert knowledge of grasses. The phylogeny of Christin et al. (2014) was utilized as 292 

a dated backbone, and the methods of (Jetz, Thomas, Joy, Hartmann, & Mooers, 2012) were 293 

employed to insert taxa for which there was no genetic data available using the “pastis” 294 

package in R (Thomas et al., 2013) . One hundred trees from the final Bayesian distribution 295 

of phylogenies were subsequently pruned down to the 279 species included in our study. The 296 

trees are deposited in the Dryad database. 297 

 298 

Statistical analyses 299 

We first investigated the relationships among traits using a PCA to identify the main 300 

axes of variation between SLA, LTS, LNC, maximum culm height, maximum leaf area and 301 

maximum leaf width.  To verify whether trade-offs operate at a global scale in this plant 302 

group, as Reich et al. (1997), Ian J. Wright et al. (2004), and Díaz et al. (2015) have all 303 

shown across all plant groups, we used a phylogenetic generalised least squares (PGLS) 304 

model to determine the strength and direction of correlations between all combinations of 305 

pairwise plant traits. PGLS accounts for phylogenetic autocorrelation in model residuals that 306 

is expected due to common ancestry.  307 

We also used a PGLS model to investigate associations between the traits and 308 

environment. We fitted two models; trait ~ nutrients + sand + pH + PC1 + PC2 + PC3 + PC4 309 

+ PC5 + PC6 and its results are shown in Tables 3 and 4. Secondly, to evaluate whether traits 310 

differed systematically between continents, we fitted continent as a factor in the PGLS 311 

models trait ~ soil nutrients*continent + soil pH *continent + soil % sand*continent + 312 

PC1*continent + PC2*continent + PC3*continent + PC4*continent + PC5*continent + 313 

PC6*continent (results in Appendix S8). All model residuals were checked for normality and 314 

logarithmically transformed where necessary. PGLS analyses were performed using the R 315 

package “Caper” (Orme et al., 2012) 316 

 We measured phylogenetic signal in both the residuals of the models and the 317 

individual traits using Pagel’s Lambda (λ), which estimates how much trait variation depends 318 

on phylogeny according to a Brownian model of evolution. A λ value of 0 implies no 319 

phylogenetic signal, while a value of 1 indicates phylogenetic dependence consistent with a 320 

Brownian motion model.  321 

 For all phylogenetic analyses, the tree used was randomly selected from the 100 322 

Bayesian distribution of phylogenies. The analyses were repeated on another five randomly 323 

selected trees to assess sensitivity of our statistical models to phylogenetic uncertainty. We 324 

found no difference in any of the results based on using the different trees and so present 325 

results from a single phylogeny. 326 

 To assess how much of the trait variation occurred within versus between each of the 327 

grassy vegetation types defined by Lehmann et al (2019), we performed variance partitioning 328 

using the lme function ((Trait ~ 1, random = ~ 1| vegetation type) and the varcomp function 329 

in the R package “nlme” in R (Pinheiro J, 2017). 330 

 331 

  332 
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RESULTS 333 

Geographical and phylogenetic distributions 334 

Global patterns in the distribution of traits are shown in Figure 1. Mapping the mean 335 

trait values for dominants in each of the vegetation types revealed clear geographic patterns in 336 

trait values. The lowest values of LNC occurred across areas of the tropics (Fig. 1), areas 337 

characterised by very low soil nutrients, low pH, high rainfall and consistently high 338 

temperatures. The highest LNC occurred across the Eurasian Steppe (Fig. 1), a dry region with 339 

high soil fertility and seasonally low temperatures. Interestingly, regions with notably high 340 

SLA included both parts of the North American Great Plains, where there is a continental 341 

climate and high soil fertility, as well as the Brazilian Cerrado where the climate is tropical and 342 

soil nutrients very low. Despite being characterised by high SLA, areas of the Cerrado also 343 

exhibited very low values of LNC (Fig. 1). The toughest-leaved plants were in areas of 344 

Australia and the Eurasian Steppe (Fig. 1), where SLA was also the lowest (Fig. 1). The tallest 345 

and largest-leaved plants were in areas of the tropics, but particularly tropical Africa (Fig.1).  346 

The phylogenetic distributions of trait values are shown in Figure 2 and reveal 347 

important differences in traits values between lineages. Individual traits including LNC, LTS, 348 

leaf width and height all showed strong and significant phylogenetic signals (P<0.001 for λ = 349 

0), with λ values ranging from 0.57 to 0.96 (see Table 2). SLA displayed weaker, but 350 

statistically significant phylogenetic dependence (λ  = 0.14). However, maximum leaf area 351 

showed no evidence of a phylogenetic signal (λ  = 0.24).  352 

Differences in clade mean height resulted from the divergence between dominant 353 

grasses in the Chloridoideae and Panicoideae lineages with Chloridoideae species being 354 

shortest. Panicoideae and Pooideae lineages were also significantly different in height with 355 

Panicoide being taller (P<0.001) (Fig. 2; Appendix S5 in Supporting Information). Differences 356 

in clade mean trait values for LTS were most distinct for Danthonioideae species, which are 357 

characterised by the toughest leaves (Fig. 2; Appendix S5). Significant differences in LNC 358 

were also observed between grasses from Pooideae and Panicoideae clades, with Pooideae 359 

grasses having the highest LNC (Fig. 2; Appendix S5). Smaller lineages also contributed to the 360 

phylogenetic signal in all traits (Fig. 2; Appendix S5). 361 

 362 
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 363 

Figure 1. Global distributions of functional traits. Traits are: (LNC) leaf nitrogen content 364 

(%), (SLA) specific leaf area (cm2/g), (LTS) leaf tensile strength (MPa), (Height) maximum 365 

culm height (cm), (Leaf width) maximum leaf width (cm), and (Leaf area) maximum leaf 366 

area (cm2). Mapping is based on the mean trait values for dominant species in each of the 367 

grassy vegetation types determined by Lehmann et al. (2019). 368 
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  369 

Figure 2. Functional trait values mapped across the phylogenetic tree. From left to right, 370 

traits are: leaf tensile strength, LTS (green), SLA (burgundy), % leaf nitrogen content, LNC 371 

(blue), maximum culm height (black), maximum leaf area (orange) and maximum leaf width 372 

(yellow) mapped across the phylogenetic tree.  A full list of species in the tree is in Appendix 373 

S1 in supporting information. Dot sizes represent trait values and are scaled to fit the figure, 374 

which means scaling differs between traits. 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 
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Table 2. Pagel’s λ for the individual traits. All traits except maximum leaf area showed 385 

strong and significant phylogenetic signal based on a likelihood ratio test against λ=0 with 1 386 

degree of freedom. *P < 0.05; ** P < 0.01; *** P < 0.001; ns not significant 387 

Trait λ P (λ = 1) 

LTS 0.77 *** 

N 0.59 *** 

SLA 0.14 * 

Height 0.96 *** 

Leaf Area 0.24 N.S 

Leaf Width 0.80 *** 

   

 388 

 389 

Trait coordination 390 

Traits were separated on two orthogonal axes of variation (Fig. 3). One was identified 391 

as an axis corresponding to size-related traits including maximum culm height, maximum 392 

leaf width and maximum leaf area (Fig. 3). Orthogonal to this axis was an axis of resource 393 

capture and usage, and ranged from low to high SLA and LNC and high to low LTS, all traits 394 

corresponding to the leaf economic spectrum (Fig. 3). PC1 accounted for 35% of the total 395 

variance, PC2 accounted for 29%, PC3 14%, PC 4 10% and PC5 6% (Appendix 6a in 396 

Supporting Information). The loadings of traits on each axis are reported in Appendix 6b 397 

(Supporting Information). 398 

Leaf economic traits all showed a statistically significant association with each other 399 

in the PGLS analysis. SLA and LNC were positively correlated (Fig. 4; Appendix S7 400 

Supplementary Information). In contrast, SLA and LNC were negatively correlated with LTS 401 

(Fig. 4; Appendix S7). There was also a strong association among size-related traits, which 402 

all showed positive relationships (Fig. 5; Appendix S7). A weaker relationship was observed 403 

between leaf width and SLA, LNC and LTS, and between LTS and maximum culm height 404 

(Appendix S7). 405 
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 406 

 Figure 3 Principal components analysis (PCA) of traits, including specific leaf area (SLA), 407 

leaf tensile strength (LTS), leaf nitrogen content (LNC), maximum culm height (Height), 408 

maximum leaf area (Area) and maximum leaf width (Width). Orthogonal axes of trait 409 

variation are identified involving leaf economic traits and traits relating to size. Arrows 410 

represent the direction of increase of the trait values.  411 

 412 
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 413 

Figure 4 Relationship between pairwise combinations of the leaf economic traits, specific 414 

leaf area (SLA), leaf tensile strength (LTS) and leaf nitrogen content (LNC). Regression lines 415 

result from PGLS models of pairwise traits. All trait values are logarithmically transformed. 416 

Lambda values range between 0 and 1. Values closer to 1 indicate higher phylogenetic signal 417 

in the residuals of the models. 418 

 419 

 420 

Figure 5  Relationship between pairwise combinations of the size traits: maximum leaf area, 421 

maximum culm height and maximum leaf width. Regression lines result from PGLS models 422 

of pairwise traits. All trait values are logarithmically transformed. Lambda values range 423 

between 0 and 1. Values closer to 1 indicate higher phylogenetic signal in the residuals of the 424 

models. 425 
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Traits and environment  426 

ANOVA revealed that, with the exception of the relationship between precipitation and LNC, 427 

there was no significant difference in the slopes of the linear model fits for the different 428 

continents (Appendix 8 in Supporting Information). The interaction was therefore dropped 429 

from all subsequent analyses. The only leaf economic trait that showed moderately strong 430 

and significant associations with climate and soil was LNC (r2 = 0.20)  (Table 3). Soil 431 

nutrients made a significant contribution to the explanatory power of the model for LNC 432 

(P<0.001) as did PC axes 2 (dryness and diurnal temperature), PC5 (temperature in 433 

combination with precipitation) and PC 4 (temperature and isothermality) (P<0.05) (Table. 434 

3). The remaining traits show hardly any relationship to environment, with very little of the 435 

variation in LTS and SLA explained by environmental gradients (r2 = 0.05 and 0.03 436 

respectively). Only soil nutrients significantly contributing to the explanatory power of the 437 

model for LTS. Soil pH and % sand were significant predictors of SLA although this 438 

association was again very weak (Table 3). Size-related traits were barely associated with 439 

environment, maximum culm height (r2 = 0.05), maximum leaf width (r2 = 0.08) and 440 

maximum leaf area (r2 =0.06), PC2 (dryness and diurnal temperature) was a significant 441 

predictor of the variation in both height and leaf width  (Table 3). Leaf area and leaf width 442 

were significantly influenced by PC 1 (temperature) and PC 3 (precipitation and temperature) 443 

(Table 4). There were strong phylogenetic signals in the residuals of the model for all of the 444 

leaf economic spectrum traits, including LNC (λ = 0.64), LTS (λ = 0.60), SLA (λ = 0.42) 445 

(Table 3), as well as height (λ =  0.69), maximum leaf area (λ =0.55) and maximum leaf 446 

width (λ =0.59) (Table 4). 447 

 Variance partitioning was used to compare how much of the trait variation occurred 448 

within and between each of the grassy vegetation types defined by Lehmann et al. (2019). 449 

This showed that 60% of variation in LTS occurred within rather than between vegetation 450 

types, and a large amount of variation within the vegetation types was also evident for SLA 451 

(95%), LNC (64%), maximum culm height (55%), maximum leaf area (83%) and maximum 452 

leaf width (81%), suggesting that global- and regional-scale changes in environment are not 453 

key drivers of variation in grass traits.454 
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Table 3. Relationship between species means of leaf economic traits relating to resource capture and release and environmental predictors of 455 

geographical trait variation. The full model is defined as trait ~ soil nutrients +soil pH + soil % sand + PC1+PC2+PC3+PC4+PC5+PC6. Data 456 

were logarithmically transformed before tests. *P < 0.05; ** P < 0.01; *** P < 0.001; ns not significant 457 

 458 

    N     SLA     LTS   

  Slope S.E P Slope S.E P Slope S.E P 

Soil TEB 0.02 0.01 *** 0.02 0.01 ** -0.03 0.01 * 

Soil pH -0.07 0.03 * -0.13 0.05 ** 0.04 0.07 ns 

Soil 

%Sand 0.00 0.00  0.01 0.00 ** -0.01 0.00 ns 

PC1 0.00 0.01 ns 0.00 0.01 ns 0.01 0.01 ns 

PC2 0.02 0.01 ** 0.00 0.01 ns -0.02 0.02 ns 

PC3 -0.01 0.01 ns -0.01 0.01 ns 0.00 0.02 ns 

PC4 0.02 0.01 * 0.01 0.02 ns -0.04 0.02 ns 

PC5 -0.03 0.01 ** 0.02 0.02 ns -0.02 0.03 ns 

PC6 0.00 0.01 ns 0.00 0.02 ns 0.03 0.03 ns 

Lambda 0.64     0.42     0.60     

r2 0.20     0.03     0.05     

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 
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Table 4 Relationship between variation in species means of traits relating to size and environmental predictors of traits variation from the model 471 

trait ~ soil fertility +soil pH + soil % sand + PC1+PC2+PC3+PC4+PC5+PC6. Data were logarithmically transformed before tests. *P < 0.05; ** 472 

P < 0.01; *** P < 0.001; ns not significant 473 

 474 

    Height     

Leaf 

Width     

Leaf 

Area   

  Slope S.E P Slope S.E P Slope S.E P 

Soil 

nutrients -0.01 0.01 ns 0.00 0.01 ns -0.01 0.02 ns 

Soil pH -0.08 0.05 ns -0.04 0.07 ns -0.10 0.12 ns 

Soil 

%Sand 0.00 0.00 ns 0.00 0.00 ns 0.00 0.01 ns 

PC1 -0.02 0.01 ns -0.03 0.01 ** -0.05 0.02 ** 

PC2 0.04 0.01 *** 0.04 0.02 * 0.05 0.03 ns 

PC3 -0.02 0.01 ns -0.05 0.02 ** -0.07 0.03 * 

PC4 0.00 0.02 ns -0.01 0.02 ns -0.04 0.04 ns 

PC5 0.00 0.02 ns 0.01 0.02 ns 0.02 0.04 ns 

PC6 0.01 0.02 ns 0.03 0.03 ns 0.04 0.06 ns 

λ 0.69     0.59     0.55     

r2 0.05     0.08     0.06     

 475 
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DISCUSSION 476 

Using a global comparative analysis of traits from around one quarter of the globally 477 

dominant grass species, we demonstrate that leaf nitrogen content is significantly correlated 478 

with soil nutrients and to a lesser extent climate within the world’s grassy biomes. However, 479 

overall, global gradients in the abiotic environment explain a relatively small amount of 480 

variation in commonly measured traits that are thought to reflect trade-offs in the acquisition 481 

and allocation of resources across grassy biomes. Instead, our analyses reveal that large 482 

amounts of trait variation occurs within as opposed to between vegetation types, and we show 483 

strong phylogenetic patterns in the distribution of traits. We were only able to sample a subset 484 

of the dominant grass species and vegetation types across the globe. However, our sample 485 

included multiple species from every continent, which represent a global latitudinal, climatic 486 

and soil gradient including species from all of the major and most minor grass phylogenetic 487 

lineages. 488 

 489 

Trait relationships 490 

We wanted to establish how leaf economic and size traits are coordinated among 491 

species. The traits of species dominating grassy biomes vary at the global scale along 492 

orthogonal axes of variation previously predicted by theory (Díaz et al., 2015; Grime, 1977; 493 

Sandel, Monnet, & Vorontsova, 2016) providing further evidence for trade-offs being a 494 

fundamental mechanism underlying plant functional strategies at a global scale. One axis 495 

revealed trade-offs between traits associated with the rapid acquisition of resources and 496 

allocation to growth, and traits linked to the conservation of resources in well-defended 497 

tissues, a relationship which is concurrent with other work (Coley et al., 1985; Diaz et al., 498 

2004; Herms & Mattson, 1992; Reich et al., 1997; Westoby et al., 2002). An orthogonal axis 499 

of variation was identified relating to size and this is also consistent with previous studies that 500 

were conducted across broad taxa (Diaz et al., 2004; Sandel et al., 2016; Westoby, 1998). 501 

Interestingly, our study reveals that traits that are tightly correlated do not necessarily share 502 

the same relationships to environment. 503 

 504 

Leaf economic traits and environment 505 

 We wanted to determine whether the trade-offs underlying plant strategies sort 506 

according to abiotic gradients of soil nutrients and climate at the global scale, and if this 507 

depends upon continent, since the magnitude of trait-environment relationships may vary 508 

between regions with different evolutionary histories (Lehmann et al., 2014). There was a 509 

marginally significant difference between continents in the responses of LNC to 510 

precipitation. However, for all other traits and environmental variables this was non-511 

significant, showing that relationships between traits and environment are at the global scale 512 

independent of geographical location.  513 

Although we found little evidence that continents differed in their trait relationships 514 

with environment, we did find strong evidence that evolutionary history shapes the 515 

distribution of traits. All leaf economic traits corresponding to trade-offs associated with a 516 

long leaf life span (SLA, LNC and LTS) exhibited strong phylogenetic signals in both the 517 

individual traits and the residuals of the models. This finding is consistent with previous work 518 

showing phylogenetic signals in both the traits and habitat associations of grasses (Liu et al., 519 

2012; Visser, Woodward, Freckleton, & Osborne, 2012).  520 

LNC was associated with soil fertility and also climate, with high values of LNC 521 

found in dry climate regions with high diurnal temperature range – i.e. semi-arid or desert 522 

regions. Ordoñez et al. (2009), also showed using published data consisting of mostly trees 523 

and shrubs, that globally an increase in LNC corresponds with increasing soil nutrients, and 524 

that soil influences traits more than climate. Species that are distributed across drier sites are 525 



 18 

known to have higher LNC, which may be a mechanism for improving leaf water-use 526 

efficiency by increasing investment in photosynthetic proteins and raising CO2-fixation for a 527 

given stomatal conductance (Schulze et al., 1998; I. J. Wright et al., 2001). Arid regions also 528 

often coincide with areas of high soil fertility, which exerted a stronger effect on the variation 529 

in LNC in our analysis than climate. The observed increase in LNC with increasing soil 530 

nutrients may therefore be a plastic response to resource availability in the environment, as 531 

opposed to an adaptive strategy. However, we note that, in general, LNC varies more 532 

between species than within them (Kichenin, Wardle, Peltzer, Morse, & Freschet, 2013). 533 

Furthermore, our results show that LNC is highly conserved across the phylogeny, indicating 534 

that this pattern is driven by evolutionary adaptations of species that reflect historical 535 

processes rather than by the contemporary environment. 536 

Variation in LTS and SLA were barely associated with soil properties and not at all 537 

with climate. A previous global scale analysis of leaf mechanical properties, which included 538 

forest as well as grassland species, showed the influence of mean annual precipitation on 539 

mechanical properties of leaves to be minimal but did not consider properties of soil (Onoda 540 

et al., 2011). Soil fertility has previously been linked to toughness in leaves at smaller scales 541 

(J Read, Sanson, & Lamont, 2005), which is consistent with theory that predicts better 542 

defended leaves in resource-limited habitats (Coley et al., 1985). Toughening of the leaves 543 

caused by lignin production is commonly observed in plants from arid habitats (Jennifer 544 

Read, Sanson, de Garine-Wichatitsky, & Jaffre, 2006), and it was therefore surprising that the 545 

PC axis describing precipitation did not have a significant effect upon LTS at a global scale 546 

and that the relationship with soil fertility were not stronger.  547 

SLA showed the weakest relationship of all the leaf economic traits to environment 548 

and was barely explained by a combination of all measured soil properties. Although we did 549 

sample individuals that represented as much of the geographical range of each species as 550 

possible, we were unable to incorporate intraspecific trait variation into our study. This may 551 

account for some of the weak relationships observed. Traits, and in particular SLA can be 552 

highly plastic in response to environment, and this may explain some of the weakness of our 553 

correlations. However, since interspecific variation contributes less to trait variation than 554 

interspecific variation and in the case of SLA mirrors interspecific differences across 555 

environmental gradients (Carlucci, Debastiani, Pillar, & Duarte, 2015) we believe our results 556 

to be robust. Soil pH and sand content were significant predictors of SLA but did not explain 557 

variation in any other traits, and the relationship of LNC to soil nutrients was much stronger 558 

than that of SLA. This shows, importantly, that highly correlated traits do not necessarily 559 

share the same responses to environmental predictors.  560 

SLA had the weakest relationship to environment but also had the highest amount of 561 

variation within vegetation types. Variance partitioning showed that 95% of variance in SLA, 562 

64% of variance in LNC and 40% of variance in LTS, occurred within-vegetation type. A 563 

large part of the variance in these traits therefore occurs at finer scales (i.e. landscape and 564 

habitat patch) than can be explained by climate, a pattern also observed in other studies 565 

which included a broader range of taxa and biomes (Freschet, Cornelissen, van Logtestijn, & 566 

Aerts, 2010; Ian J. Wright et al., 2004). Unexplained variation within vegetation types may 567 

result from phylogenetically correlated environmental factors, as indicated by the strong 568 

phylogenetic signal, that vary at the landscape or community scales and could result from 569 

changes in woody plant cover, fire, herbivory or microsite variation in soil properties and 570 

moisture. Soil nutrients and hydrological properties can vary over small spatial scales that 571 

would not be captured by the resolution of our gridded soil data e.g. (Fridley, Grime, Askew, 572 

Moser, & Stevens, 2011). Furthermore, our measure of soil nutrients does not necessarily 573 

reflect plant nutrient uptake, which can be influenced by other factors including soil structure 574 

and compaction. It is possible that our data may capture broad scale patterns but 575 
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underestimate fine scale relationships between traits and soils. However, He et al. (2010) 576 

provide evidence that in grasslands soil does not explain trait variation that is unexplained by 577 

climate. 578 

 579 

Size related traits and environment 580 

There was strong allometric scaling between maximum culm height, leaf area and leaf 581 

width, and all size-related traits were weakly correlated with climate, but not soil. Leaves 582 

perform several functions including light capture, water transport and defence, and optimal 583 

leaf size and shape therefore depends on environmental factors such as irradiance, energy 584 

balance, water availability and water loss, as well as biotic interactions such as competition 585 

and herbivory. Smaller leaves have higher major vein density which contributes to drought 586 

tolerance by directing water around blockages caused by drought-induced xylem embolism, 587 

and helping to protect the hydraulic system from damage (Sack et al., 2012). We found 588 

smaller and narrower leaves in drier habitats and larger, wider leaves in warm, humid 589 

regions. Aridity and diurnal temperature range were weakly associated with both maximum 590 

culm height and leaf width. Taller plants were found in the wettest regions, which are also the 591 

most productive areas of the world. Height is an important component of competition as taller 592 

plants are better competitors for light and cast shade on neighbouring individuals. Increased 593 

stature can therefore confer dominance in wet, productive areas where competition is likely 594 

to be most intense. Shorter plants and narrower leaves were found in the driest areas with a 595 

high temperature diurnal range, indicating semi-arid or desert climates It was therefore 596 

surprising that relationships between size and climate were not stronger over global scales. 597 

As with the leaf economic traits, we found a large amount of small-scale variation in size-598 

related traits (between 55 and 83% of variation in size-related traits occurred within rather 599 

than between vegetation types). It is likely that unexplained variation in size related traits is 600 

driven by predictors which vary over smaller scales than climate, for example herbivory or 601 

fire. 602 

 603 

Conclusions 604 

Our results demonstrate that leaf traits of the dominant species of grassy biomes vary 605 

along orthogonal axes relating to size, and to resource capture and allocation. Trait 606 

correlations along these axes provide further evidence for trade-offs being a fundamental 607 

mechanism that underlie plant functional strategies at a global scale, however, correlated 608 

traits do not necessarily share the same response to environment. With the exception of LNC, 609 

traits linked to resource economics are barely correlated with global gradients in soil 610 

nutrients. Size-related traits are weakly correlated with climate. After accounting for global 611 

environmental gradients, there remain robust phylogenetic patterns in leaf and size traits, 612 

demonstrating that the trait combinations of dominant grass species depend strongly on their 613 

evolutionary history. There is considerable trait variation among the dominant species within 614 

grassy biomes, such that most trait variation occurs within rather than between different 615 

vegetation types. In combination, these patterns suggest that mechanisms of co-existence and 616 

phylogenetically linked environmental correlates varying over small spatial scales are 617 

important determinates of species occurrence. 618 
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SUPPORTING INFORMATION 

Appendix S1 Supplementary methods 
 

The map that was the basis for our species sampling was produced by Lehmann et al (2019), 

which integrated and reclassified 20 national and regional vegetation maps. These original 

maps were the products of a combination of botanical surveys, geographic analysis and 

expert opinion. References for these maps are listed in Lehmann et al (2019). From these data 

Lehmann et al identified global grassy vegetation types. In total 1635 grassy vegetation types 

were identified. Grassy vegetation was defined as having  > 50% of the relative ground cover 

or biomass composed of grasses so that the classification of deserts and areas with sparse 

vegetation cover was not problematic. Vegetation units were considered grassy deserts where 

the total above-ground biomass was either <50 g m2, or where total ground cover was <25%, 

throughout the year. Any region where grasses were the dominant component of the ground 

layer, irrespective of tree cover were also included in the map so as to include tropical 

savannas and woodlands which behave functionally as savanna due to a continuous grassy 

layer. Areas identified as mosaics of open and closed canopy but with a continuous grassy 

layer e.g. across the Steppe region of Russia were also classified as grassy. For areas of the 

world where no other maps were available, the WWF Ecoregions map was used and assessed 

by the above criteria to re-define units as grassy or otherwise. Artificial vegetation units (ie 

agricultural units or those planted by humans) were excluded from the map. 

 

The species which characterise each vegetation type were also identified from the same maps 

and species that were invasive in vegetation types were excluded for the purposes of our 

study. 
 

Appendix S2 List of all species included in the study following the taxonomy of GrassBase. 

Species Author 

Acroceras macrum Stapf 

Aeluropus lagopoides (L.) Thw. 

Aeluropus littoralis (Gouan) Parl. 

Agropyron cristatum (L.) J. Gaertn. 

Agrostis capillaris L. 

Agrostis leptotricha E. Desv. 

Alloteropsis semialata (R. Br.) Hitchcock 

Andropogon bicornis L. 

Andropogon brazzae Franch. 

Andropogon gayanus Kunth 

Andropogon lateralis Nees 

Andropogon lima (Hack.) Stapf 

Andropogon schirensis Hochst. 

Andropogon selloanus (Hack.) Hack. 

Andropogon tectorum Schum. & Thonn. 

Anthephora argentea Goossens 

Anthephora pubescens Nees 

Anthoxanthum odoratum L. 

Apluda mutica L. 



Aristida adscensionis L. 

Aristida contorta F. Muell. 

Aristida diffusa Trin. 

Aristida jubata (Arech.) Herter 

Aristida junciformis Trin. & Rupr. 

Aristida murina Cav. 

Aristida pallens Cav. 

Aristida purpurea Nutt. 

Aristida rhiniochloa Hochst. 

Aristida rufescens Steud. 

Aristida similis Steud. 

Aristida stricta Michx. 

Arundinella mesophylla Nees ex Steud. 

Arundo donax L. 

Astrebla lappacea (Lindl.) Domin 

Axonopus canescens (Nees) Pilger 

Axonopus compressus (Sw.) Beauv. 

Axonopus fissifolius (Raddi) Kuhlm. 

Axonopus purpusii (Mez) Chase 

Bambusa polymorpha Munro 

Bambusa tulda Roxb. 

Blepharoneuron tricholepis (Torr.) Nash 

Bothriochloa ischaemum (L.) Keng 

Bothriochloa saccharoides (Sw.) Rydb. 

Bouteloua curtipendula (Michx.) Torr. 

Bouteloua megapotamica (Spreng) Kuntze 

Brachiaria deflexa (Schum.) C. E. Hubb. ex Robyns 

Brachiaria nigropedata (Fic. & Hiern.) Stapf 

Brachiaria serrata (Thunb.) Stapf 

Brachypodium pinnatum (L.) Beauv. 

Briza brizoides (Lam.) Kuntze 

Briza subaristata Lam. 

Bromus auleticus Trin. ex Nees 

Bromus sclerophyllus Boiss. 

Bromus speciosus Nees 

Bromus tectorum L. 

Calamagrostis arundinacea (L.) Roth 

Calamagrostis epigeios (L.) Roth 

Calamagrostis rubescens Buckl. 

Calamagrostis varia (Schrad.) Host 

Calamovilfa longifolia (Hook.) Scribn. 

Cenchrus biflorus Roxb. 

Cenchrus ciliaris L. 

Centropodia glauca (Nees) T. A. Cope 

Chionochloa flavescens Zotov 

Chionochloa pallens Zotov 



Chionochloa rubra Zotov 

Chloris virgata Sw. 

Chondrosum eriopodum Torr. 

Chondrosum gracile H. B. & K. 

Chondrosum hirsutum (Lag.) Sweet 

Chrysopogon aciculatus (Retz.) Trin. 

Chrysopogon fulvus (Spreng.) Chiov. 

Chrysopogon nigritanus (Benth.) Veldkamp 

Cleistogenes squarrosa (Trin.) Keng 

Cortaderia jubata (Lemoine) Stapf 

Ctenium newtonii Hack. 

Cymbopogon caesius (Hook. & Arn.) Stapf 

Cymbopogon distans (Nees) W. Watson 

Cymbopogon flexuosus (Nees) W. Watson 

Cymbopogon giganteus Chiov. 

Cymbopogon nardus (L.) Rendle 

Cymbopogon nervatus (Hochst.) Chiov. 

Cymbopogon pospischilii (K. Schum.) C. E. Hubb. 

Cynodon dactylon (L.) Pers. 

Cynodon incompletus Nees 

Dactylis glomerata L. 

Dactyloctenium aegyptium (L.) Willd. 

Dactyloctenium giganteum B. S. Fisher & Schweickerdt 

Dactyloctenium radulans (R. Br.) Beauv. 

Danthonia californica Boland. 

Dendrocalamus strictus (Roxb.) Nees 

Deschampsia cespitosa (L.) Beauv. 

Deschampsia flexuosa (L.) Trin. 

Desmostachya bipinnata (L.) Stapf 

Dichanthium fecundum S. T. Blake 

Dichanthium foveolatum (Delile) Roberty 

Dichanthium sericeum (R. Br.) A. Camus 

Digitaria abyssinica (A. Rich.) Stapf 

Digitaria brazzae (Franch.) Stapf 

Digitaria californica (Benth.) Henrard 

Digitaria debilis (Desf.) Willd. 

Digitaria eriantha Steud. 

Digitaria macroblephara (Hack.) Paoli 

Digitaria milanjiana (Rendle) Stapf 

Diheteropogon amplectens (Nees) Clayton 

Echinochloa colona (L.) Link 

Echinochloa haploclada (Stapf) Stapf 

Echinochloa pyramidalis (Lam.) Hitchc. & Chase 

Echinolaena inflexa (Poir.) Chase 

Eleusine coracana (L.) Gaertn. 

Elionurus muticus (Spreng.) Kuntze 



Enneapogon desvauxii Beauv. 

Entolasia imbricata Stapf 

Eragrostis biflora Hack. ex Schinz 

Eragrostis ciliaris (L.) R. Br. 

Eragrostis curvula (Schrad.) Nees 

Eragrostis cylindriflora Hochst. 

Eragrostis lugens Nees 

Eragrostis neesii Trin. 

Eragrostis obtusa Munro ex Ficalho & Hiern 

Eragrostis superba Peyr. 

Eriochloa fatmensis (Hochst. & Steud.) Clayton 

Exotheca abyssinica (Hochst.) Anderss. 

Festuca caprina Nees 

Festuca idahoensis Elmer 

Festuca lenensis Drobov 

Festuca novae-zealandiae (Hack.) Cockayne 

Festuca ovina L. 

Festuca pratensis Huds. 

Festuca quadriflora Honck. 

Festuca valesiaca Schleich. ex Gaud. 

Fingerhuthia africana Lehm. 

Helictotrichon desertorum (Less.) Pilger 

Heteropogon contortus (L.) Beauv. ex Roem. & Schult. 

Heteropogon melanocarpus (Ell.) Benth. 

Hyparrhenia anthistirioides (Hochst.) Anderss. ex Stapf 

Hyparrhenia cymbaria (L.) Stapf 

Hyparrhenia dichroa (Steud.) Stapf 

Hyparrhenia diplandra (Hack.) Stapf 

Hyparrhenia familiaris (Steud) Stapf 

Hyparrhenia filipendula (Hochst.) Stapf 

Hyparrhenia hirta (L.) Stapf 

Hyparrhenia newtonii (Hack.) Stapf 

Hyparrhenia nyassae (Rendle) Stapf 

Hyparrhenia schimperi (Hochst.) Anderss. ex Stapf 

Hyparrhenia smithiana (Hook.) Stapf 

Hyparrhenia subplumosa Stapf 

Hyperthelia dissoluta (Nees) Clayton 

Imperata cylindrica (L.) Raeusch. 

Ischaemum afrum (J. F. Gmel.) Dandy 

Koeleria glauca (Spreng.) DC. 

Koeleria macrantha (Ledeb.) Schult. 

Leersia hexandra Sw. 

Leptochloa fusca (L.) Kunth 

Leptocoryphium lanatum (HBK) Nees 

Leymus cinereus (Scribn. & Merr.)  

Leymus racemosus (Lam.) Tsvelev 



Leymus triticoides (Buckl.) Pilger 

Loudetia arundinacea (A. Rich) Hochst. ex Steud. 

Loudetia phragmitoides (Peter) C. E. Hubb. 

Loudetia simplex (Nees) C. E. Hubb. 

Melica brasiliana Ard. 

Melica minuta L. 

Melica nutans L. 

Melica picta C. Koch 

Melinis amethystea (Franchet) G. Zizka 

Melinis minutiflora P. Beauv. 

Mesosetum loliiforme (Steud.) Hitchcock 

Mesosetum penicillatum Mez 

Microchloa caffra Nees 

Milium effusum L. 

Monocymbium ceresiiforme (Nees) Stapf 

Muhlenbergia richardsonis (Trin.) Rydb. 

Nardus stricta L. 

Nassella charruana (Arech.) M. E. Barkworth 

Nassella neesiana (Trinius & Ruprecht) M. E. Barkworth 

Nassella pulchra (A. Hitchc.) M. E. Barkworth 

Nassella viridula (Trin.) M. E. Barkworth 

Neyraudia reynaudiana (Kunth) Keng ex Hitchcock 

Oryza longistaminata A. Chevalier & Roehrich 

Panicum kalaharense Mez 

Panicum lanipes Mez 

Panicum maximum Jacq. 

Panicum phragmitoides Stapf 

Panicum repens L. 

Panicum virgatum L. 

Paspalum dilatatum Poir. 

Paspalum notatum Fluegge 

Paspalum scrobiculatum L. 

Paspalum vaginatum Sw. 

Pennisetum massaicum Stapf 

Pennisetum mezianum Leeke 

Pennisetum orientale Rich. 

Pennisetum polystachion (L.) Schult. 

Pennisetum purpureum Schum. 

Pennisetum sphacelatum (Nees) T. Dur. & Schinz 

Pennisetum stramineum Peter 

Pennisetum unisetum (Nees) Benth. 

Phleum alpinum L. 

Phleum phleoides (L.) Karst. 

Phragmites australis (Cav.) Trin. ex Steud. 

Phragmites vallatorius (Pluk.) J. F. Veldkamp 

Piptatherum microcarpum (Pilg.) Tsvelev 



Poa bonariensis (Lam.) Kunth 

Poa bulbosa L. 

Poa cita E. Edgar 

Poa hiemata Vickery 

Poa labillardieri Steud. 

Poa lanuginosa Poir. 

Poa nemoralis L. 

Poa pratensis L. 

Poa secunda J. & C. Presl 

Pogonarthria squarrosa (Roem. & Schult.) Pilger 

Pseudoraphis spinescens (R. Br.) Vickery 

Puccinellia gigantea (Grossh.) Grossheim 

Rytidosperma oreoboloides (F. Muell.) H. P. Linder 

Saccharum bengalense Retz. 

Saccharum spontaneum L. 

Schizachyrium sanguineum (Retz.) Alston 

Schizachyrium scoparium (Michx.) Nash 

Schizachyrium spicatum (Spreng.) Herter 

Schizachyrium tenerum Nees 

Schmidtia kalahariensis Stent 

Schmidtia pappophoroides Steud. 

Sehima ischaemoides Forsk. 

Sehima nervosum (Rottler) Stapf 

Setaria incrassata (Hochst.) Hack. 

Setaria sphacelata 
(Schumach.) Stapf & C. E. Hubb. ex 

Moss 

Sorghastrum nutans (L.) Nash 

Sorghum arundinaceum (Desv.) Stapf 

Sorghum purpureosericeum (A. Rich.) Schweinf. & Aschers. 

Spartina patens (Ait.) Muhl. 

Sporobolus airoides (Torr.) Torr. 

Sporobolus compositus (Poir.) Merrill 

Sporobolus contractus Hitchcock 

Sporobolus cubensis Hitchcock 

Sporobolus indicus (L.) R. Br. 

Sporobolus ioclados (Trin) Nees 

Stenotaphrum secundatum (Walt.) Kuntze 

Stipa arabica Trin. & Rupr. 

Stipa barbata Desf. 

Stipa capillata L. 

Stipa caucasica Schmalh. 

Stipa comata Trin. & Rupr. 

Stipa dasyphylla (Lindem.) Czern. ex Trautv. 

Stipa eremophila Reader 

Stipa hohenackeriana Trin. & Rupr. 

Stipa ichu (Ruiz & Pav) Kunth 



Stipa krylovii Roshev. 

Stipa lessingiana Trin. & Rupr. 

Stipa neaei Nees ex Steud. 

Stipa pulcherrima C. Koch 

Stipa richteriana Kar. & Kir. 

Stipa sareptana Beck. 

Stipa speciosa Trin. & Rupr. 

Stipa tenacissima L. 

Stipa thurberiana Piper 

Stipa tirsa Stev. 

Stipa trichophylla Benth. 

Stipa turkestanica Hack. 

Stipa zalesskii Wilensky 

Stipagrostis ciliata (Desf.) de Winter 

Stipagrostis uniplumis (Licht.) de Winter 

Themeda anathera (Nees) Hack. 

Themeda arundinacea (Roxb.) A. Camus 

Themeda tremula (Nees) Hack. 

Themeda triandra Forsk. 

Themeda villosa (Lam.) A. Camus 

Trachypogon spicatus (L.) Kuntze 

Tragus berteronianus Schult. 

Tragus koelerioides Aschers. 

Tragus racemosus (L.) All. 

Triodia basedowii E. Pritzel 

Triodia longiceps J. M. Black 

Triodia pungens R. Br. 

Triodia wiseana C. A. Gardner 

Tristachya leiostachya Nees 

Urochloa mosambicensis (Hack.) Dandy 

Vossia cuspidata (Roxb.) Griff. 

 

 



 
Appendix S3 The global extent of grassy vegetation used as the basis for sampling in this 

study. Polygons, which make up the map represent different vegetation types. 

Polygons/vegetation types are coloured by the percentage of the total species per 

polygon/vegetation that were sampled in this study. The numbers of dominant species for 

vegetation types ranged from 1 to 19, with a mean of 4. 

 
 

Measuring traits from herbarium specimens 

We measured the SLA and LTS on the fresh leaves of 39 grass species using standard 

protocols (Cornelissen, Lavorel et al. 2003). Leaf area was determined using image analysis 

software (WINDIAS, Delta-T Devices Ltd, Cambridge, UK) and dry leaf weight using a five-

point balance. Leaves were then dried in herbarium presses for 10 days, weighed, rehydrated 

in de-ionised water for 24 hours before being scanned and then measured again. Using linear 

regression we showed strong correlations between the fresh and rehydrated trait 

measurements for SLA (r2 = 0.90, P<0.001) (Figure S1) and LTS (r2 = 0.84, P<0.001). 
 

  



Appendix S4 The relationship between trait values measured on fresh leaves and the same 

leaves that had been subjected to drying in herbarium presses then rehydrated for (a) specific 

leaf area (SLA) (r2 = 0.90, P<0.001) and (b) leaf tensile strength (LTS) (r2 = 0.84, P < 0.001). 

All data were logarithmically transformed. 

 



 

Appendix S5 Comparison of trait values for Aristoideae (Ari), Arundoideae (Aru), 

Bambusoideae (Bam), Chloridoideae (Chl), Danthonioideae (Dan), Erhartoideae (Erh), 

Panicoideae (Pan) and Pooideae (Poo). Solid lines show the median and solid circles the 

mean for each clade. Ouliers are unfilled circles. All traits were logarithmically transformed. 

 



Appendix 6a The proportion of variance explained by each axis of a principal components 

analysis of the traits specific leaf area (SLA), leaf tensile strength (LTS), leaf nitrogen 

content (LNC), leaf carbon content (LCC), maximum culm height, maximum leaf area and 

maximum leaf width. 

 

  PC1 PC2 PC3 PC4 PC5 PC6 

Standard deviation 1.60 1.23 0.91 0.83 0.59 0.24 

Proportion of Variance 0.43 0.25 0.14 0.11 0.58 0.01 

Cumulative Proportion 0.43 0.68 0.82 0.93 0.99 1.00 

 

 

 

 

Appendix 6b Loadings of each traits on each of the PC axis identified following principal 

components analysis of the traits specific leaf area (SLA), leaf tensile strength (LTS), leaf 

nitrogen content (LNC), maximum culm height, maximum leaf area and maximum leaf 

width. 

 

 

  PC1 PC2 PC3 PC4 PC5 PC6 

Height -0.52 -0.24 0.04 -0.70 -0.81 -0.14 

Leaf Area -0.59 -0.14 0.01 -0.03 0.29 0.73 

Leaf Width -0.59 0.05 -0.12 0.02 0.47 -0.65 

LNC -0.08 0.60 -0.29 -0.73 -0.10 0.07 

SLA -0.11 0.46 0.88 0.04 -0.01 -0.01 

LTS 0.13 -0.59 0.36 -0.68 0.19 -0.11 



Appendix S7 Pairwise relationships between all combinations of species mean traits. λ values 

are for the residuals in the PGLS model. P < 0.05; ** P < 0.01; *** P < 0.001; ns not significant. 

Trait data were logarithmically transformed before tests 

  Slope S.E λ r2 P  

N~LTS -0.256 0.027 0.40 0.26 *** 

N~SLA -0.233 0.044 0.60 0.09 *** 

N~Height -0.014 0.043 0.54 0 ns 

N~Leaf Width 0.096 0.031 0.48 0.03 ** 

LTS~SLA -0.640 0.085 0.40 0.18 *** 

SLA~Height -0.036 0.056 0.32 0 ns 

SLA~Leaf Width 0.107 0.042 0.30 0.02 * 

SLA~Leaf Area 0.019 0.027 0.32 0 ns 

Height~LTS 0.120 0.047 0.50 0.02 * 

LTS~Leaf Area 0.052 0.040 0.50 0 ns 

LTS~Leaf Width -0.149 0.062 0.49 0.02 * 

Leaf Width~Height 0.425 0.039 0.05 0.32 *** 

Leaf Area~Height 0.330 0.021 0.57 0.49 *** 

 



Appendix S8 ANOVA comparing the slopes of the full model with the continent that each species was dominant in fitted as an interaction. The full 

model is defined as trait ~ soil nutrients*continent +soil pH *continent + soil % sand*continent + PC1*continent +PC2*continent +PC3*continent 

+PC4*continent +PC5*continent +PC6*continent. P < 0.05; ** P < 0.01; *** P < 0.001; ns not significant. Trait data were logarithmically transformed 

before tests 

    LC     LTS     SLA     Height     

Leaf 

Area     Leaf Width   

  DF F value P DF F value P DF F value P DF 

F 

value P DF F value P DF F value P 

Soil TEB 4 1.83 ns 4 0.52 ns 4 2.30 ns 4 0.47 ns 4 1.31 ns 4 1.48 ns 

Soil pH 4 0.46 ns 4 0.96 ns 4 0.93 ns 4 1.22 ns 4 2.27 ns 4 0.89 ns 
Soil % 

Sand 4 1.14 ns 4 0.42 ns 4 3.08 ns 4 0.59 ns 4 2.03 ns 4 0.33 ns 

PC1 4 0.85 ns 4 0.84 ns 4 0.74 ns 4 0.43 ns 4 1.14 ns 4 1.89 ns 

PC2 4 0.78 ns 4 0.69 ns 4 0.76 ns 4 0.63 ns 4 1.53 ns 4 1.46 ns 

PC3 4 0.86 ns 4 1.10 ns 4 0.47 ns 4 0.21 ns 4 1.15 ns 4 1.83 ns 

PC4 4 2.28 ns 4 2.26 ns 4 0.86 ns 4 2.37 ns 4 2.13 ns 4 1.26 ns 

PC5 4 4.57 ** 4 0.86 ns 4 2.20 ns 4 0.60 ns 4 1.22 ns 4 0.37 ns 

PC6 4 1.74 ns 4 1.58 ns 4 0.80 ns 4 0.43 ns 4 2.04 ns 4 2.02 ns 

	


