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Abstract: Anaerobic digestion (AD) plants enable renewable fuel, heat, and electricity production,

with their efficiency and capital cost strongly dependent on their installed capacity. In this work,

the technical and economic feasibility of different scale AD combined heat and power (CHP) plants

was analyzed. Process configurations involving the use of waste produced in different farms as

feedstock for a centralized AD plant were assessed too. The results show that the levelized cost of

electricity are lower for large-scale plants due to the use of more efficient conversion devices and

their lower capital cost per unit of electricity produced. The levelized cost of electricity was estimated

to be 4.3 p/kWhe for AD plants processing the waste of 125 dairy cow sized herds compared to

1.9 p/kWhe for AD plants processing waste of 1000 dairy cow sized herds. The techno-economic

feasibility of the installation of CO2 capture units in centralized AD-CHP plants was also undertaken.

The conducted research demonstrated that negative CO2 emission AD power generation plants could

be economically viable with currently paid feed-in tariffs in the UK.

Keywords: levelized cost of electricity; power generation in AD plants; biogas fueled gas engines;

organic Rankine cycles; CO2 capture

1. Introduction

Anaerobic digestion (AD) processes enable the use of organic wastes such as food and farm

waste for the generation of energy and biofertilizer [1]. In AD processes, metabolic bacteria break

down organic matter into simpler chemical compounds such as CH4, CO2, NH3, and H2S without

oxygen [2]. Before being digested, the organic matter undergoes pretreatment which involves removal

of undesirable materials, the addition of water, and mixing to form a slurry. The byproducts of

AD are biogas and digestate [3]. The digestate can be used directly on land as fertilizer or further

processed into compost to increase its quality and value [3]. The biogas can be combusted in boilers

for the production of heat or in internal combustion engines for the production of electricity and

heat in a Combined Heat and Power (CHP) arrangement. Alternatively, the biogas can be processed

downstream to remove CO2 and water vapor for biomethane production [1]. Biogas from agriculture

waste exhibits a CH4 mole fraction in the range 50–60% and it is considered to be a carbon-neutral

fuel. AD plants can thus be perceived not only as a waste reduction technology but also as a means of
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decarbonization of the energy system, contributing to emission reduction targets [4]. The introduction

of CO2 capture and storage technologies in biofueled plants could also enable negative CO2 emission

energy production, given the fact that CO2 emissions are being captured from a plant operating using

carbon neutral feedstock [5,6].

The application of AD energy generation plants is currently experiencing growth in a number of

European countries such as Germany, Italy, and the UK, primarily due to renewable heat and electricity

production incentives [7]. The growth in the number of AD plants is expected to continue in the future,

extending the share of this technology in the future energy generation mix [8].

There were approximately 378 AD combined heat and electricity (CHP) plants operating in the

UK in 2015. Installed power capacity for these plants was close to 388 MWe, of which 125 MWe

corresponded to AD plants processing farm waste. A large percentage (75%) of the AD CHP plants in

the UK agriculture sector exhibits individual installed power generation capacity up to 500 kWe [9].

Feed-in tariffs paid to small scale generators is significantly higher than the one for larger scale plants,

in fact the UK electricity feed-in tariff for AD plants with installed power generation capacity of up

to 250 kWe (6.93 p/kWhe) is 180% higher than the feed-in tariff for plants which installed power

generation capacity is larger than 500 kWe (2.49 p/kWhe) [10]. The UK government revised these tariffs

during the first quarter of this year, significant differences were observed for the plants with installed

generation capacity larger than 500 kWe that used to receive 5.76 p/kWhe before 31 March 2017.

Heat production using AD plants is as well favored by the UK Renewable Heat Incentive (RHI)

scheme, which provides quarterly payments over twenty years for non-domestic thermal energy

production using renewable resources [11]. RHI tariffs are scale and technology dependent, offering

larger payment per unit of heat produced for small scale generators.

Incentive policy in the UK and in other European countries has encouraged small to medium

industries and farms to deploy AD plants as a way to obtain economic benefits associated with the use

of their organic waste [9]. It must be noted, however, that the biogas yield associated with the waste of

these farms will lead to a relatively low thermal flow, leading to more inefficient power generation

units given the fact that larger turbo machinery tends to exhibit larger electrical efficiency.

The technical and economic feasibility of AD plants in the context of agriculture and farm waste

processing has been analyzed by a number of researchers [12–15]. These studies focused on the

investigation of the techno-economic performance of the AD reaction system, rather than extensively

analyzing energy conversion technologies for biogas.

Biogas can be converted into electricity using boilers and bottoming Rankine cycle systems

employing steam or organic working fluids. Electricity and heat can also be generated by combusting

the biogas in the internal combustion engines of CHP systems. Electrical efficiency tends to be

higher for larger and more expensive engine-driven CHP systems as they enable the implementation

of more precise manufacturing processes and energy efficiency improvement technologies such as

turbocharging and intercooling [16,17]. Surveys indicated that efficiency for biogas fueled engines

ranged from 35% to 40% for power outputs between 50 and 800 kWe. This power range corresponds

to the biogas yields associated with the waste of dairy farm herds of between 100 and 1000 dairy

cows. The overall power generation efficiency can be increased further by using the heat in the high

temperature flue gases of the gas engine of the CHP system to generate additional power through the

use of Organic Rankine Cycle (ORC) power systems [18].

The use of gas engine power generation technology for different size AD plants was investigated

by Lantz [19]. The author estimated the capital investment cost for different size plants and the specific

investment cost per unit of installed power. It was shown that the specific investment cost for larger

plants (consequence of their higher electrical generation efficiency and non-linear cost relationship)

was lower than the analogous values for small scale plants. The possibility of combining the waste

from different farms to increase the thermal input of the power devices was also suggested.

The use of waste from different small farms as feedstock to a centralized AD plant offers the

advantage of enabling larger thermal input for the power generation system, but impacts of transport
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and maximum available reactor size should be taken into consideration. Previous studies that discussed

the opportunity of combining waste from different farms to be processed in large AD based energy

plants mostly focused on the optimization of the overall plant size without paying sufficient attention

to the characteristics and limitations of available energy conversion technologies [20–22].

The incorporation of CO2 capture and storage processes in fossil and biogenic fueled power

plants is envisaged as the most economically feasible way to reach the emission reduction objectives

associated with the two degree target [23]. As previously said, these plants enable electricity generation

with negative CO2 emissions and are expected to play a key role in the low carbonization of the energy

system [24–26]. Deployment of CO2 capture technologies is also encouraged in low to medium scale

energy plants [27] and it is assumed that in the future these generators will join a hypothetical CO2

transport net because it does not seem feasible to build a duct for small CO2 flow to be transported.

CO2 capture using solvent-based gas separation units is the most industrially widespread CO2 capture

process [28,29]. CO2 from the combustion effluent is chemically absorbed by the separation agent

(example: mono-ethanol amine) and the separation agent is thermally regenerated in a stripper.

The heat source for the reboiler of the stripper is provided by steam at approximately 2 bar (120 ◦C).

A rich CO2 stream is obtained on the top of the stripper, downstream dried, and compressed up to

110 bar for allowing geological storage. Further details about solvent-based processes in the role of post

combustion CO2 capture processes can be found in [30–32] whilst CO2 geological storage is further

discussed in [28].

The aim of this paper is to report on the analysis of the technical and economic feasibility of energy

generation from AD plants of different sizes in the UK context, focusing mainly on power production.

Internal combustion engines equipped with a bottoming ORC system for electricity generation have

been considered. Post-combustion technologies in the role of CO2 capture processes have also been

assessed for larger scale plants and economic compensations for the smaller waste suppliers have also

been studied.

2. Methodology

2.1. Farm Sizes and Bio-Gas Yield

Different scales for AD-energy conversion plants were the subject of investigation in this article:

125 dairy cow sized herd (Plant Size I), 250 dairy cow sized herd (Plant Size II), 500 dairy cow sized

herd (Plant Size III), 1000 dairy cow sized herd (Plant Size IV), and an AD centralized plant. Herd sizes

were based on the dairy size farm classification used in the livestock maps [33] produced by the UK

Department of Environment, Food and Rural Affairs (DEFRA).

The process design for the centralized plant was effected by considering one of the largest

currently operating AD reactors with volume close to 3000 m3 [13]. Based on this size, using an organic

loading rate of 3 kg of volatile solids/m3 per day [13] and an average waste production per cow of

approximately 53 kg/day (not including parlor washing) [34], it was estimated that the associated

feedstock corresponded to the waste produced by 2670 cows. It must be noted that it was assumed

that the amount of collectable waste was independent of herd size; leading to an over estimation

of slurry production, especially for small herd sizes due to the fact that cows can spend a sizeable

amount of time outdoors with only a fraction of the daily waste collected. This article is only focused

on the use of cow dairy slurry as AD feedstock, and does not study the effect of co-digestion of other

agriculture wastes.

The AD centralized plant was assumed to be located in the Cheshire region and that the required

slurry feedstock for its operation was supplied by using the waste of farms up to 1000 cows located in

a 6.7 km × 6.7 km area, as displayed in Figure 1.

Chemical and physical properties for the dairy cow slurry are displayed in Table 1.
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Figure 1. DEFRA livestock map for the area under study.

Table 1. Physical and chemical properties for dairy cow slurry.

Dairy Cow Slurry Physical and Chemical Properties

Proximate analysis
(weight percentage)

Ultimate analysis
(dry and ash free) 3

Total solid content (%) 10.0 1 Carbon (%) 58.62

Volatile solid content (%) 8.0 2 Hydrogen (%) 7.69

Nitrogen (%) 2.92
Sulphur (%) 0.27
Oxygen(%) 30.50

1 Assumed, based on reports and lab analysis for dairy cow slurry [35,36]; 2 Considering that 80% of the total solid
content of the slurry can be considered volatile solid content [37]; 3 Ultimate analysis presented in [38] for dry and
ash free slurry.

Volatile solids (VS) represent the portion of the organic solids that can be digested, while the

remainder of the solids is fixed [37]. Biogas flowrate per kg VS and biogas compositions (Table 2)

were quantified by using the Boyle–Buswell stoichiometric relationship [39] considering that the total

volatile solid content of the slurry can be degraded by the microorganisms in the anaerobic digester.

This is a common methodology that has previously been applied in several articles [12–15] aiming

to assess the potential for biogas and energy generation from organic solid waste via the anaerobic

digestion process. It was assumed that the introduction of bio-diesel scrubbers downstream of the AD

reactors would enable the reduction of NH3 and H2S content to acceptable levels for being used as

fuel in gas engines [40].

Table 2. Biogas flowrate and mole fractions for main components.

Biogas Flow-Rate and Composition

Raw bio-gas “Cleaned bio-gas”

Bio-gas flow-rate (kg/kg VS) 1.75 Bio-gas flow-rate (kg/kg VS) 1.73

Mole Fraction

CH4 55.6 CH4 57.3
CO2 40.1 CO2 41.2
NH3 4.1 NH3 1.5
H2S 0.16 H2S 0.02

2.2. Power Generation Using Gas Engine and Organic Rankine Cycle Systems

The technical performance in term of biogas inlet thermal flow, power generation, and parasitic

loss for each plant size is presented in Table 3. Based on the thermal input associated with the different

plant sizes, a careful selection of gas engine models was undertaken using the data provided by

different engine vendors [16,17,41]. Specially tailored process simulations were undertaken employing

Aspen Hysys process design software [42], considering the composition of the biogas from the AD

reactor and using the pressure ratio specification, the number of compression and intercooling stages,
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and the operating conditions reported by the vendors. Gas engines were modelled using existing

unit operations in the software as described in [43,44]. Turbo-charging compression with intercooling

stages were simulated using compressors and intercoolers available in the software. The Otto cycle

gas engine itself was modelled as a process involving the compression stage (employing compressor

blocks), the combustion of biogas (in a Gibbs reactor), and the flue gas expansion (modelled as a

turbine block). For the different plant scales, it was possible to identify a specific gas engine model

that could be employed for power generation based on the associated biogas thermal flow.

Table 3. Energy consumption and biogas yield for the different plant scale under study.

Scale Plant I Scale Plant II Scale Plant III Scale Plant IV Centralized Plants

Herd characteristics

Herd size (cows) 125 250 500 1000 2670
Cow slurry per day (kg/day) 6625 13,250 26,500 53,000 141,510

Biogas flow inlet to turbo-machinery

Biogas flow rate (kg/day) 925 1851 3702 7404 19,770

Digestate

Digestate (kg/s) 5699 11,399 22,800 45,596 121,740

AD energy consumption

Electricity consumption (kW) 2.0 4.0 8.0 16.0 42.5
Heat consumption (kW) 3.2 6.4 12.8 25.6 68.5

Farm energy consumption

Heat demand (kW) 1.9 2.5 4.0 8.0 25.8
Power demand (kW) 1.9 3.8 7.4 14.8 46.1

Energy consumption for farming-related activities for the different herd sizes was estimated based

on the information presented by [45,46]. It was assumed that the power consumption for the operation

of the AD reactor system was mainly due to the power required for the stirring and pumping of the

slurry (7.2 kWh/ton of input slurry), as reported by [47]. Heat requirement during the AD reaction

process was quantified by considering the required thermal energy for pre-heating the slurry from

ambient temperature to the AD operating conditions and heat transfer processes in the reactor jacket,

as detailed in [13].

As previously mentioned, the feasibility of using one of the largest AD facilities currently deployed

for power generation was explored. Based on the information presented by [13], the volume for the

AD reactor in this centralized plant was around 3770 m3. The corresponding biogas generation of a

reactor of this size would be approximately equivalent to 3.8 MWth, which matches the needs of the

largest and highest efficiency biogas-fueled engines manufactured by a market leading company [16].

It must be noted that in this plant, on site parasitic loss is mainly caused by the power consumption in

the AD reactor, however (as further detailed in result section), electricity consumed in the small slurry

supply farm was also considered. This is because AD centralized plants are assumed to provide a free

electricity generation fee to the small slurry supplier farms.

The technical performance for the different plants was compared using the specific power

generation per mass unit of volatile solids (kg VS). The mathematical expression used is illustrated in

Equation (1).

SPGVS =
PowerGSE + PowerORC

MassSLR ×
VS (%)

100

(1)

The capital investment cost for the AD reactor was quantified by employing the correlation

developed by [13], updated to the current value of UK sterling using the CEPCI (Chemical Engineering

Plant Cost Index) and the corresponding exchange rate, Equation (2). The yearly operation and
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maintenance cost for the AD reaction system was assumed to be 7% of the total capital cost of the AD

reactor [48,49].

CI AD = 24, 361 × ADRV

(

m3
)0.6999

(2)

As it was mentioned in the Introduction, digestate can be obtained as an AD byproduct. Digestate

can be used as fertilizer in the farm, thus, considering that grass or crops exhibit lower growth rate

during winter, digestate must be stored at least for 22 weeks [34]. In this work, it was assumed that

digestate could be stored in a HDPE (high-density polyethylene) lined lagoon that would be built

once the AD plants were deployed in the farm. The cost for slurry storage tanks upstream of the AD

reactor was not quantified in this work because it was considered that currently operating farms would

have already these tanks, however cost data for slurry tanks [34] was used for modelling the cost of

digestate tanks.

Capital investment costs for gas engines were based on the equations presented by [17,50].

The correlation was updated to current value of UK sterling using the CEPCI index and the

corresponding exchange rate. The resulting mathematical expression is presented in Equation (3).

CICGSE =
(

3432 × Power (kWe)GSE
0.666

)

+ 11, 097 (3)

Operation and maintenance cost (O&M) for the gas engine was estimated using the correlations

presented in the above cited references and shown in Equation (4).

O&MGSE = 5.896 × Power (kWe)GSE
−0.2219 (4)

Gas engines enable power generation as well as heat production. Heat from the gas engine

jacket, lubricant oil, and hot flue gases could be recovered. Heat from the gas engine jacket and from

the lubricant oil enables to produce hot water at 90 ◦C, the thermal content of this hot water can

fully satisfy the farm and AD reactor heat demands. This heat can be accounted in terms of the RHI

incentives in the UK [11], thus the farm could also get payments for heat production and use.

Heat from the combustion effluents of the gas engine could be recovered for district heating or for

extra electricity generation using Organic Rankine Cycles [51]. In this work, it was decided to analyze

the second option. However, it must be noted that that the hot flue gases could be used to satisfy

the heat demand of industrial sites or villages located in the proximity of the farm with the installed

AD reactor with gas engine. In this work, exhaust flue gases were assumed to be cooled down to a

temperature 10 degrees higher than their dew point and used as a heat source for a R245fa ORC. R245fa

is one of the most commonly employed fluids in ORC systems [52]. Efficiency for ORC pumps and

expanders was determined using linear correlations taking into account thermal inputs for the cycle,

based on data for currently available machinery on the market [53]. Capital costs for ORC systems were

estimated using the correlation presented in Equation (5) and operation and maintenance costs were

quantified by considering the yearly specific values for O&M costs to be £ 55.6 per installed kWe [15].

Values were updated to current value of UK sterling using CEPCI and the corresponding exchange rate.

CICORC = (1728 × Power (kWe)ORC) + 11, 290 (5)

For all the plants under analysis in this article, capital costs associated with grid connection

infrastructure were also considered. It was decided to use cost data from a currently 300 kW AD-CHP

plant in the UK [54] built in 2011. This cost was updated to 2016 pound sterling using the corresponding

CEPCI index. Linear upscaling or downscaling was assumed. Contingency and engineering work

costs were also accounted for, and were considered to be 3% of the total capital investment cost [54].

For the centralized AD plant, the option of installing a CO2 capture process was analyzed in an

attempt to design a negative CO2 emission power plant. The biogas combustion flue gases have a

CO2 mole fraction close to 10.5%, quite similar in CO2 composition to the effluents of coal fired power
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plants (12%). Based on this, a specific energy consumption close to 150 kJth/mol of captured CO2 was

assumed [30]. This energy penalty is associated with steam production for the operation of the reboiler.

Heat for steam generation is obtained by the cooling down of the flue gas from the gas engine which

are thermally integrated as the heat source for the reboiler. Considering that the outlet temperature

for the flue gas downstream of the reboiler is around 46 ◦C, it was decided that installing an ORC

would not be feasible given the low temperature of the effluents. Rich CO2 stream obtained in the

top of the absorber must be compressed up to critical pressure and then pumped till approximately

110 bar for enabling geological storage [55]. Capital investment cost data for CO2 post combustion

units was downscaled (based on CO2 flow) from the cost figures presented by the European best

practice guidelines for assessment of CO2 capture technologies [55], while the quantification for the

capital cost for CO2 compression was undertaken using the information from quotes and correlation

present in online cost estimator tools [56]. O&M was also estimated by using the ratio between yearly

O&M and the capital investment cost for the post combustion CO2 capture unit reported in [55].

Two parameters were selected to compare the economic performance of the different plant sizes:

the specific investment cost Equation (6) and the levelized cost of electricity Equation (7). The specific

investment cost accounts for the capital investment cost divided by the net power generation capacity

of the plant [19]. The levelized cost of electricity generation (LCOE) is defined as the discounted

lifetime cost of ownership and use of a generation asset, converted into an equivalent unit of cost of

generation in pence/kWhe [57]. As displayed by Equation (7), the levelized cost of electricity was

estimated as the ratio of the total costs of the plant (including both capital and operating costs), to the

total amount of electricity expected to be generated over the plant’s lifetime. Subscript n and r in

Equation (7) make reference to a given year in plant operation and to the discount rate, respectively.

SIC =
∑ CIC

Poweroutput
(6)

LCOE =

∑n CIC +O&M
(1+r)n

∑n Poweroutput n

(1+r)n

(7)

3. Results

The main technical and economic performance parameters for the analyzed waste to energy

conversion processes are presented and discussed in this section as follows.

3.1. Technical Indicators

The specific power generation per kg of VS, estimated as the ratio between the power output of

the gas engine and the ORC and the total amount of volatile solids contained in the waste fed to the AD

reactor, is presented in Figure 2 for the different plant sizes under consideration in this article. Table 4

presents a detailed summary of the plant performance in term of energy outputs and fuel inputs.

The increase of electrical efficiency according to the thermal input (for non-CO2 capture cases) led

to a higher specific power generation in the gas engine. Efficiency of the ORC systems was also higher

when they were installed downstream of the larger gas engines. This is because larger heat-to-power

conversion machines tend to be more efficient as their power generation capacity increases. As can

be seen from Figure 2, the specific generation per kg of VS increased almost linearly with plant size

for the plant sizes investigated. The trend is not followed by the plant with installed CO2 capture

processes due to the associated energy penalty that leads to a lower power generation.
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Figure 2. Specific electricity generated per kg VS.

Table 4. Technical performance indicators for the different plant sizes and machinery.

Technical Performance Indicators Plant Size I Plant Size II Plant Size III Plant Size IV Centralized Centralized CCS

Gas Engine (GE)

Thermal input (kW) 178.4 356.7 713.5 1427.0 3810.5 3810.5

Model Filius 204 [58] Filius 206 [59]
Patruus 2G

KWK 370 [60]
Avus 500 [61] Avus 1500b [62] Avus 1500b [62]

GE: electrical efficiency (%) 36.1 38.2 38.8 40.5 42.2 42.2
Power output (kW) 64.4 136.3 276.8 577.9 1608.0 1608.0

Organic Rankine cycles (ORC)

Thermal input (kW) - 107.9 196.4 376.3 847.0 _
ORC: electrical efficiency (%) - 6.0 6.8 10.1 14.5 -

Power output (kW) - 6.5 13.4 38.0 122.8 -

Overall plant performance

Power generation gas engine and
ORC (kW)

64.4 142.8 290.2 615.9 1730.8 1608

Power consumption herd/s (kW) 1.9 3.8 7.4 14.8 46.1 46.1
Power consumption AD (kW) 2.0 4.0 8.0 16.0 42.5 42.5
Power CO2 compression (kW) - - - - - 106.8

Net power output (kW) 60.5 135.0 274.8 584.7 1642.2 1412.6

3.2. Economic Indicators

Figure 3 presents the specific investment cost per installed power for the different plant sizes.

Lower specific investment costs were obtained for larger AD-CHP plants. This is consequence of

the fact that that the increase of the capital investment cost follows a non-linear relationship with an

exponent lower than 1, while the electrical power output increases linearly with power system size.

It could be observed that the AD reactor makes the largest contribution to the specific capital cost,

followed by the specific capital investment cost for the gas engine and the ORC systems.

Figure 4 displays the levelized cost of electricity for the different plant sizes and the individual

cost elements that make up the total levelized costs. It is apparent that the Operation and Maintenance

costs make the larger contribution, followed by the other major elements of total capital costs. This is

because it was assumed that the operation and maintenance cost for the AD reaction system accounted

for 7% of the capital investment cost, based on [48,49]. Thus, for a life time of 20 years, the maintenance

cost is higher than the capital investment cost for the reactor. Negative cost contributions are presented

in the plot as a consequence of the payment for heat generation used for the supply of thermal energy

for the farms (RHI).
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Figure 3. Specific investment cost for the different plant sizes.

These results indicated that different feed-in tariffs should be required according to the scale of

the generators. In the UK, three feed-in tariff ranges exist for electricity generation using biogas from

AD. For those plants with an installed capacity that is lower than 250 kWe, the revenues per kWhe

is around 6.24 p/kWhe. For the plants in which the installed capacity is between 250 and 500 kWe,

the feed-in tariff is 5.90 p/kWhe and close to 2.24 p/kWhe for plants larger than 500 kWe [10]. Based

on this scale and the estimated power generation, it was concluded that Plant Sizes I, II, and III would

be under the first tariff group, Plant Size III suited the second tariff group, whilst Plant Size IV and

the centralized plants were part of the third tariff scheme. It must be noted however that these feed

in tariffs have been revised by the UK government since the beginning of this research. Significant

differences were reported for the feed-in tariff scheme in the case of plants with installed capacity from

500 to 500 kWe since the tariff was close to 5.76 p/kWhe until 31 March 2017.

 

Figure 4. Levelized cost of electricity for the different individual plant sizes.

Under the new tariff scheme, the feed in tariff was 173%, 217%, and 238% higher than the levelized

cost of electricity when analyzing Plant Sizes I, II, and III. For Plant Scale IV, under the revised tariff

scheme, the feed in tariff was only 13% higher than the estimated LCOE, however, until March 2017,

the feed in tariff would have been 299% higher than the LCOE.
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The economic performance of a centralized plant was also assessed in this article. The operation

of this kind of plant requires slurry feedstock from small farms. These farms could use the slurry

as feedstock for the deployment of their own AD plants or as fertilizer, and thus different scenarios

were considered to economically compensate for their waste. Economic compensations for the small

farms lead to operative costs for the centralized plants. Three possible compensation schemes for the

small farms were analyzed in this article, being named Centralized Scheme 1, Centralized Scheme 2,

and Centralized Scheme 3.

In Centralized Scheme 1, it was assumed that the centralized plants offered free generation fee

electricity and 100% fuel subsidy for the small farms. In Centralized Scheme 2, it was considered

that the large plant provided free generation fee electricity and covered 50% of the fuel costs of the

smaller farm for the supply of the slurry. In Centralized Scheme 3, the large plant only provided free

generation fee electricity to the smaller farms supplying the slurry. Figure 5 shows the levelized cost of

electricity for the centralized plant options.

It can be appreciated that the main cost difference between Centralized Schemes 1, 2, and 3,

is associated with the level of fuel subsidy to the individual farms supplying the slurry. Considering

the tariff scheme valid since April 2017, the feed-in tariff for Centralized I plant was 25.7% larger than

its LCOE, 28.3% higher than the LCOE for Centralized II, and 31.0% higher than the corresponding

LCOE for Centralized III. Using the scheme valid until April 2017, the feed in tariff would have been

290% higher than the LCOE for Centralized I, 297% higher for Centralized II and 303% larger for

Centralized III.

 

Figure 5. Levelized cost of electricity for the different centralized schemes.

For the Centralized option with CCS, a larger contribution of the capital investment costs for the

AD reactor and for the gas engine can be observed in comparison with the other centralized pants

under study. This is due to the fact that less electricity is generated (lower power generation output

leads to a higher levelized cost of electricity for the same capital investment cost). Under the current

scheme, the feed-in tariff is approximately 5% larger than the levelized cost for this plant configuration,

whilst the feed-in tariff valid until 31 March 2017 was 276% higher than the levelized cost of electricity.

The comparison between the levelized cost and the feed-in tariff could be analyzed both from the

generator and state prospective. From the generator prospective, the feed-in tariff should be designed

so that the margin of profits enables a quick payback time, thus it should lead to a larger ratio between

the feed in tariff and the levelized cost of electricity. From a state-based prospective, high feed-in tariffs

for small scale plants would involve a larger payment to obtain the same power output than if a large
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scale plant or an AD centralized plant were considered. Consequently, a good solution would be to

consider schemes like Centralized 1, 2, and 3, in which small farms supplying slurry can get economic

compensation and power generation takes place in more efficient plants.

4. Discussions

The purpose of this section is to undertake a critical analysis of the possible sources of uncertainties

associated with the assumptions and models employed for the techno-economic assessment of the AD

CHP plants. This section is also intended to analyze how the results in here presented for the UK could

be generalized to other national contexts, and to give suggestions for the design of incentive policy.

In this article, the use of dairy cow slurry as feedstock for AD plants was considered. The total

solid content ranges from 2 to 11% based on the information presented in literature [35,36]. In this

work, a total content of 10% was assumed, however this wide variability may lead to different biogas

yields per mass unit of slurry and consequently to different power outputs.

Biogas yield was quantified using the Boyle–Buswell equation (stoichiometric conversion) and

considering that the total content of volatile solid could be biologically degraded, this modelling

assumption and the employed methodology could have caused an overestimation of the produced

biogas in the AD plant.

Capital cost estimations were undertaken using data from existing plants and vendors, thus they

can be considered to be representative of the technologies under investigation. The capital investment

cost for the anaerobic digester was quantified using published correlations based on quotes for existing

plants in the UK. Gas engine costs were evaluated using cost correlations for biogas fueled engines on

the range of power outputs for the plants under study. Costs for ORC cycles were accounted using

data from suppliers. Digestate storage cost figures were based on information provided by studies

undertaken by DEFRA in which values per stored cubic meter of slurry/digester were presented,

these values are purely technology dependent, being constant for different capacities. Data from

currently operating AD-CHP plants was used for the estimation of the capital cost of connection to

grid infrastructure, the reported specific investment cost (£/kWe) was considered to be constant for

all the plant sizes. Contingency and engineering work was also accounted for, assuming 3% for the

different scale sizes. Digestate storage, connection to the grid, and contingency and engineering work

are the costs that may exhibit the largest uncertainty, however they just represent between 7 to 13% of

the levelized cost of electricity for these plants. It must be noted that cost for general infrastructure

for the plants has not been included as part of the economic assessment, however its contribution is

expected not to change the observed cost trends that are mainly driven by the AD reactor and the

power generation train.

Results presented in this article are valid for the UK context, in terms of feedstock, costs,

and comparison with currently paid incentives. Feedstock composition is a function of the dairy

cow feeding system that can be country or region specific. National context mainly influences the

operating and maintenance costs, especially when assessing centralized plants for which livestock

territorial density and farm size may differ.

Despite differences underlined in the previous paragraph, trends in terms of comparative

assessment of individual plant sizes are expected to be similar to the ones presented in this work,

when the same methodology was employed for the techno-economic performance of AD-CHP plants.

This is because the influence of equipment size on capital investment cost is likely to follow regressions

with an exponent lower than 1 (based on data from quotes or process and cost simulations), however,

increases in installed capacity lead to linear increases of the power output and thus lower investment

and levelized costs. Feed-in tariffs in other countries such as Germany [63] are higher for small scale

plants, thus confirming that specific investment costs and levelized costs for smaller plants are higher

than for larger plants since the incentive policy is designed to obtain a fixed return rate and a short

payback time for the different scales.
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In the case of the comparative assessment of centralized plants and individual plants in relatively

large scale farms, the generalization of the outcomes of this work to other national contexts may be not

so straightforward. Significant differences in terms of economic parameters between the centralized

plants and Plant Size 1, 2, and 3 could be observed, however it is difficult a priori to define what may

happen when comparing with Plant Size 4. This is because it will depend on the difference of power

generation between the two sizes, fuel prices, and distance for slurry transport.

As stated, the incorporation of CO2 capture in AD plants enables power generation with negative

CO2 emissions, however it leads to an energy penalty associated with the energy duty for the

separation unit. To our understanding, there are no previous works assessing the incorporation

of post-combustion solvent based units in AD electricity plants, and thus validation of the results

in terms of economic assessment is not possible. Capital investment costs were quantified using

values from databases for process equipment and downscaling from technical reports for fossil fuel

plants, however, considering the small size of the units, the results for the cost assessment could

exhibit considerable uncertainties. Independently of the national context and absolute cost figures,

the plant with installed CO2 capture presents a higher levelized cost of electricity in comparison with

the Centralized schemes. Thus, similar trends to the ones shown in this paper for the UK context are

expected to be observed in other national contexts.

The techno-economic performance for the different plant scales discussed in this paper enables

us to understand the need of a size-based feed-in tariff scheme. AD power plants in small plants

exhibit higher levelized costs of electricity, thus requiring a larger feed-in tariff to make the technology

deployment profitable. From a state budget perspective, the development of AD power plants in larger

scales farms would enable one to obtain the same power output with a lower economic compensation.

The centralized plant options presented in this work can then be considered a trade-off solution in

terms of employing higher efficiency power generation devices, lower levelized cost of electricity,

use of waste from small farms, and economic valorization of this waste. Considering the scale of the

centralized plants, the incorporation of CO2 capture units could be more feasible than in small plants,

allowing negative CO2 emission power plants. The results presented in this paper are expected to be a

guide for stakeholders interested in the deployment of AD plants and for governments in their design

of incentive policy.

5. Conclusions

In this study, the techno-economic feasibility of using biogas for electricity production was

investigated for different AD plant sizes. Reciprocating gas engines in combination with Organic

Rankine Cycle systems for electrical power generation were considered for different biogas thermal

input ranges. The following conclusions can be drawn:

• For the larger scale plants, a larger electrical efficiency was observed which led to higher power

production per mass of bio-degradable waste and a lower levelized cost of electricity for AD

power plants.

• The combination of the slurry from different farms for AD and power generation in centralized,

large capacity systems enables more efficient heat and power generation that increases the

economic viability of these systems.

• Analysis of the techno-economic feasibility of the introduction of CO2 capture and storage

processes in AD-based electricity generation showed that it is possible to achieve negative CO2

emission power production with the potential for economic benefits helped by incentives currently

on offer in the UK.

Acknowledgments: The authors would like to acknowledge the funding received from the Research Councils UK
(RCUK) and particularly the Engineering and Physical Sciences Research Council (EPSRC) under Grant Number:
EP/K011820/1 (Centre for Sustainable Energy Use in Food Chains-CSEF) and EP/M007359/1 (Recovery and
re-use of energy, water and nutrients from waste in the food chain-Redivivus). All data used in the study and



Energies 2017, 10, 1396 13 of 16

results are provided in full in the results section of this paper. Any additional data or information can be obtained
from the authors.

Author Contributions: Gabriel D. Oreggioni, Baboo Lesh Gowreesunker and Savvas Tassou conceived and
designed the research question and effectuated and verified the technical and economic estimations for the
different sized power plants. Gabriel D. Oreggioni was the researcher on charge of the paper writing; having
received feedback from the different co-authors. Giuseppe Bianchi provided technical guidance and cost data
for the assessment of the ORC cycles incorporated in the plants. Matthew Reilly, Marie E. Kirby, Trisha A. Toop
and Mike K. Theodorou contributed to this manuscript with their know how in dairy farms, slurry storage
technologies and practical application of AD processes; by verifying and suggesting input data and by revising
the article.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Nomenclature

Abbreviation Meaning

AD Anaerobic Digestion.

ADRV Anaerobic Digester (reactor volume)

CEPCI Chemical Engineering Plant Cost Index

CIC Capital investment cost (£/kWe)

CCS Carbon capture and storage

CON GRID Connection to the grid

CONT Contingency and engineering costs (£)

DEFRA UK Department of Environment, Food and Rural Affairs

FUEL TRANSP Fuel transport

GSE Gas engine

hp Horse power

HDPE High-density polyethylene

L Litter

MEA Mono-ethanol amine

LCOE Levelized cost of electricity(£/kWh)

O&M Operation and maintenance costs (£/year)

ORC Organic Rankine cycle

p Pence

Power (kWe)GSE Power output gas engine (kWe)

Power (kWe)ORC Power output organic Rankine cycle(kWe)

PSA Pressure swing adsorption

r Discount/interest rate for the estimation of levelized cost of electricity (Equation (7))

RHI Renewable heat incentive

SIC Specific investment cost (£/kWe)

SLR.STG Slurry storage

SLR.TRANSP. Slurry transport

VS Volatile solid content in the slurry

UK United Kingdom

Subscripts

biogas Biogas

e Refers to electricity

h Hour

input Subscript to refer to thermal inputs for electricity generation devices

n Subscript to refer to a given year in power plant operation

RV Reactor Volume

SLR Slurry

th Thermal (in general thermal input)
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