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Abstract. We perform a systematic comparison between the results obtained

by solving fully self-consistently the Hartree-Fock-Bogoliubov equations, and those

obtained using the semi-classical Extended Thomas-Fermi method, for various Wigner-

Seitz cells within the inner crust of a neutron star. The lack of pairing correlations in

the semi-classical approach leads to a large discrepancy between the two approaches.

This discrepancy is well beyond the error of the quantum-mechanical calculation, and

is related to spurious shell effects in the neutron gas.

1. Introduction

The recent detection of two neutron star (NS) mergers was made using the innovative

measurements of gravitational [1] and electromagnetic [2] waves. The combination of

the two techniques opens up a new era for observing these interesting astrophysical

objects, and provides a new set of tools to better understand the physical properties of

a NS [3, 4].

The key ingredient to describe the physics of a NS is the Equation of State

(EOS), i.e. the relation between the pressure and the matter density [5]. Given

the strong pressure gradient, the matter within the star is arranged in layers with

different characteristics. Going from the outside (low-density) to the centre of the

star (high density), we find two main regions: the crust and the core. The matter

in the crust consists of neutron rich nuclei surrounded by a free electron gas (outer

crust) and by a free neutron gas (inner crust). At baryonic densities of ρB ≈ 0.09

fm−3 [6, 7, 8], nucleons no longer form a cluster, but behave as a Fermi liquid. This

region of the star is the core; this extends over a large density range, reaching values

that are typically 3 to 4 times the standard saturation density found within nuclei.

Consequently, the composition of the core is not known in detail, and several models

have been suggested [9, 10, 11, 12, 13, 14, 15, 16].

To build an universal EOS, all the different layers of the NS should be described

coherently, without matching different models for the different regions of the star. This
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matching problem has been discussed in [17], and leads to additional uncertainties in

predictions of the NS maximum radius.

To avoid such a shortcoming, several groups have investigated a unified EOS, i.e.

using the same model to describe all layers of the star [18, 14, 19, 20]. The major

difficulty in achieving this goal is obtaining a correct description of the inner crust

region [3]. As illustrated in the pioneering work of Negele and Vautherin [21], this region

of the crust is composed of very neutron-rich nuclei, arranged in a crystalline structure

and surrounded by a gas of superfluid neutrons and ultrarelativistc electrons [22].

The tool of choice to describe this region is Nuclear Energy Density Functional

theory [23]. By solving the Hartree-Fock-Bogoliubov (HFB) equations within a Wigner-

Seitz (WS) cell [24], one can obtain the detailed structure of this region as a function

of the baryonic density [25, 26, 27]. This procedure may be very time consuming and

numerically inaccurate [28], due to the particular choice of how to treat the neutron gas

states. To avoid this issue, several groups have opted for a simpler treatment of the

system using the semi-classical Thomas-Fermi (TF) approximation [29]. In the present

article, we perform a systematic comparison of the extended TF and Hartree-Fock-

Bogoliubov methods for the inner crust of a NS. Such a comparison has been routinely

performed for finite nuclei, but never for the inner crust of a NS while controlling for

the different aspects of the calculations.

The article is organised as follows: in Section2, we present the HFB equations,

while in Sec.3 we introduce the ETF approximation. In Sec.4, we illustrate our findings

and finally we provide our conclusions in Sec.5.

2. Hartree-Fock-Bogoliubov

A simple way to describe the properties of a nucleus embedded in a neutron gas is

to solve the Hartree-Fock-Bogoliubov equations together with an effective interaction.

They read [29]

∑

n′

(hq
n′nlj − εF,q)U

i,q
n′lj +

∑

n′
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nn′ljV

i,q
n′lj = E
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iljU
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q
iljV
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nlj . (1)

εF,q is the Fermi energy and q stands for neutrons (n) and protons (p). In the

present work, we assume that the system is spherically symmetric, so we used the

standard notation nlj for the single-particle states with radial quantum number n,

orbital angular momentum l and total angular momentum j. U
i,q
nlj and V

i,q
nlj are the

Bogoliubov amplitudes for the i-th quasiparticle of energy E
q
ilj. We refer to Refs [22, 30]

for a detailed discussion on the adopted numerical techniques used to solve these

equations. An important aspect of our method is that we discretise the continuum

states, by setting Dirichlet-Neumann mixed boundary conditions at the edge of the WS

cell. There are two cases to consider. The first is where we impose that even-parity wave
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functions vanish at edge of the box RB and that the first derivatives of odd-parity wave

functions vanish at RB; we call this Boundary Conditions Even (BCE). The second case

is where the two parity states are treated in the opposite way, which we call Boundary

Conditions Odd (BCO). Other boundary conditions have been used in the literature to

properly treat continuum states [24, 31, 32]. For simplicity, we limit ourselves to the

most common implementation of boundary conditions, which have been used previously

to perform systematic calculations of inner crust properties [27, 28, 33, 34] In the limit

of vanishing pairing, Eqs. 1 reduce to the simple Hartree-Fock (HF) case.

For the particle-hole channel, we use the SLy4 functional [35], while for the pairing

sector we adopt a simple density dependent delta interaction

vpair(r1, r2) = V0



1− η





ρB
(

r1+r2

2

)

ρ0





α

 δ(r1 − r2); , (2)

The interaction strength is fixed to V0 = −430 MeVfm3; while the other parameters take

the values η = 0.7, α = 0.45 and ρ0 = 0.16 fm−3. To avoid the ultraviolet divergence

related to the zero-range nature of the pairing interaction [36], we adopt a cut-off of 60

MeV in the quasi-particle spectrum. See Ref. [22] for more details.

3. Extended Thomas Fermi

Within the Skyrme model [37], it is possible to write the total energy as an energy

density functional

E =
∫

E(ρq(r), τq(r), ~Jq(r))d
3r , (3)

which depends on the local matter densities ρq(r), the kinetic energy densities τq(r), and

the spin current densities ~Jq(r). Other densities may also occur, but in the present article

we consider only the time-even sector [38] of a standard Skyrme functional [39, 40].

Within the HFB scheme, the densities are calculated using the quasi-particle wave

functions [41], while in the semi-classical approach they are parameterised with modified

Fermi-Dirac functions

ρq(r) =
ρ
q
0

[

1 + exp
(

r−R
q

0

aq

)]γq + ρqgas . (4)

The parameters R
q
0, aq, ρ

q
0, γq, ρ

q
gas are fitted to reproduce the quantal densities, under

the constraint of keeping the correct numbers of neutrons and protons. The parameter

ρqgas is added to the standard form [42] to account for the presence of a neutron Fermi

gas in the cell. Using the Wigner-Kirkwood (WK) expansion [29], one gets expressions

for the kinetic and spin current densities. For brevity, we do not give the expressions

here, but we refer to Ref. [42] where all equations are explicitly written in great detail.

The WK expansion can be truncated at a given order; here we have decided to consider
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terms only up to second order. The terms from this expansion lead to corrections to

the kinetic and spin current densities. To distinguish from a simple Thomas Fermi

approach, it takes the name of extended Thomas Fermi (ETF) [43, 44] in the literature.
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Figure 1. (Colors online) Neutron densities obtained using a full HF calculation

(dashed) and the ETF method (solid) for 176Sn. See text for details.

In Fig. 1, we compare the HF and semi-classical neutron densities of 176Sn. The

parameters of Eq. 4 are fitted on the HF density ρHF
q , while the kinetic τETF

q and

spin-current JETF
q densities have been derived using the ETF method. We observe that

the ETF method reproduces the main features of the HF results very well, except for

the oscillating behavior in the interior, which is related to the underlying shell structure.

In Fig. 2, we perform the same comparison, but now for two fictitious WS cells of size

RB = 60 fm, with Z = 50 protons, and baryonic densities of ρB = 0.012 fm−3 and

ρB = 0.024 fm−3 respectively. These two values roughly correspond to the middle of the

crust and to the end point just before the transition into uniform matter. We observe

that, for these denser systems, the ETF method is approximating the densities even

better, compared with the results provided in Fig. 1.

The higher-order terms in the ETF method comprise linear combinations of

derivatives of the density given in Eq. 4 and of the effective mass. In Ref. [42], it was

shown that they improve very little the agreement between the HF and semi-classical

densities in finite nuclei. For the sake of simplicity we exclude them in the present work.
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Figure 2. (Colors online) Neutron densities obtained using full HF calculations

(dashed) and using the ETF method (solid), for the WS cell with Z=50, and ρb = 0.012

fm−3 (left panel) and ρb = 0.024 fm−3 (right panel). See text for details.

4. Inner crust

To benchmark the accuracy of the two methods, we first revise the quality of the present

HFB calculations. Following the procedure illustrated in Refs. [25, 45], we calculate the

energy per particle of a system of neutrons without pairing at a given density, by solving

Eqs. 1 in a spherical box of various sizes. In the limit of a very large box radius, these

results should reproduce the analytical values of the energy per neutron EPNM

N
obtained

by solving Hartree-Fock equations in infinite pure neutron matter (PNM). In Fig. 3, we

show the evolution of the energy difference

δe =
∣

∣

∣

∣

EHF

N
−

EPNM

N

∣

∣

∣

∣

, (5)

as a function of the size of the box RB. We have performed two sets of calculations

for the two sets of boundary conditions. As shown in Ref. [25], there is a weak density

dependence on δe for a fixed value of RB. Since we are not interested in estimating a

very precise error, we take the averages, not showing explicitly this density dependence,

to illustrate the error 〈δe〉 as a function of the box size in the form of bands. The solid

line in the middle of each band is to guide the eye and represents an average value.

From Fig. 3, we can read off the error related to the continuum discretisation carried

out in the HF calculations. For RB = 60 fm we have 〈δe〉 ≈ 20 keV.

Having estimated the HF error, we can proceed to a more detailed comparison

between ETF and HF(B). To this purpose, we run a series of HF calculations (i.e. with

no pairing correlations), from the drip line nucleus 176Sn up to the limit of existence

for the crust, keeping the number of protons fixed. These WS cells all have the same

size RB = 60 fm and proton number Z = 50, as in Ref [46]. At present, we are not
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Figure 3. (Colors online) Error bar as a function of the size of the box used to perform

HF calculations and for two sets of boundary conditions. See text for details.

seeking a realistic description of the inner crust, so we need not consider these cells at

β equilibrium [21]. For each WS cell, we also carry out an ETF calculation using the

HF densities as an input. We calculate the total energy of the system using Eq. 3. To

take into account the physical shell effects present in the cluster, we use the Strutinsky

integral correction for protons [43, 47]. We are interested in the discrepancy between

the two methods: how different is the calculated energy per particle from the ETF and

HF methods, for the relevant baryonic densities?

In Fig. 4, we show the evolution of the energy per particle difference between the

ETF and HF methods, for different box sizes. We observe that, for very low-density

WS cells, the discrepancy between the two methods can be as high as ≈ 100 keV per

particle. Above densities of ρB ≈ 0.002 fm−3 it drops quickly and approaches a near-

constant value at high densities. However, this constant discrepancy at large densities

is dependent on the box size: for RB = 50 fm the difference is ≈ 30 keV, for RB = 60

fm it is ≈ 20keV, and for a very large box of RB = 80 fm the error falls to ≈ 15 keV.

These values are compatible with the errors of the HF method as extracted from Fig. 3,

showing that the two methods are in good agreement (within their error bars) at these

densities. Importantly, this dependency of the discrepancy on the box size demonstrates

that the discrepancy arises from a poor treatment of the neutron gas states in the HF

method.

In Fig. 5, we show again the difference between the energy per particle obtained

with the ETF method as detailed before and that obtained with the fully self-consistent

HF calculation, as a function of the baryonic density of the system (solid black line,

labelled ‘ETF-HF’, the same as the one labelled ‘RB = 60 fm’ in Fig. 4). On the
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Figure 4. (Colors online) Energy per particle difference as a function of the baryonic

density of the system for the EFT-HF case and three different box sizes: RB = 50 fm

(dotted line), RB = 60 fm (solid line) and RB = 80 fm (dash-dotted line). See text for

details.

same figure, we now show the difference between the ETF energy per particle and that

obtained with a full HFB calculation using the pairing interaction defined in Eq. 2. In

this case the energy difference follows a different trend: it starts decreasing at very low

density, but when pairing switches on it starts increasing again, reaching a maximum

of ≈220 keV per particle. At higher densities, when the pairing starts decreasing, the

energy difference starts decreasing again. Except at very low densities, the discrepancy

between the two methods is one order of magnitude worse than in the non-superfluid

case. This clearly shows that neglecting pairing correlations for neutrons with ETF

leads to a much larger error than the one related to discretisation effects and the one

based on how we treat continuum states in the neutron gas with HFB.

5. Conclusions

In this article, we have presented our application of the Extended Thomas Fermi method.

The ETF method is a valuable tool to perform systematic calculations of properties of

WS cells within the inner crust of a NS.

We have built a series of WS cells with a fixed number of protons Z = 50 and

performed a systematic comparison between the Hartree-Fock and ETF results. We

have seen that at very low densities (ρB ≤ 0.002 fm−3) ETF has a remarkably large

error of the order ≈ 100 − 150 keV per particle. At larger densities the discrepancy

between the two calculations decreases and becomes compatible with the estimated

error bar on Hartree-Fock calculations.
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Figure 5. (Colors online) Energy per particle difference, as a function of the baryonic

density of the system, for the EFT-HF case (solid line) and ETF-HFB (dashed). See

text for details.

We have also compared the ETF results with full Hartree-Fock-Bogoliubov

calculations: most ETF calculations simply neglect the pairing energy contribution

from the neutrons. We have shown here that such an approximation leads to systematic

error of the order of ≈ 200 keV per particle. This is one order of magnitude larger than

the standard HFB error, which comes from the artificial discretisation of continuum

states due to particular choice of boundary conditions [25, 48].

From our analysis we thus conclude that the ETF method can be considered as a

valuable tool only if pairing correlations are also included for neutrons [49, 50]. Given

previous analysis of the errors incurred from pairing approximations in a WS cell (see

Fig. 2 in Ref. [48]), we expect that the difference in energy per particle to drop to

≈ 20−30 keV per particle. By combining the low computational cost of ETF calculations

with modern statistical technique of Gaussian Process Emulation (GPE) [51], we plan

to perform a full analysis of the equation of state of the NS inner crust, including

temperature effects.
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