

This is a repository copy of *Role of Bacterial Cell Surface Sulfhydryl Sites in Cadmium Detoxification by Pseudomonas putida*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/156572/

Version: Accepted Version

Article:

Yu, Q, Mishra, B and Fein, JB (2020) Role of Bacterial Cell Surface Sulfhydryl Sites in Cadmium Detoxification by Pseudomonas putida. Journal of Hazardous Materials, 391. 122209. ISSN 0304-3894

https://doi.org/10.1016/j.jhazmat.2020.122209

© 2020, published by Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Role of Bacterial Cell Surface Sulfhydryl Sites in Cadmium Detoxification by *Pseudomonas putida*

Qiang Yu^{1,*}, Bhoopesh Mishra², Jeremy B. Fein¹

¹Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States

² School of Chemical and Process Engineering, University of Leeds, Leeds LS29JT, United Kingdom

A revised manuscript submitted to Journal of Hazardous Materials

* Author for correspondence.

Tel: (574) 631-4534; Fax: (574) 631-9236; Email: qyu@nd.ed

1				
2	Highlights			
3 • 4 • 5 • 6 • 7	<i>P. putida</i> detoxifies aqueous Cd using cell surface sulfhydryl sites.Cell surface sulfhydryl site concentrations vary as a function of growth time.Cell growth with Cd positively correlates to sulfhydryl site concentration.Cell growth with Cd is independent of the non-sulfhydryl site concentration.			
$ \begin{array}{r} 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ \end{array} $				

Abstract

Understanding bacterial metal detoxification systems is crucial for determining the environmental impacts of metal pollution and for developing advanced bioremediation and water disinfection strategies. Here, we explore the role of cell surface sulfhydryl sites in bacterial detoxification of Cd, using *Pseudomonas putida* with surface sulfhydryl sites mostly on its EPS molecules as a model organism. Our results show that 5 and 20 ppm Cd in LB growth medium affects the lag phase of *P. putida*, but not the overall extent of cell growth at stationary phase, indicating that *P*. *putida* can detoxify Cd at these concentrations. EXAFS analysis of Cd bound to biomass from the different growth stages indicates that Cd binds to both sulfhydryl and non-sulfhydryl sites, but that the importance of Cd-sulfhydryl binding increases from early exponential to stationary phase. Cell growth is positively correlated to the measured sulfhydryl concentration on different biomass samples, but is independent of the measured non-sulfhydryl binding site concentration on the cell surfaces. Taken together, our results demonstrate that the sulfhydryl binding sites on EPS molecules can play an important role in binding and detoxifying toxic metals, significantly decreasing the bioavailability of the metal by sequestering it away from the bacterial cells.

86 **1. Introduction**

87 The presence of toxic metals in the environment, including both highly toxic metals (e.g., Hg 88 and Cd) and excess essential metals (e.g., Zn and Cu), can pose a severe threat to ecosystems. 89 Microorganisms, such as bacteria, can be sensitive to relatively low concentrations of toxic metals, 90 and they have developed multiple defense strategies to protect cells from toxic metals, such as cell 91 surface metal sequestration, metal efflux systems, intracellular metal sequestration, and metal 92 redox transformation (Gadd and Griffiths, 1978; Nies, 1999; Chandrangsu et al., 2017; Shou et al., 93 2018). Understanding the metal detoxification systems of bacteria is crucial in order to determine 94 the environmental impacts of metal pollution on ecosystems and to develop appropriate strategies 95 for a variety of applications, such as bioremediation (Shamim, 2018; Liu et al., 2019), water 96 disinfection (Li et al., 2008), antimicrobial design (Turner, 2017), and biosynthesis of 97 nanomaterials (Wadhwani et al., 2016).

98 In most cases, metals must enter bacterial cells to cause toxic effects (Nies, 1999). Therefore, 99 blocking toxic metals before they cross cell membranes, e.g., immobilizing metals within the cell 100 envelope or on extracellular polymeric substances (EPS) (Gadd and Griffiths, 1978; Shou et al., 101 2018) becomes an effective approach for lowering the bioavailability of toxic metals. Bacterial 102 cell envelopes and cell-bound EPS molecules (which together we refer to here as cell surfaces) can 103 adsorb a wide range of metals due to the presence of abundant functional groups (metal binding 104 sites) on molecules within cell surfaces, such as carboxyl, phosphoryl and sulfhydryl sites 105 (Beveridge and Murray, 1976; Liu and Fang, 2002; Fein et al., 2019). However, the toxicity and 106 bioavailability of the adsorbed metals on bacterial cell surfaces depends at least in part on the type 107 and concentration of the bacterial surface complexes that form (Flynn et al., 2014; Sheng and Fein, 108 2014). These results suggest that the type and location of binding sites that interact with aqueous 109 metals likely play an important role in regulating the toxicity of the adsorbed metals. To date, the 110 role of specific metal binding sites (e.g., carboxyl, phosphoryl and sulfhydryl sites) in the 111 detoxification of metals by bacteria has not been studied.

112 Compared to carboxyl and phosphoryl sites, sulfhydryl sites on bacterial cell surfaces are 113 generally less abundant (Yu et al., 2014), but they form much stronger bonds with chalcophile 114 metals such as Hg, Cd, Zn, Cu and Au (Yu and Fein, 2015; Nell and Fein, 2017; Yu and Fein, 115 2017b), resulting in the dominance of sulfhydryl sites in the adsorption of these metals onto 116 bacterial cells under low metal loading conditions (Guine et al., 2006; Mishra et al., 2010; 117 Pokrovsky et al., 2012; Yu and Fein, 2015). In addition, the concentration of sulfhydryl sites on 118 bacterial cell surfaces can increase significantly as a function of growth conditions (Yu and Fein, 119 2017a), and hence sulfhydryl sites can contribute significantly to the adsorption of Cd, Hg and Au 120 onto bacterial cells even under high metal loadings (Mishra et al., 2017; Yu and Fein, 2017b). 121 Therefore, we focus our study on sulfhydryl sites, and hypothesize that they play a crucial role in 122 sequestering toxic chalcophile metals on EPS molecules and away from the cell surface in order 123 to detoxify the metals. *Pseudomonas putida*, a bacterial species that can be found in many toxic 124 metal contaminated environments and exhibits excellent tolerance to chalcophile metals (Higham 125 et al., 1986; Chen et al., 2006; Hu and Zhao, 2007), was used as a model organism in our 126 experiments because under the growth conditions of our experiments it produces EPS molecules 127 that contain abundant sulfhydryl binding sites with much lower sulfhydryl site concentrations on 128 the cell walls. Therefore, *P. putida* is a prime candidate to exhibit EPS-dominated sulfhydryl 129 binding of metals and hence for use as a probe of the bacterial strategy of sequestering toxic metals 130 through EPS binding. Our results indicate that Cd adsorption onto EPS sulfhydryl sites represents 131 a strategy adopted by *P. putida* and perhaps other similar bacterial species for binding and

detoxifying Cd, and we demonstrate that the bioavailability, and hence the toxicity of Cd is
inversely related to the concentration of sulfhydryl sites within the cell-produced EPS molecules.

134

135 **2. Materials and Methods**

136 2.1 Cd Toxicity Tests

137 Two sets of toxicity tests were conducted using *Pseudomonas putida* (ATCC#: 33015) as 138 the model organism, and aqueous Cd as the toxic metal. The first set of experiments was used to 139 test the responses and detoxification ability of *P. putida* cells to low concentrations of toxic Cd. 140 Bacteria were first cultured aerobically in 1 mL of Cd-free Lysogeny Broth (LB10) medium at 32 141 °C for 24 h, and were then transferred to 50 mL of LB10 medium containing 0, 5, or 20 ppm Cd, 142 and allowed to grow at the same temperature for 72 h. The LB10 medium consists of 10 g/L 143 tryptone, 5 g/L yeast extract and 10 g/L NaCl, and the Cd concentrations of the growth media were 144 attained by adding appropriate volumes of a 2 g/L Cd stock solution which was prepared by 145 dissolving $Cd(NO_3)_2$ in ultrapure water, and which was then sterilized by passing it through a 0.2 146 µm nylon filter membrane. Because of the high concentration of Cl⁻ in the medium, the Cd in the 147 LB10 medium is present primarily as relatively non-toxic aqueous Cd-chloride complexes 148 (Deheyn et al., 2004; Yu and Fein, 2015), and only a small percentage of the Cd is present in the 149 toxic form as free Cd^{2+} (Sunda et al., 1978). The optical density of the cell suspensions at 600 nm 150 (OD₆₀₀) was measured at different time intervals on a Cary 300 UV-Vis spectrophotometer and 151 the OD₆₀₀ value of the LB10 medium was used as a background value to calculate the increase in 152 OD₆₀₀ caused by the growth of *P. putida*. Abiotic control experiments using LB10 medium only 153 were also conducted under the same conditions in order to monitor if contamination occurs, and 154 the measured OD_{600} values in these controls did not change within 72 h.

155 The second set of experiments was conducted to test the effects of cell surface sulfhydryl 156 sites on Cd toxicity towards P. putida cells. In order to yield biomass with different concentrations 157 of cell surface sulfhydryl sites, we used starter cells that were pre-cultured in Cd-free LB10 158 medium for 5, 6, 12, 24, or 72 h. The cell surface sulfhydryl site concentration for each biomass 159 sample was quantified using a potentiometric titration approach as described in Section 2.3. In 160 these toxicity experiments, we used a modified Lysogeny Broth medium (LB0.5) that consisted of 161 a similar formula to the LB10 medium except the NaCl content was reduced to 0.5 g/L in order to 162 decrease the prevalence of relatively non-toxic Cd-chloride aqueous complexes in the experimental solutions and to increase the importance of Cd²⁺, which is toxic to the bacteria. The 163 164 experiments involved the addition of 0, 2, 5, 10, or 20 ppm Cd to the LB0.5 medium. While the 165 presence of tryptone and yeast extract makes the calculation of the Cd speciation in LB media 166 difficult, we calculated the speciation of Cd in 10 g/L and 0.5 g/L NaCl solutions using FITEQL 167 2.0 (Westall, 1982). At any Cd concentration used in this study (2, 5, 10 or 20 ppm), we found that free Cd²⁺ accounts for 11% of the total aqueous Cd in 10 g/L NaCl and 64% of the total aqueous 168 169 Cd in 0.5 g/L NaCl. These calculations suggest that the reduction of the NaCl concentration from 10 g/L to 0.5 g/L significantly increases the concentration of free Cd²⁺ in the LB medium. In order 170 171 to compare the toxicity response of the cells with and without sulfhydryl sites blocked for Cd 172 binding, additional experiments (referred to below as '24h-Q' experiments) were conducted in the 173 presence of 20 ppm monobromo(trimethylammonio)-bimane bromide (qBBr; from Toronto 174 Research Chemical) and 0 or 2 ppm Cd using starter cells that were pre-cultured for 24 h in LB10 175 medium. qBBr selectively and irreversibly reacts with sulfhydryl sites on bacterial cell surfaces, 176 thus blocking them for Cd binding (Yu et al., 2014; Yu and Fein, 2015; Yu and Fein, 2017b). 177 Besides these changes, the conditions for the second set of experiments were the same as those

178 used in the first set of toxicity experiments previously described. Each of these toxicity 179 experiments was conducted in triplicate and the Student's t-test was applied to the results to test 180 for statistical significance.

181

182 2.2 Extended X-ray absorption fine structure (EXAFS) measurements

183 We used EXAFS measurements of the binding environment of Cd as a function of growth 184 stage in order to determine whether a relationship exists between the binding environment and the 185 measured toxicity response. Cells for the EXAFS experiments were grown in LB10 medium in the 186 presence of 20 ppm Cd, and were harvested at early exponential, early stationary and stationary 187 phases by centrifugation at $10,970 \times g$ for 5 min. In order to avoid Cd desorption from the biomass, 188 EXAFS measurements were conducted without cell washing. Cd K edge (26,711 eV) EXAFS was 189 measured in fluorescence mode using the third harmonic of the undulator at sector 10-ID beamline 190 of the Advanced Photon Source at Argonne National Laboratory (Segre et al., 2000). The energy 191 of the incident X-rays was scanned using a Si(111) reflection plane of a cryogenically-cooled 192 double-crystal monochromator. A Pt-coated mirror was used to remove X-rays of higher harmonic 193 energies. The incident ionization chamber was filled with 100% N2 gas. The transmitted and 194 reference ion chambers were filled with 100% Ar gas. The fluorescence detector in the Stern-195 Heald geometry (Stern and Heald, 1983) was filled with Kr gas, and a Pd filter of six absorption 196 lengths was used to reduce the background signal. Bacterial pellets were loaded into a slotted 197 Plexiglas holder, covered with Kapton film, and transported immediately to the beamline for 198 EXAFS measurements. All of the EXAFS measurements were performed within a day of the 199 sample preparation, and the samples were refrigerated prior to the EXAFS measurements. Quick scans were used with signal sampling every 0.5 eV and with an integration time of 0.1 second perpoint.

202 The X-ray absorption near edge structure (XANES) for each sample was monitored for 203 possible beam induced chemistry (and none was found), and the X-ray beam was moved to a fresh 204 spot every 5 scans in order to further reduce the possibility of radiation-induced changes and to 205 account for sample inhomogeneity. A total of 30-50 consecutive scans from each sample were 206 collected and averaged, with Cd foil data collected simultaneously in the reference chamber. Data 207 were analyzed using the UWXAFS package (Stern et al., 1995). Processing of the raw data, 208 including alignment of datasets and background removal, was done using ATHENA (Ravel and 209 Newville, 2005). The input parameter to ATHENA that determines the maximum frequency of the background, R_{bkg}, was set to 1.1 Å (Newville et al., 1993). The data range used for Fourier 210 transforming the EXAFS data was 3.0–9.8 $Å^{-1}$ with a Hanning window function and a dk value of 211 1.0 Å⁻¹ (Newville et al., 1993). Simultaneous fitting of each of the three datasets with multiple k-212 weighting (k^1, k^2, k^3) of each spectrum was performed using the Fourier transformed spectra. The 213 fitting range for all of the datasets was 1.2–2.8 Å. The simultaneous fitting approach reduces the 214 215 possibility of obtaining erroneous parameters due to correlations at any single k-weighting (Mishra 216 et al., 2010).

The EXAFS spectra from Cd-acetate, Cd-phosphate, and Cd-sulfide standards were used for qualitative comparison of the unknown samples, and these same spectra were also used to refine fitting parameters for the quantitative analysis of the Cd binding environment in the biomass samples. The best fit values for the O and S signal contributions to the EXAFS spectra from the standards were used as the initial guess parameters for simultaneous fitting of the three biomass samples. The relative contributions of Cd-S and Cd-O binding to the total Cd binding environment 223 within the first shell of the biomass samples were determined by floating the O coordination 224 number and constraining the S coordination number such that the total contribution of the two sites 225 would sum to be 100%. Because O coordinates octahedrally around a Cd atom, and S coordinates 226 tetrahedrally, it was assumed that full coordination of the O-bearing and S-bearing sites was 6 O 227 and 4 S atoms, respectively. In this analysis, we do not differentiate between carboxyl and 228 phosphoryl binding sites because the Cd-O bond distances in the Cd-acetate and Cd-phosphate 229 standards are the same (Mishra et al., 2010). An attempt to performed EXAFS fits using 230 contribution from Cd-phosphate, Cd-acetate, and Cd-sulfide signals resulted in statistically inferior 231 fits suggesting that inclusion of Cd-phosphate in addition to Cd-acetate and Cd-sulfide is not 232 justified for a statistically meaningful fitting of biomass data. Therefore, we did not include the 233 Cd-phosphate standard in our modeling.

234 **2.3 Determination of sulfhydryl sites on bacterial cell surfaces**

235 The preparation of the biomass samples that were used for sulfhydryl site measurements 236 was as follows: after incubation in Cd-free LB10 medium at 32 °C for different periods of time (5, 237 6, 12, 24, or 72 h), the biomass was harvested by centrifugation at 10,970 $\times g$ for 5 min. The 238 biomass pellets were then washed three times with a 0.1 M NaCl solution, with centrifugation at 239 $8,100 \times g$ for 5 min after each wash. The biomass pellets were then transferred into pre-weighed 240 test tubes and centrifuged for two 30-minute intervals at $8,100 \times g$. After decanting the supernatant, 241 the wet weight of the biomass was used to calculate the bacterial concentrations in the subsequent 242 experiments, and the bacterial concentrations that are reported in this study are these wet weights. 243 Some experiments involved bacterial cells with EPS materials removed. In order to remove 244 EPS from biomass samples, the freshly harvested and washed cell pellets were immediately re-245 suspended in 0.1 M NaCl with a cation exchange resin (Dowex® Marathon C sodium form, 2050 mesh, 30 g of resin/g of biomass in wet weight) and allowed to react for 2 h at room temperature (~20 °C) with slow stirring in order to maintain homogeneous suspensions. The treated cells were then washed using the same procedure as described above. The biomass that is produced from this resin treatment procedure is virtually free of EPS materials, as previous studies have demonstrated with electron microscopy (Yu and Fein, 2016).

251 The approach used to determine the sulfhydryl site concentrations on bacterial cell surfaces was 252 the same procedure that we developed and described in previous studies (Yu et al., 2014; Yu and 253 Fein, 2017a). We used potentiometric titrations and surface complexation modeling to determine 254 the total site concentrations within biomass samples. The concentration of sulfhydryl sites was 255 determined by measuring the decrease in the total concentration of all binding sites after the 256 sulfhydryl sites were selectively blocked using monobromo(trimethylammonio)-bimane bromide 257 (qBBr), a molecule that itself does not protonate or deprotonate. In order to block sulfhydryl sites, 258 cells were suspended for 2 h in a freshly prepared qBBr solution in 0.1 M NaCl with pH buffered 259 to 7.0 \pm 0.1 using a 1.8 mM Na₂HPO₄/18.2 mM NaH₂PO₄ buffer, with a qBBr:biomass ratio of 260 approximately 200 µmol/g, followed by three biomass washes with a 0.1 M NaCl electrolyte 261 solution. Potentiometric titrations of cells with and without qBBr treatment were conducted using 262 an autotitrator assembly with ~10 g of a 0.1 M NaCl cell suspension containing 30 g (wet mass) 263 of cell per liter. The cell suspensions were first adjusted to pH 3.0 using 1 M HCl, followed by a 264 titration from pH 3.0 to 9.7 using 1M NaOH. The 'up pH' titration was used for calculating the 265 total bindings sites on each sample using a four-site non-electrostatic surface complexation model 266 and FITEQL 2.0. All titrations were conducted in triplicate.

267

268 **3. Results**

269 The presence of 5 or 20 ppm Cd in LB10 medium caused strong negative effects on the 270 growth of *P. putida* within the first few hours of the experiment, but did not affect the extent of 271 overall growth in the long term (Figure 1). When the Cd concentration in the growth medium 272 increased from 0 to 20 ppm, the lag phase of *P. putida* extended markedly from about 5 h to 12 h. 273 However, in each case, once the lag phase was complete, cells in each of the three experiments 274 multiplied rapidly. After 24 hours, similar OD_{600} values were observed for cell suspensions in the 275 presence of 0, 5 and 20 ppm Cd, indicating that P. putida cells completely detoxified the added Cd 276 in these experiments. In LB10 medium, most of the Cd is present as aqueous Cd-chloride complexes (e.g., CdCl⁺, CdCl₂⁰), and only <11% of the Cd is present as relatively toxic Cd²⁺. 277 278 Therefore, our results show that *P. putida* cells are sensitive to very low concentrations of toxic 279 Cd species, and that the cells can detoxify at least low concentrations of Cd^{2+} .

280

281

Figure 1. Growth curves of *P. putida* in LB10 media containing 0, 5, or 20 ppm Cd.
The EXAFS analysis of the *P. putida* biomass samples that grew in the presence of 20 ppm
Cd in LB10 medium indicates that a significant amount of Cd adsorbed onto the biomass, and that
the adsorbed Cd was partitioned between complexation with sulfur- and oxygen-bearing binding

sites (Figure 2). The Cd-sulfide spectrum exhibits a first shell (Cd-S) peak that is shifted to a significantly larger distance and amplitude relative to those associated with the first shell (Cd-O) peak from the spectrum for the Cd-acetate standard (Figure 2a). In addition, the amplitude of the peak at 2.2 Å is larger in the real part of the Cd-sulfide EXAFS spectrum than it is in the Cdacetate spectrum (Figure 2b). These spectral features can be used to qualitatively determine the relative contributions of Cd-O and Cd-S bonds to the total adsorbed Cd on the biomass (Mishra et al., 2010).

295

296

Figure 2. (a) Magnitude and (b) real part of the Fourier transform of the measured Cd K-edge EXAFS spectra of three biomass samples compared to Cd-acetate and Cd-sulfide standards. The biomass samples were grown in LB10 medium in the presence of 20 ppm Cd and harvested at early exponential, early stationary and stationary phase.

301

302

The EXAFS spectra of the three biomass samples indicate a significant increase in the importance of Cd-S binding as the growth phase progresses from early exponential to early stationary phase, followed by a small decrease in the importance of Cd-S binding from early stationary to stationary phase (Figure 2). Quantitative modeling of the Cd EXAFS data with both

307	Cd-O and Cd-S paths yields excellent fits to the data (Figure S1 and S2, Table 1 and S1). For the
308	early exponential phase sample, O-bearing (non-sulfhydryl) binding sites dominate Cd adsorption
309	onto the biomass, and only 18% of the adsorbed Cd on the biomass is bound to S-bearing
310	(sulfhydryl) binding sites (Table 1). In contrast, the calculated contribution of the S-bearing
311	binding sites increases markedly to 51% in the early stationary phase sample (Figure S2 and Table
312	1), and then decreases slightly with extended growth time to 40% in the stationary phase sample.
313	Table 1 Deleting contribution of Cd binding from O and C begins sites on D mutids biomese

Table 1. Relative contribution of Cd binding from O- and S-bearing sites on *P. putida* biomass samples that grew in the presence of 20 ppm Cd.

316

Growth Phase	Cd-O (%)	Cd-S (%)
Early Exponential	82 ± 5	18 ± 5
Early Stationary	49 ± 9	51 ± 8
Stationary	60 ± 7	40 ± 7

317

318 We used potentiometric titration experiments to measure the concentrations of sulfhydryl 319 sites on cell surfaces of *P. putida* biomass that were cultured in Cd-free LB10 media, and were 320 sampled at different points along its growth curve. The abundance of sulfhydryl sites is strongly 321 affected by growth phase (Figure 3 and Table S2). From early exponential phase (5 h) to early 322 stationary phase (24 h), the measured concentration of sulfhydryl sites on the cell surfaces 323 increases dramatically from 4±12 to 118±22 µmol/g, likely explaining the increase in Cd-324 sulfhydryl binding on biomass samples from exponential phase to stationary phase that was 325 documented by our EXAFS measurements (Figure 2 and Table 1). In contrast, the measured 326 sulfhydryl site concentration for late stationary phase (72 h) cells is only 12±14 µmol/g. However, 327 it should be noted that the measured total concentrations of sulfhydryl sites from the potentiometric 328 titration experiments are for samples grown in Cd-free media, and that the presence of Cd could potentially induce the synthesis of additional sulfhydryl sites by bacterial cells. Therefore a direct
linkage of the measured sulfhydryl site concentrations to the relative importance of Cd-sulfhydryl
binding at each growth phase as determined by EXAFS is not possible.

332

333

Figure 3. Potentiometric titration measurement results of the concentrations of cell surface
 sulfhydryl sites on *P. putida* biomass at different growth stages that were cultured in Cd-free LB10
 medium. Note the non-linear scale to the 'Growth Time' axis.

- 338
- 339

340 The above measurements were all conducted with intact biomass samples, which included 341 both cells and bound EPS material. In order to identify the location of the sulfhydryl sites between 342 the cell walls and cell-produced EPS material for the 24h-biomass, we removed the EPS material 343 through a cation exchange resin pre-treatment (Yu and Fein, 2016), and measured the surface 344 sulfhydryl sites on the biomass without EPS. After the EPS was removed, the measured 345 concentrations of sulfhydryl sites on the cell surfaces dropped dramatically from 118±22 to 4±18 346 umol/g (Table S2). This result, similar to the findings in previous potentiometric titration and 347 proteomic analyses for *P. putida* (Yu and Fein, 2016; Fein et al., 2019), indicate that the sulfhydryl 348 sites on cell surfaces of P. putida under our growth conditions are located mainly on the EPS

349 molecules that are tightly bound to cells. Bacterial cells synthesize EPS primarily from mid-350 exponential phase to early stationary phase (Petry et al., 2000; Lbarburu et al., 2007). Therefore, 351 the extremely low concentrations of sulfhydryl sites on the surfaces of the early exponential phase 352 (5 h) cells likely arise because the cells did not yet synthesize EPS molecules at this growth stage. 353 Although abundant sulfhydryl sites were detected on the 24 h biomass, the concentration of 354 sulfhydryl sites on the 72 h biomass decreased dramatically (Figure 3). We interpret these results 355 to indicate that sulfhydryl-bearing EPS molecules likely detach from the cell surfaces upon the 356 death and degradation of the 24h-cells, and that newly synthesized cells which contain much lower 357 concentrations of bound sulfhydryl-rich EPS molecules become the dominant cells at late 358 stationary phase (72 h), resulting in the low sulfhydryl site concentration of the 72h-cells sample.

359 The second set of toxicity experiments used an LB0.5 medium containing only 0.5 g/L 360 NaCl, and starter biomass that was extracted from growth in an LB10 medium at different stages 361 along the growth curve. Hence, each starter biomass contained different concentrations of cell 362 surface sulfhydryl sites (Figure 3). Because starter cells with different pre-culturing times exhibit 363 different lag phases and growth rates when placed in the Cd-free LB0.5 medium, in order to 364 compare the effects of Cd toxicity on each type of biomass, we report cell growth in terms of 365 growth factor values that are calculated as the OD₆₀₀ of a cell suspension in the presence of Cd 366 divided by the OD_{600} in corresponding Cd-free controls. A growth factor of 1 indicates that the 367 added Cd has no effect on the growth of bacterial cells, and lower growth factor values indicate 368 stronger Cd toxicity.

In contrast to the minor influence of 20 ppm Cd on the growth of *P. putida* in the LB10 medium (Figure 1), the presence of 2-20 ppm Cd strongly inhibits the growth of *P. putida* in the LB0.5 medium due to the dramatically increased concentration of free Cd²⁺, with growth factors 372 in most experiments smaller than 0.6 (Figure S3). The pre-culturing time of the starter cells exerts 373 a strong influence on the toxicity of Cd toward the cells, and the influence decreases with duration 374 of the toxicity experiment. For example, at 2 h in the toxicity experiments in the presence of 2 ppm 375 Cd, the growth factors in the different experiments vary markedly from 0.3 to 0.9, but these 376 differences become negligible at 24 h (Figure S3). Similar trends are also observed in experiments 377 in the presence of elevated Cd concentrations (Figure S3). The decreasing difference in growth 378 factors for the different starter cells with increasing time likely occurs because the proportion of 379 newly produced *P. putida* cells keeps increasing with time in each experiment, and the properties 380 of these newly created cells are independent of the pre-culturing time of the starter cells. That is, 381 as the toxicity experiment proceeds, the starter cells become a smaller proportion of the total 382 number of cells in each experiment, and hence the differences in growth disappear with increasing 383 time. Therefore, because the objective of this set of experiments is to study the influence of the 384 surface sulfhydryl site concentration on Cd toxicity to P. putida, we focus on the growth factors 385 of the *P. putida* cells at 2 h because at that time the experimental systems have the largest 386 proportion of starter cells present and hence best represent the toxic response of the starter cells 387 (with different sulfhydryl site concentrations) to Cd.

Among the different batches of starter cells, the 24h-cells (the cells that were pre-cultured for 24 h in LB10 medium), which have the highest concentration of cell surface sulfhydryl sites (Figure S3), always showed the lowest toxicity responses to Cd, with 2h growth factors significantly higher than other experiments at any studied Cd concentration (Figure S3). In contrast, the 5h-cells that contain the lowest concentration of sulfhydryl sites exhibited the smallest 2 h growth factors (Figure S3), with their growth completely inhibited at 2 h in the presence of 5, 10 or 20 ppm Cd (2h growth factors = 0). Based on the Student's t-test results for the 2h growth

factors of different starter cells, the starter cells can be divided into three groups, with 2h growth factors for the 5h- and 72h-cells lower than the growth factors for the 6h- and 12h-cells, which in turn are lower than the growth factors of the 24h-cells (Figure 4a). Here the 2h growth factors of any two starter cells from different groups are significantly different (p < 0.05), and those from the same group show no statistical difference (p > 0.05). For the 24h-cells, we also conducted a comparison experiment in the presence of qBBr, a molecule that selectively and irreversibly blocks cell surface and EPS sulfhydryl sites to interactions with Cd in the experiment. In this experiment (24hQ), with sulfhydryl binding sites blocked, the toxicity of 2 ppm Cd to the cells was significantly higher than was observed in the qBBr-free experiments, with the 2h growth factor dropping from 0.88 ± 0.03 for the qBBr-free experiment to 0.44 ± 0.01 for the qBBr experiment (p < 0.05, Figure 4a).

421

422

423 Figure 4. Toxicity test results in LB0.5 medium that contains 2 ppm Cd using *P. putida* starter 424 cells that were pre-cultured in LB10 medium for 5 h, 6 h, 12 h, 24 h or 72 h, reported in terms of 425 the 2h growth factor, which is calculated by normalizing the OD_{600} of a cell suspension at 2 h in a 426 Cd-bearing experiment by the OD₆₀₀ in the Cd-free control at 2 h. The 24h-Q experiment was 427 conducted using the 24h-cells as starter cells in the presence of qBBr that blocks cell surface 428 sulfhydryl sites to Cd binding. (a) The 2h growth factor values using starter cells from different 429 extraction times from the parent growth medium; (b) Relationship between measured 2h growth 430 factor values and measured cell surface sulfhydryl site concentrations on the starter biomass; (c) 431 Relationship between measured 2h growth factor values and measured concentrations of the non-432 sulfhydryl sites on the starter biomass. The letters on top of each column in (a) represent the 433 Student's t-test results: p < 0.05 for any two samples with different letters and p > 0.05 for any two 434 samples with the same letters. The pink hollow circles in (b) and (c) represent the results of the 435 24hQ experiment.

- 436
- 437
- 438

By plotting the sulfhydryl site concentrations of the starter cells with their 2h growth

439 factors in the presence of 2 ppm Cd, we find a strong positive correlation between the growth

440 factors and the sulfhydryl site concentrations of the starter cells (Figure 4b, $R^2=0.98$). It is 441 noteworthy that the growth factor in the 24hQ qBBr experiment with the sulfhydryl sites on the 442 24h-cells blocked matches well with the predicted growth factor for starter cells with no cell 443 surface sulfhydryl sites (pink circle in Figure 4b). In contrast, the 2h growth factors exhibit a poor 444 correlation to the concentrations of the non-sulfhydryl sites on the biomass samples, which include all of the other binding sites on the cell surfaces (Figure 4c, $R^2=0.07$). The observed correlation is 445 446 not limited to the 2 ppm Cd dataset, as the measured 2h growth factors in the 5, 10, and 20 ppm 447 Cd experiments all exhibit strong correlations with cell surface sulfhydryl site concentrations 448 (Figure S4). The goodness of the correlations decreases in general with increasing Cd 449 concentrations, likely because for the experiments with higher total Cd concentrations, the 450 concentration of adsorbed Cd exceeds the concentration of sulfhydryl binding sites, and Cd in 451 these systems also binds to some extent to non-sulfhydryl sites under these elevated metal loadings 452 (Mishra et al., 2010; Yu and Fein, 2015; Nell and Fein, 2017). This result is consistent with 453 sulfhydryl sites playing a crucial role in diminishing Cd toxicity, and for the high Cd systems in 454 which significant non-sulfhydryl binding occurs, Cd toxicity increases and the relationship 455 between sulfhydryl site concentration and Cd toxicity breaks down to some extent.

456 **4. Discussion**

An important finding of this study is that the *P. putida* cells cultured in the LB10 medium contain relatively high concentrations of sulfhydryl sites on their cell surfaces compared to sulfhydryl site concentrations that have been measured for other bacterial species (Joe-Wong et al., 2012; Yu et al., 2014; Yu and Fein, 2016; Yu and Fein, 2017a). For example, the measured concentration of surface sulfhydryl sites on the *P. putida* cells that were cultured in LB10 medium to early stationary phase (the 24h sample in Figure 3) is $118 \pm 22 \,\mu$ mol/g, which is at least three-

463 fold higher than the reported values for most other bacterial species that have been studied (Joe-464 Wong et al., 2012; Yu et al., 2014; Yu and Fein, 2016; Yu and Fein, 2017a), including P. putida 465 cells that were grown in a nutrient-rich TSB medium (Yu et al., 2014; Yu and Fein, 2017a) and a 466 M9 minimal medium (Yu and Fein, 2017a). Although it is not clear why the *P. putida* cells contain 467 such high concentrations of cell surface sulfhydryl sites when they are cultured in the LB10 468 medium, Choi et al. (2014) found that P. putida cells cultured in the LB10 medium have more than 469 a three-fold higher protein content within their EPS matrix compared to *P. putida* cells grown in 470 two other minimal media. Proteins are likely the primary hosts of sulfhydryl sites both within cell 471 envelopes and on EPS material (Norrod et al., 1993; Fein et al., 2019). Therefore, our findings 472 suggest that the energy source and perhaps other environmental factors during cell growth play 473 important roles in the production of surface proteins and hence cell surface sulfhydryl binding sites 474 by *P. putida* (Choi et al., 2014). Further studies aimed at identifying the factors that control 475 sulfhydryl-bearing protein production and distribution, and their influence on heavy metal toxicity 476 to other bacterial species are crucial.

477 The high concentration of sulfhydryl sites on the cell surface of P. putida leads to Cd-478 sulfhydryl binding representing a large proportion of the total adsorbed Cd budget under high Cd 479 loading conditions (Table 1). Typically, because of the limited abundance of high affinity 480 sulfhydryl binding sites on bacteria, metal-sulfhydryl binding decreases in importance when metal 481 loadings exceed approximately 10 µmol/g (Guine et al., 2006; Mishra et al., 2010; Pokrovsky et 482 al., 2012; Yu and Fein, 2015; Nell and Fein, 2017). However, our EXAFS analysis indicates that 483 Cd-sulfhydryl binding represents over 50% of the total adsorbed Cd budget in the early stationary 484 phase biomass sample (Figure S2, Table 1) which was exposed to a metal loading of approximately 485 130 µmol/g. Most bacterial species that have been studied exhibit cell surface sulfhydryl site

486 concentrations of 20 – 40 µmol/g (Joe-Wong et al., 2012; Yu et al., 2014; Mishra et al., 2017; Yu 487 and Fein, 2017a). In two cases, much higher concentrations have been reported: $93 \pm 8 \mu mol/g$ for 488 Bacillus subtilis cells that were grown in a TSB medium containing 50 g/L of glucose (Yu and 489 Fein, 2017a), and $68 \pm 23 \mu mol/g$ for *Geobacter sulfurreducens* cells that were grown in a fresh 490 basal medium (Mishra et al., 2017). Similar to the finding of this study, sulfhydryl sites were shown 491 to play an important role in the adsorption of metals onto these biomass samples even under 492 relatively high metal loadings, ranging from 20-50 µmol/g (Mishra et al., 2017; Yu and Fein, 493 2017b).

494 In addition to the high abundance of sulfhydryl sites, the location of the sulfhydryl sites 495 primarily on EPS molecules also contributes to the dominance of Cd-sulfhydryl complexes on cell 496 surfaces of the *P. putida* cells. Aqueous metals interact with biomass first through interactions 497 with EPS molecules due to their location on the outermost layers of the cell surface. If EPS 498 molecules contain a higher ratio of sulfhydryl sites relative to other possible metal binding sites 499 than does the bacterial cell envelope, then Cd-sulfhydryl binding will be favored even under higher 500 metal loadings than would be the case if the sulfhydryl sites were located within the cell envelope 501 with the plentiful other non-sulfhydryl binding sites.

The sulfhydryl sites on *P. putida* EPS molecules dominate Cd adsorption onto bacterial biomass under the experimental conditions. In so doing, we conclude that the sites also play an important role in detoxification of Cd by sequestering the metal on EPS molecules and away from the cell walls where internalization could occur. Cd^{2+} ions can readily bind to dissolved thiols, and the conversion in solution of free Cd^{2+} or weak Cd complexes to Cd-thiol complexes can dramatically reduce the toxicity of Cd to bacteria (Murata et al., 1985). Similarly, the binding of Cd to the sulfhydryl sites on cell-bound EPS of *P. putida* can also reduce the toxicity of Cd.

509 Because of the strength of the Cd-S bond, the adsorbed Cd is likely relatively inert within the EPS 510 matrix, and remains so until the EPS molecule that hosts the sulfhydryl site is degraded. In fact, 511 previous studies (Rubino, 2015) find that CdS is the only Cd product for the degradation of Cdmetallothionein complexes and no free Cd^{2+} is released during the whole degradation, indicating 512 513 that the adsorbed Cd onto the sulfhydryl sites of EPS likely remains nontoxic after the degradation 514 of EPS molecules at least in some cases. In contrast, the complexes between Cd²⁺ and other binding 515 sites (e.g., carboxyl and phosphoryl sites) are significantly weaker (Yu and Fein, 2015), and hence 516 the adsorbed Cd²⁺ that is bound to these non-sulfhydryl sites can easily desorb and thus remains 517 potentially toxic to the bacterial cells. As a result, we observed no correlation between the extent 518 of Cd toxicity and the concentrations of non-sulfhydryl sites on P. putida cell surfaces (Figure 4C 519 and Figure S4).

520 *P. putida* cells possess multiple types of detoxification systems, enabling them to survive 521 a range of extreme or contaminated environments (Murata et al., 1985; Chen et al., 1995; Shamim 522 et al., 2014). This study elucidates one of these methods of detoxification. P. putida cells produce 523 EPS molecules that are bound to the bacterial cells and which contain high concentrations of 524 sulfhydryl binding sites. When P. putida biomass is exposed to aqueous Cd, our experiments 525 demonstrate that the Cd becomes bound to these EPS-hosted sulfhydryl sites (Figure 2), decreasing 526 the toxicity of the Cd to the *P. putida* cells. Biomass from different growth stages contains different 527 amounts of EPS (Petry et al., 2000; Lbarburu et al., 2007), and hence different concentrations of 528 sulfhydryl sites (Figure 3). Our experiments demonstrate that the extent of Cd toxicity to the 529 bacterial cells is inversely related to the concentration of sulfhydryl sites on bacterial cell surfaces 530 (Figure 4b). In addition to Cd, the sulfhydryl sites on the cell surfaces of *P. putida* likely can reduce 531 the toxicity of a range of other chalcophile or similar metals as well, such as Hg, Zn, Au and Cu,

532 because these metals also strongly bind to sulfhydryl sites (Guine et al., 2006; Pokrovsky et al., 533 2012; Nell and Fein, 2017; Yu and Fein, 2017b). It is unclear at this time how widespread this 534 detoxification strategy is among bacterial species, but sulfhydryl sites have been detected on the 535 EPS molecules within the biofilms that are produced by some pathogenic bacteria (Pseudomonas 536 aeruginosa, Staphylococcus aureus and Escherichia coli) and biofilm formation bacteria on 537 drinking water pipes (Pleomorphomonas oryza NM1 and Acidovorax ebreus NM25) (Lin et al., 538 2014), with the roles of their EPS sulfhydryl sites unexplored. Therefore, further studies focusing 539 on the potential role of cell surface sulfhydryl sites of these bacterial species in detoxification 540 would be important for addressing multiple key environmental issues, such as water disinfection and drinking water pipe protection. Some species, such as Shewanella oneidensis, produce EPS 541 542 molecules with much lower concentrations of sulfhydryl sites than does P. putida, and cell 543 envelopes with much higher concentrations (Yu and Fein, 2016), and hence likely rely on other 544 strategies than EPS metal sequestration for metal detoxification. However, it is noteworthy that 545 the sulfhydryl sites on EPS molecules of *P. putida* could also contribute to protect other microbial 546 species from toxic metals in natural environments, where mixed microbial species form aggregates 547 such as biofilms and microbial mats via the production of EPS.

The decrease in sulfhydryl site concentration in the biomass samples from 24 h to 72 h (Figure 3) suggests that, under the experimental conditions studied, EPS molecules can mobilize from planktonic bacterial cells upon death and degradation of the cells. However, EPS molecules within biofilms are likely to be more stable and remain immobile until the whole biofilm collapses, especially those EPS molecules located in the biofilm interior. The degree of mobilization may greatly affect the stability and lifespan of EPS-associated sulfhydryl binding sites. For example, previous studies found that although sulfhydryl sites on small molecules such as cysteine oxidize 555 rapidly when exposed to air (Hird and Yates, 1961), but significantly less oxidation occurs when 556 the cysteine is present in the outer layers of a biofilm, and no oxidation of cysteine occurs in the 557 inner layers of biofilms (Lin et al., 2014). Therefore, sulfhydryl sites within the bacterial biofilms 558 that are ubiquitous in natural environments likely play a more important and long-lasting role in 559 metal detoxification than what we observed in our experiments for planktonic cells. In order to 560 determine the prevalence of EPS metal sequestration as a strategy for metal detoxification in 561 natural and engineered systems, it is crucial to expand study from isolated bacterial species to natural bacterial consortia and biofilms to measure sulfhydryl site concentrations on cells relative 562 563 to that on EPS molecules, and to determine if a relationship exists, as we have observed for P. putida, between sulfhydryl site concentrations and metal toxicity response. 564 565

- 303
- 566
- 567

568 Acknowledgements

QY was supported through the Center for Environmental Science and Technology at University
of Notre Dame. The research was funded in part by U.S. National Science Foundation grants EAR1424950 and EAR-1904192. Two journal reviews were helpful and significantly improved the
presentation of this work.

573 574

575 Supporting Information Available

576

577 **References**

- 578 Beveridge, T.J., Murray, R.G.E., 1976. Uptake and retention of metals by cell walls of *bacillus* 579 *subtilis*. J Bacteriol 127, 1502-1518.
- 580 Chandrangsu, P., Rensing, C., Helmann, J.D., 2017. Metal homeostasis and resistance in bacteria.
- 581 Nat Rev Microbiol 15, 338-350.
- 582 Chen, J.H., Lion, L.W., Ghiorse, W.C., Shuler, M.L., 1995. Mobilization of adsorbed cadmium
- and lead in aquifer material by bacterial extracellular polymers. Water Res 29, 421-430.

- 584 Chen, X., Shi, J., Chen, Y., Xu, X., Xu, S., Wang, Y., 2006. Tolerance and biosorption of copper
- and zinc by *pseudomonas putida* cz1 isolated from metal-polluted soil. Canadian Journal of
 Microbiology 52, 308-316.
- 587 Choi, C.W., Park, E.C., Yun, S.H., Lee, S.Y., Lee, Y.G., Hong, Y., Park, K.R., Kim, S.H., Kim,
- 588 G.H., Kim, S.I., 2014. Proteomic characterization of the outer membrane vesicle of *pseudomonas*
- 589 *putida* kt2440. J Proteome Res 13, 4298-4309.
- 590 Deheyn, D.D., Bencheikh-Latmani, R., Latz, M.I., 2004. Chemical speciation and toxicity of
- 591 metals assessed by three bioluminescence-based assays using marine organisms. Environ Toxicol
- 592 19, 161-178.
- Fein, J.B., Yu, Q., Nam, J., Yee, N., 2019. Bacterial cell envelope and extracellular sulfhydryl
 bindings: Their roles in metal binding and bioavailability. Chem Geol 521, 28-38.
- 595 Flynn, S.L., Szymanowski, J.E.S., Fein, J.B., 2014. Modeling bacterial metal toxicity using a 596 surface complexation approach. Chem Geol 374, 110-116.
- 597 Gadd, G.M., Griffiths, A.J., 1978. Microorganisms and heavy-metal toxicity. Microbial Ecol 4,598 303-317.
- 599 Guine, V., Spadini, L., Sarret, G., Muris, M., Delolme, C., Gaudet, J.P., Martins, J.M.F., 2006.
- 600 Zinc sorption to three gram-negative bacteria: Combined titration, modeling, and exafs study.
- 601 Environmental Science & Technology 40, 1806-1813.
- Higham, D.P., Sadler, P.J., Scawen, M.D., 1986. Cadmium-binding proteins in *pseudomonas- putida* pseudothioneins. Environ Health Persp 65, 5-11.
- 604 Hird, F.J.R., Yates, J.R., 1961. The oxidation of cysteine, glutathione and thioglycollate by iodate, 605 bromate, persulphate and air. Journal of the Science of Food and Agriculture 12, 89-95.
- Hu, N., Zhao, B., 2007. Key genes involved in heavy-metal resistance in *pseudomonas putida* cd2.
- 607 FEMS Microbiology Letters 267, 17-22.
- 508 Joe-Wong, C., Shoenfelt, E., Hauser, E.J., Crompton, N., Myneni, S.C.B., 2012. Estimation of
- reactive thiol concentrations in dissolved organic matter and bacterial cell membranes in aquatic
 systems. Environmental Science & Technology 46, 9854-9861.
- 611 Lbarburu, I., Soria-Diaz, M.E., Rodriguez-Carvajal, M.A., Velasco, S.E., Tejero-Mateo, P., Gil-
- 612 Serrano, A.M., Irastorza, A., Duenas, M.T., 2007. Growth and exopolysaccharide (eps) production
- 613 by *oenococcus oeni* i4 and structural characterization of their epss. J Appl Microbiol 103, 477-486.
- 614 Li, Q.L., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., Alvarez, P.J.J., 2008.
- 615 Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications 616 and implications. Water Res 42, 4591-4602.
- 617 Lin, H.R., Ye, C.S., Lv, L., Zheng, C.R., Zhang, S.H., Zheng, L., Zhao, Y.D., Yu, X., 2014.
- 618 Characterization of extracellular polymeric substances in the biofilms of typical bacteria by the
- 619 sulfur k-edge xanes spectroscopy. J Environ Sci-China 26, 1763-1768.
- 620 Liu, H., Fang, H.H.P., 2002. Characterization of electrostatic binding sites of extracellular
- 621 polymers by linear programming analysis of titration data. Biotechnol Bioeng 80, 806-811.
- Liu, H.J., Wang, Y.Q., Zhang, H., Huang, G.D., Yang, Q.X., Wang, Y.L., 2019. Synchronous
- 623 detoxification and reduction treatment of tannery sludge using cr (vi) resistant bacterial strains.
- 624 Science of the Total Environment 687, 34-40.
- Mishra, B., Boyanov, M., Bunker, B.A., Kelly, S.D., Kemner, K.M., Fein, J.B., 2010. High- and
- 626 low-affinity binding sites for cd on the bacterial cell walls of *bacillus subtilis* and *shewanella* 627 *oneidensis*. Geochim Cosmochim Ac 74, 4219-4233.
- 628 Mishra, B., Shoenfelt, E., Yu, Q., Yee, N., Fein, J.B., Myneni, S.C.B., 2017. Stoichiometry of
- 629 mercury-thiol complexes on bacterial cell envelopes. Chem Geol 464, 137-146.

- Murata, K., Fukuda, Y., Shimosaka, M., Watanabe, K., Saikusa, T., Kimura, A., 1985. Phenotypic
- 631 character of the methylglyoxal resistance gene in *saccharomyces cerevisiae* expression in
- 632 *escherichia coli* and application to breeding wild-type yeast strains. Appl Environ Microb 50, 1200-1207.
- Nell, R.M., Fein, J.B., 2017. Influence of sulfhydryl sites on metal binding by bacteria. Geochim
- 635 Cosmochim Ac 199, 210-221.
- 636 Newville, M., Livins, P., Yacoby, Y., Rehr, J.J., Stern, E.A., 1993. Near-edge x-ray-absorption
- 637 fine-structure of pb a comparison of theory and experiment. Phys Rev B 47, 14126-14131.
- Nies, D.H., 1999. Microbial heavy-metal resistance. Appl Microbiol Biot 51, 730-750.
- Norrod, E.P., Browne, S.L., Feldweg, A., Leonard, J., 1993. A dominant sulfhydryl-containing
- 640 protein in the outer-membrane of *neisseria-gonorrhoeae*. J Bacteriol 175, 1173-1175.
- 641 Petry, S., Furlan, S., Crepeau, M.J., Cerning, J., Desmazeaud, M., 2000. Factors affecting 642 exocellular polysaccharide production by *lactobacillus delbrueckii* subsp *bulgaricus* grown in a
- 643 chemically defined medium. Appl Environ Microb 66, 3427-3431.
- 644 Pokrovsky, O.S., Pokrovski, G.S., Shirokova, L.S., Gonzalez, A.G., Emnova, E.E., Feurtet-Mazel,
- 645 A., 2012. Chemical and structural status of copper associated with oxygenic and anoxygenic 646 phototrophs and heterotrophs: Possible evolutionary consequences. Geobiology 10, 130-149.
- Ravel, B., Newville, M., 2005. Athena, artemis, hephaestus: Data analysis for x-ray absorption
 spectroscopy using ifeffit. J Synchrotron Radiat 12, 537-541.
- Rubino, F.M., 2015. Toxicity of glutathione-binding metals: A review of targets and mechanisms.
 Toxics 3, 20-62.
- 651 Segre, C.U., Leyarovska, N.E., Chapman, L.D., Lavender, W.M., Plag, P.W., King, A.S., Kropf,
- A.J., Bunker, B.A., Kemner, K.M., Dutta, P., Duran, R.S., Kaduk, J., 2000. The mrcat insertion device beamline at the advanced photon source. Aip Conf Proc 521, 419-422.
- 654 Shamim, S., 2018. *Pseudomonas putida* mt2; a potential candidate for cadmium bioremediation.
- 655 Adv Sci Technol Inn 313-317.
- 656 Shamim, S., Rehman, A., Qazi, M.H., 2014. Cadmium-resistance mechanism in the bacteria 657 *cupriavidus metallidurans* ch34 and *pseudomonas putida* mt2. Arch Environ Con Tox 67, 149-658 157.
- 659 Sheng, L., Fein, J.B., 2014. Uranium reduction by shewanella oneidensis mr-1 as a function of
- nahco3 concentration: Surface complexation control of reduction kinetics. Environmental Science
 & Technology 48, 3768-3775.
- 662 Shou, W.J., Kang, F.X., Lu, J.H., 2018. Nature and value of freely dissolved eps ecosystem
- 663 services: Insight into molecular coupling mechanisms for regulating metal toxicity. Environmental
- 664 Science & Technology 52, 457-466.
- 665 Stern, E.A., Heald, S.M., 1983. Basic principles and applications of exafs. Handbook of 666 Synchrotron Radiation 995–1014.
- 667 Stern, E.A., Newville, M., Ravel, B., Yacoby, Y., Haskel, D., 1995. The uwxafs analysis package 668 - philosophy and details. Physica B 208, 117-120.
- 669 Sunda, W.G., Engel, D.W., Thuotte, R.M., 1978. Effect of chemical speciation on toxicity of
- 670 cadmium to grass shrimp, palaemonetes-pugio importance of free cadmium ion. Environmental
- 671 Science & Technology 12, 409-413.
- Turner, R.J., 2017. Metal-based antimicrobial strategies. Microb Biotechnol 10, 1062-1065.
- 673 Wadhwani, S.A., Shedbalkar, U.U., Singh, R., Chopade, B.A., 2016. Biogenic selenium
- 674 nanoparticles: Current status and future prospects. Appl Microbiol Biot 100, 2555-2566.

- 675 Westall, J.C., Fiteql, a computer program for determination of chemical equilibrium constants
- 676 from experimental data. Version 2.0. Report 82-02, Dept. Chem., Oregon St. Univ., Corvallis, OR,
 677 USA., 1982.
- Yu, Q., Fein, J.B., 2015. The effect of metal loading on cd adsorption onto *shewanella oneidensis*bacterial cell envelopes: The role of sulfhydryl sites. Geochim Cosmochim Ac 167, 1-10.
- 480 Yu, Q., Fein, J.B., 2016. Sulfhydryl binding sites within bacterial extracellular polymeric 481 substances. Environmental Science & Technology 50, 5498-5505.
- 682 Yu, Q., Fein, J.B., 2017a. Controls on bacterial cell envelope sulfhydryl site concentrations: The
- 683 effect of glucose concentration during growth. Environmental Science & Technology 51, 7395-
- 684 7402.
- 685 Yu, Q., Fein, J.B., 2017b. Enhanced removal of dissolved Hg(II), Cd(II), and Au(III) from water
- by *bacillus subtilis* bacterial biomass containing an elevated concentration of sulfhydryl sites.
 Environmental Science & Technology 51, 14360-14367.
- 688 Yu, Q., Szymanowski, J., Myneni, S.C.B., Fein, J.B., 2014. Characterization of sulfhydryl sites
- 689 within bacterial cell envelopes using selective site-blocking and potentiometric titrations. Chem
- 690 Geol 373, 50-58.
- 691
- 692