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ABSTRACT Alternatives to petroleum-based chemicals are highly sought-after for on-going 

efforts to reduce the damaging effects of human activity on the environment. Copper radical 

oxidases from Auxiliary Activity Family 5/Subfamily 2 (AA5_2) are attractive biocatalysts 

because they oxidize primary alcohols in a chemo-selective manner without complex organic 

cofactors. However, despite numerous studies on canonical galactose oxidases (GalOx, EC 

1.1.3.9) and engineered variants, and the recent discovery of a Colletotrichum graminicola copper 

radical alcohol oxidase (AlcOx, EC 1.1.3.13), the catalytic potentials of very few AA5_2 members 

have been characterized. Guided by sequence similarity network and phylogenetic analyses, in this 

study we targeted a distinct paralog from the fungus C. graminicola as a representative member of 

a large uncharacterized subgroup of AA5_2. Through recombinant production and detailed kinetic 

analysis, we demonstrated that this enzyme is weakly active towards carbohydrates, but efficiently 

catalyzes the oxidation of aryl alcohols to the corresponding aldehydes. As such, this represents 

the initial characterization of a demonstrable aryl alcohol oxidase (AAO, EC 1.1.3.7) in AA5, an 

activity which is classically associated with flavin-dependent glucose-methanol-choline (GMC) 



oxidoreductases of Auxiliary Activity Family 3 (AA3). X-ray crystallography revealed a distinct 

multidomain architecture comprising an N-terminal PAN domain abutting a canonical AA5 seven-

bladed propeller catalytic domain. Of direct relevance to biomass processing, the wild-type 

enzyme exhibits the highest activity on the primary alcohol of 5-hydroxymethylfurfural (HMF), a 

product of significant interest in the lignocellulosic bio-refinery concept. Thus, the chemoselective 

oxidation of HMF to 2,5-diformylfuran (DFF) by C. graminicola aryl alcohol oxidase (CgrAAO) 

from AA5 provides a fundamental building block for chemistry via biotechnology. 

KEYWORDS: oxidoreductases, enzyme kinetics, structural biology, biocatalysis, bioproducts, EC 

1.1.3.7, EC 1.1.3.47  

 

INTRODUCTION 

The depletion of crude oil reserves reflected in rising prices, coupled with growing concern about 

environmental impacts, emphasizes the need for the development of sustainable alternatives to 

petroleum-based fuels and chemicals1. Lignocellulosic biomass has received sustained attention as 

an alternative to fossil petroleum because it constitutes a large renewable resource that does not 

compete with food crops (i.e. starchy plants) as a biomass source2. However, the complex chemical 

and structural composition of lignocellulosic biomass poses a significant challenge in processing 

the raw material, which is primarily responsible for the high cost of lignocellulose conversion3. 

Among the valuable chemicals that can be obtained from lignocellulosic biomass, 5-

hydroxymethylfurfural (HMF), which is derived from the depolymerization and dehydration of 

cellulose, is viewed as a versatile building block, particularly for the polymer industry, due to its 

rich chemistry (Scheme 1)4, 5. For example, oxidation of the primary alcohol generates 2,5-



diformylfuran (DFF), which has been used in the synthesis of renewable furan-urea polymeric 

resins6, antifungal agents7, pharmaceutical compounds8 and electroconductors9. Further oxidation 

of DFF generates 2,5-formylfurancarboxylic acid (FFCA), which is an intermediate for the 

preparation of surfactants, biofuels, resins and other compounds10 and 2,5-furandicarboxylic acid 

(FDCA), which has received significant attention as an alternative to fossil-fuel based terephthalic 

acid for the production of commodity plastics11. Likewise, 5-hydroxymethyl-2-furancarboxylic 

acid (HMFCA) has applications in polymers12 and therapeutics13. Hence, the discovery and 

application of (bio)catalysts that perform chemoselective redox transformations of HMF to access 

these renewable building blocks remains an area of significant contemporary interest14-21. 

 

 

Scheme 1. Oxidation products of HMF*. 

*Reactions catalyzed by CgrAAO are shown using solid arrows. 

 



In nature, to enable access to nutrients, a cache of enzymes which target the different components 

and linkages of lignocellulosic biomass is produced by microorganisms, especially saprotrophs 

and phytopathogens22, 23. Motivated by industrial interest in monosaccharide production from 

lignocellulose for fermentation to fuels and chemicals (e.g. “bioethanol”), there has been 

longstanding interest in the characterization and application of diverse polysaccharide hydrolases, 

especially cellulases24-27. More recently, microbial oxidoreductases have gained increased attention 

for biomass valorization, not only due to their ability to enhance cellulose saccharification, but 

also for their ability to functionalize polysaccharides, lignin, and small organic molecules28-33. 

The Carbohydrate-Active enZYmes database (CAZy, www.cazy.org) was recently expanded to 

integrate oxidoreductases associated with biological lignocellulose modification, resulting in the 

16 current Auxiliary Activity (AA) families34. Among these, AA5 comprises mononuclear Copper 

Radical Oxidases (CROs), which are further divided into two subfamilies based on protein 

phylogeny. Subfamily 1 (AA5_1) currently includes two characterized (methyl)glyoxal oxidases 

(EC 1.2.3.15), which carry out the two electron oxidation of these aldehydes (likely via their 

hydrates) to carboxylic acids with concomitant reduction of O2 to H2O2
35. Subfamily 2 (AA5_2) 

comprises canonical galactose 6-oxidases (GalOx, EC 1.1.3.9) and recently discovered general 

alcohol oxidases (AlcOx, EC 1.1.3.13), which perform analogously the oxidation of primary 

alcohols into the corresponding aldehydes36, 37. In accordance with their classification in a single 

CAZyme family, all AA5 members are anticipated to share a conserved tertiary structure, active-

site, and overall catalytic mechanism34, 38. 

Many early and contemporary studies of fungal AA5_2 members found these enzymes to be 

highly specific for the 6-hydroxyl group of D-galactose and terminal D-galactosides in di-, oligo-, 

and polysaccharides39-47. Contrary to this paradigm, we recently showed that two AA5_2 orthologs 



from the phytopathogenic fungi Colletotrichum graminicola and Colletotrichum gloeosporioides 

have predominant activity on primary aliphatic alcohols and essentially no activity on galactosyl 

substrates36. Encouraged by this observation of a broader, untapped enzymatic diversity within 

AA5_2 enzymes, in the present study we have used Sequence Similarity Network and Maximum 

Likelihood phylogenetic analyses to guide the selection of a paralog from C. graminicola as a 

representative member of a large uncharacterized subgroup. Through recombinant expression, 

enzymology and structural biology, we demonstrate that this enzyme is poorly active towards 

carbohydrates, but has a high aryl-alcohol oxidase (AAO) activity (EC 1.1.3.7)48 and HMF oxidase 

activity (EC 1.1.3.47) 14 that is representative of a new specificity class among characterized 

AA5_2 members. 

 

RESULTS 

CgrAAO is the first representative of a previously uncharacterized group within AA5_2 

A manually curated multiple protein sequence alignment of nearly 400 AA5_2 catalytic modules 

(i.e., with signal peptides and additional domains removed) was used to generate a Maximum 

Likelihood (ML) phylogenetic tree and a sequence similarity network (SSN) to visualize 

relationships within this subfamily (Figure 1). Using selected AA5_1 glyoxal oxidases49, 50 as an 

outgroup, 27 different subgroups were identified based on tree topology and bootstrap values >75 

(100 ML replicates). The corresponding SSN at an alignment score (bitscore) cut-off of 550 was 

concordant with this phylogeny, and was used to map biochemical data and predicted protein 

modularity, across the AA5_2 landscape (Figure 1 and Figure S1). Characterized AA5_2 

(PruAA5_2A)44, galactose 6-oxidases (GalOx)39-42, 45, 47, alcohol oxidases (AlcOx)36, 37, and 



raffinose-specific galactose 6-oxidase (RafOx)43 segregated unambiguously into distinct 

subgroups, indicating that analysis of subgroup membership is valuable to guide target selection. 



 



Figure 1: Sequence relationships of 392 AA5_2 catalytic modules. (A) Phylogenetic tree with 

Bootstrap values >75 supporting the 27 subgroups are indicated at each node/branch. (B) Sequence 

similarity network (SSN). Each node corresponds to one of the 392 catalytic modules used as an 

input to build the SSN created in Cytoscape with yFiles Organic layout51. Edges represent an 

alignment bitscore threshold of 550 that clusters the sequences into groups and resolves the same 

monophyletic groups as those observed in (A). For each panel, AA5 members whose biochemical 

characterization is available are colored in red and indicated as (methyl)glyoxal oxidases 

(GlyOx)49, 50 (comprising the outgroup), galactose oxidases (GalOx)39-42, 45, 47, alcohol oxidases 

(AlcOx)36, 37, raffinose oxidase (RafOx)43, and Penicillium rubens Wisconsin 54–1255 AA5_2 

oxidase (PruAA5_2A)44. The sequence characterized in this study is colored in ochre and indicated 

as CgrAAO. 

 

The genome of the phytopathogen Colletotrichum graminicola M1.001 (Maize anthracnose 

fungus) encodes three AA5_2 homologs, in addition to one AA5_1 ortholog52 (see 

http://www.cazy.org/AA5_eukaryota.html). The loci GLRG_05590 (GenBank EFQ30446.1) and 

GLRG_11847 (GenBank  EFQ36699.1) have been shown previously to encode a general 

AlcOx36 and a raffinose/galactose oxidase43, respectively. The heretofore uncharacterized third C. 

graminicola AA5_2 paralog, encoded by locus GLRG_02805 (GenBank EFQ27661.1) and 

referred to here as CgrAAO, after detailed biochemical characterization (vide infra), is found 

within a large subgroup comprising 91 sequences without any characterized members (Figure 1). 

This subgroup was part of a bigger cluster, comprised of four subgroups containing 122 sequences 

in total, which did not exhibit connections with other clusters in the SSN, possibly indicative of 

unique enzymatic activity. Indeed, a protein sequence alignment of the catalytic modules of 



CgrAAO with characterized AA5_2 members revealed that they share an overall sequence identity 

slightly lower than 50%, specifically 49% with FgrGalOx42, 47% with CgrAlcOx36, 45% with 

CglAlcOx36, 48% with CgrRafOx43, 42% with PruAA5_244, 45% with PorAlcOx37 and 46% with 

ChiAlcOx37, with notable differences in key active-site residues (Figure S1A, green highlighting).  

The modularity of the full-length sequences was mapped onto the SSN that was generated using 

only the catalytic modules, revealing that modularity correlated strongly with cluster identity 

(Figure S1B cf. Figure 1). Whereas canonical GalOxs contain carbohydrate-binding module family 

32 (CBM32) members consistent with galactose recognition53, members of the AlcOx group lack 

CBM32 modules altogether. Within this group, full-length sequences contained only the catalytic 

modules (i.e. AlcOx), while many other sequences comprised catalytic modules with one or two 

Wall Stress-responsive Component (WSC) domains,54 which have recently been implicated in 

carbohydrate binding37. In contrast, all members of the primary group containing CgrAAO possess 

an N-terminal PAN_1 domain55 as do sequences within the small RafOx cluster. Specifically, the 

711 amino-acid full-length sequence of CgrAAO comprises a predicted 22 residue signal peptide, 

a 198 residue PAN_1 domain, and a 491 residue AA5_2 catalytic module. 

 

CgrAAO has a distinct substrate specificity profile 

Full-length CgrAAO-WT was produced in Pichia pastoris using conditions optimized for the 

production of other AA5_2 members36, 56, 57, which yielded 17 mg from 400 mL of buffered 

complex methanol medium (BMMY) after purification (>95% pure according to SDS-PAGE 

analysis, Figure S2). Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated 

a copper-to-protein ratio of 1.08 ± 0.03, consistent with a fully-loaded mononuclear copper site. 

The protein was predicted to be N-glycosylated on sites N309, N386 and N644 using the NetNglyc 



server (https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0 ). N-glycosylation was 

confirmed by treatment with PNGaseF or EndoH, and a crystal structure of the apo enzyme (PDB 

ID 6STX, vide infra) suggested possible glycosylation on N309, although the corresponding 

electron density was too low to model reliably. The deglycosylated protein had an electrophoretic 

mobility consistent with its predicted molecular mass of 77507 Da (Figure S2). 

Initial screening using a diverse set of alcohols representing known substrates of AA5 enzymes 

revealed that CgrAAO was active on galactose and galactosylated oligosaccharides, short chain 

alkane diols and glycerol, and aryl alcohols with similar specific activity values (Figure 2 and 

Table S1).  

 



Figure 2: Initial activity screens of CgrAAO-WT and mutants. Measurements were performed 

in triplicate at 25 °C in 100 mM sodium phosphate buffer pH 7 using the HRP/ABTS assay. 

Activities were monitored using 300 mM for carbohydrates, polyols, diols and primary alcohols, 

2.5 mg.mL-1 for galactose containing polysaccharides, 5 mM for methyl glyoxal, aryl alcohols and 

furans and 10 mM for secondary alcohols. Reactions were started with the addition of 1.3 to 65 

µmole of purified enzyme. 

 

This substrate range is reminiscent of both canonical GalOx and AlcOx of AA539, 40, 43, 44, 46, 

although very poor activity on primary alkanols distinguishes CgrAAO from its paralog 

CgrAlcOx36. Striking, however, was the observation of the highest specific activity on HMF 

(Figure 2 and Table S1, cf. Scheme 1), which motivated us to perform detailed kinetic analyses to 

accurately quantify specificity for the top substrates. 

HMF was used to determine the pH-rate profile and temperature stability of CgrAAO because 

it had the highest specific activity of all substrates. The wild-type enzyme exhibited an optimal 

activity at pH 7.0 with a bell-shaped profile, similar to CgrAlcOx36 and FgrGalOx58. A rapid drop 

in activity was observed at acidic pH values, with 50% of activity remaining at pH 5.5 versus pH 

7.0, while 50% activity was retained up to pH 10 (Figure S3). After an initial rapid loss of ca. 10% 

activity at 25 °C, the enzyme was essentially stable over a 22 hour-long experiment. Much greater, 

rapid activity losses were observed above this temperature (Figure S4), hence all subsequent 

kinetics analyses were performed at pH 7.0 and 25 °C. 

Superseding the initial specific activity data, Michaelis-Menten kinetic analyses revealed that 

galactose and the terminal-galactose-containing saccharides lactose (Galb(1,4)-Glc), melibiose 

(Gala(1,6)-Glc), and raffinose (Gala(1,6’)-sucrose) were in fact poor substrates for CgrAAO, with 



kcat/Km values in the range 10 - 70 M-1s-1, as a result of very high Km values (0.2 – 1.0 M, Table 1). 

Indeed, D-galactose did not show saturation behavior even at substrate concentrations up to 2 M 

(Figure S5), which prevented the determination of individual kinetic parameters. Nonetheless, we 

were able to detect conversion of raffinose to the aldehyde, corresponding hydrate, and eventually 

the acid, at high enzyme loading and extended incubation by MALDI-TOF-MS (Figure S6). The 

enzyme was likewise poorly active on glycerol, 1,2-propanediol, and 1,3-propanediol (Table 1). 

 

 



Table 1. Substrate specificity of CgrAAO-WT and its variants* 

Substrate CgrAAO-WT  CgrAAO-Y334F  
  Km (mM) kcat (s-1) kcat/Km (M-1.s-1)  Km (mM) kcat (s-1) kcat/Km (M-1.s-1)  
Carbohydrates                 

     Galactose n.d.§ n.d.§ 13.1 ± 0.8  n.d.§ n.d.§ 16 ± 1  

     Lactose 999 ± 83 23.4 ± 2.2 23.5 ± 1.2  575 ± 43 18.7 ± 0.7 32.5 ± 2.7  

     Melibiose 314 ± 15 12.3 ± 0.2 39.2 ± 1.7  n.d.§ n.d.§ 67 ± 4  

     Raffinose 291 ± 21 20.8 ± 0.6 71.5 ± 5.6  523 ± 35 91 ± 3 174 ± 13  

Polyols         

     Glycerol 605 ± 34 58.7 ± 0.9 97 ± 5.6  1480 ± 60 104 ± 2 70.3 ± 3.2  

Diols         

     1,2 Propanediol 1047 ± 64 17.4 ± 0.4 16.6 ± 1.1  n.d.§ n.d.§ 87 ± 3  

     1,3 Propanediol 384 ± 15 32.8 ± 0.4 85.4 ± 3.5  1708 ± 46 212 ± 3 124.1 ± 3.8  

Aryl alcohols         

     Benzyl alcohol 27 ± 0.9 54.5 ± 0.6 (2.02 ± 0.07) x 103  61 ± 3 226 ± 5 (3.7 ± 0.2) x 103  

     p-anisyl alcohol 24 ± 1.3 48 ± 1 (2 ± 0.12) x 103  88 ± 5 218 ± 8 (2.47 ± 0.17) x 103  

     m-anisyl alcohol 21 ± 0.8 140 ± 2 (6.6 ± 0.3) x 103  52.3 ± 1.8 289 ± 5 (5.5 ± 0.2) x 103  

     Veratryl alcohol n.d.§ n.d.§ (4.7 + 0.2) x 103  n.d.§ n.d.§ (4.4 ± 0.1) x 103  

     4-Hydroxy benzyl alcohol 4.5 ± 0.6 20.1 ± 1.2 (4.5 + 0.6)  x 103  19 ± 3.5 33 ± 3 (1.74 + 0.36)  x 103  

Furans         

     HMF 
6.5 ± 0.3 126 ± 1.5 (1.94 ± 0.09)  x 104  14 ± 0.5 201 ± 2 (1.44 ± 0.05) x 104  

     HMFCA 26.9 ± 3 28.3 ± 1.3 (1.1 ± 0.1) x 103  27 ± 1.4 15.4 ± 0.3 570 ± 32  

*The measurements were performed by varying the substrate concentration from 2.5 mM to 1.5 M for carbohydra

for polyols and diols, 100 µM to 200 mM for aryl alcohols and 100 µM to 100 mM for furans. The apparent steady

were determined in 100 mM phosphate buffer, pH 7, at 25 °C using the colorimetric HRP/ABTS assay using 1.3 t

enzyme. The affinity constant for substrate, Km, and turnover number, kcat, were calculated by nonlinear regression 

Menten equation. Data represent means ± standard deviations (n = 3). 

§ Individual kcat and Km values not determinable; kcat/Km values obtained from slope of linear v0 versus [S] plots



 

In contrast, benzyl alcohol and the derivatives p-anisyl alcohol (4-methoxybenzyl alcohol), m-

anisyl alcohol (3-methoxybenzyl alcohol), veratryl alcohol (3,4-methoxybenzyl alcohol), and 4-

hydroxybenzyl alcohol all exhibited kcat/Km values of the order of 103 M-1s-1, with Km values in the 

range 4 -27 mM. Among all substrates, both good and poor, kcat values were in the range 12 – 140 

s-1, which implicates substrate binding, as approximated by Km, as the primary driver of specificity 

(Table 1). Interestingly, substitution of the benzyl alcohol aromatic ring had little effect on the 

oxidation kinetics of aryl alcohols: 4-methoxylation and 3-methoxylation had no effect on Km, 

whereas 4-hydroxylation decreased Km by 6-fold compared to benzyl alcohol. As a result, catalytic 

efficiencies remained in the same order of magnitude, with similar values for p-anisyl and benzyl 

alcohol while they slightly increased for m-anisyl and 4-hydroxybenzyl alcohols, respectively. 

Despite not being able to obtain reliable independent kinetic constants for veratryl alcohol due to 

substrate inhibition, estimation of kcat/Km at low substrate concentrations indicated that 

dimethoxylation likewise did not affect catalysis significantly. Independent product formation and 

substrate depletion experiments, respectively, using an optimized Purpald® [4-Amino-3-

hydrazino-5-mercapto-1,2,4-triazole] microplate assay indicated that HRP (2.3 µM) was not able 

to oxidize these aryl-alcohols or their corresponding aldehydes over a 15 minutes reaction time 

(Figure S7), thus ruling out any potential interference by the co-enzyme on the kinetic data. 

Likewise, HRP has no activity on HMF and its derivatives 59. 

The observed specificity profile is notably distinct from that of CgrAlcOx and CglAlcOx, which 

are only able to oxidase the parent compound, but not substituted benzyl alcohols, which is a 

surprise given that small molecule models of galactose oxidase are known to oxidize benzyl 

alcohols readily60. However, the catalytic efficiency of CgrAAO towards benzyl alcohol is ca. two 



orders-of-magnitude less than CgrAlcOx and CglAlcOx, primarily due to differences in Km 

values36. Comparison with two recently characterized AA5_2 AlcOx, PorAlcOx and ChiAlcOx, 

is not possible due to a lack of specific kinetic data on benzyl alcohols37. Also distinct from 

CgrAlcOx and CglAlcOx, cinnamyl alcohol was a poor substrate for CgrAAO; despite a 

competent specific activity (Table S1), we were unable to obtain kinetic constants for this substrate 

due to chromophore interference with the ABTS-HRP coupled assay at concentrations above 2.5 

mM. 

In accord with our initial substrate screen, Michaelis-Menten analysis revealed HMF to be the 

best substrate for CgrAAO, with a specificity constant of 2 x 104 M-1.s-1. This value is ca. 3-fold 

higher than the best aryl alcohol derivative, m-anisyl alcohol, and is the result of a correspondingly 

lower Km value in light of a similarly high kcat value (Table 1). In the context of sustained interest 

in HMF valorization, we subsequently tested activity on the diverse oxidation products of HMF, 

namely HMFCA, DFF, and FFCA (Scheme 1). CgrAAO was only able to catalyze the oxidation 

of HMFCA, albeit with a kcat/Km value one order-of-magnitude lower than for the parent compound 

(Table 1). 

To validate these kinetics results, the products from individual reactions of CgrAAO with HMF, 

HMFCA and DFF were analyzed using proton nuclear magnetic resonance (1H-NMR) 

spectroscopy. Control reactions in which HMF, HMFCA or DFF were incubated with HRP and 

catalase in the absence of CgrAAO-WT showed no conversion after 16 h (data not shown). In 

contrast, 20 mM HMF was quantitatively converted to DFF after 16 h by incubation with 

CgrAAO-WT, HRP and catalase, with no observable subsequent oxidation products (Figure 3).  

 



 
Figure 3. CgrAAO HMF oxidation product analysis. 1H NMR spectra (400 MHz, 1:9 

D2O:phosphate buffer, 100 mM, pH 7); (a) Standards mixture at 5 mM of HMF (*), DFF (Ο) and 

its hydrate form DFFhyd(●), HMFCA (Δ), FFCA (◊) and FDCA (□). Reaction product profiles after 

16 h incubation with CgrAAO in the presence of catalase and HRP for (b) HMF at 20 mM showing 

full conversion to DFF, (c) HMFCA at 10 mM showing 46 % conversion to FFCA, and (d) DFF 

at 10 mM showing no conversion.  

 

DFF was observed to exist in equilibrium with the monohydrated form (DFFhyd, Figure 1), with 

a characteristic chemical shift of 5.99 ppm, corresponding to the C-H of the aldehyde hydrate, in 

a 1:1 ratio with the dialdehyde. Analogously, 10 mM HMFCA was oxidized to FFCA with 46 % 

conversion after incubation for 16 h (Figure 3), consistent with the slower initial rate kinetics 



measured for this substrate (Table 1). Thus, the carboxylic acid of HMFCA was less well tolerated 

than the aldehyde of HMF by CgrAAO-WT. The lack of further oxidation of both DFF and FFCA 

demonstrates that CgrAAO-WT is highly specific for primary alcohol oxidation and does not act 

on aldehydes nor their hydrates (Figure 3). 

 

Three-dimensional structure and active site geometry 

To illuminate the structural features responsible for the distinct specificity profile of CgrAAO, 

we combined X-ray crystallography and electron paramagnetic resonance (EPR) spectroscopy. 

The tertiary structure of CgrAAO-WT was solved by molecular replacement using the apo form 

of CgrAlcOx (PDB entry 5C8636) as a model (Figure 4A and B). 

 

 



Figure 4 Tertiary structure of CgrAAO. A) Overall fold (color blend from blue to red), B) 

Orthogonal view. The Cu ion is showed as a dark blue sphere. C) Overlay of FgrGalOx (pink, 

1GOF) on CgrAAO-WT, D) Orthogonal view. PAN_1 domain in blue and catalytic domain in 

light green. Figures made using CCP4MG61. 

 

As anticipated from the primary structure, CgrAAO-WT comprises three domains. The central, 

seven-bladed beta-propeller domain and the C-terminal, immunoglobulin-like beta-sandwich 

together constitute the AA5_2 catalytic module (Val199 to Leu689). This arrangement is directly 

homologous the AA5_2 modules of CgrAlcOx36 and FgrGalOx42. Only residues Thr10-Thr21, 

Leu5-Val61, Leu91-Thr116, and Glu119-Ala198 of the N-terminal domain could be modelled in 

the original wild-type structure (PDB ID 6RYV), although this was later increased to cover Thr10-

Tyr28, Leu35-Lys72 and Asp84-Ala198 in a second, higher resolution apo-CgrAAO-WT 

structure (PDB ID 6STX) resulting from an attempt to generate a ligand complex by co-

crystallization with the soft-Lewis-base substrate analog benzylmercaptan. The N-terminal domain 

contains conserved disulfide bridges and an overall fold typical of a PAN_1 domain55. 

Specifically, the N-terminal domain contains disulfide links between Cys residues 51 and 57, 

145 and 167, and 149 and 155, as well as a unique disulfide link between Cys 104 and 123. This 

domain also contains the only two α-helices in the structure, at the exterior surface of the protein; 

the shorter one lies near a 2-stranded β-sheet near the N-terminus, and the longer one has a 6-

stranded β-sheet twisted around it. An additional 3-stranded β-sheet is sandwiched between the 

latter sheet and the central beta-propeller domain. CgrAlcOx lacks a corresponding N-terminal 

domain altogether36, while FgrGalOx contains a CBM32 module in this position that is not 

homologous to the PAN_1 domain (Figure 4C and D). The functional role of this domain in 



CgrAAO is currently unclear, but PAN_1 domains are known to mediate protein-protein and 

protein-carbohydrate interactions55. 

As in the other two available structures of AA5_2 oxidases36, 42, the seven individual blades of 

the β-propeller fold are comprised of four anti-parallel β-strands (Figure 4). The active-site copper 

ion is located on the solvent-accessible side opposite to the C-terminal domain, and orthogonal to 

the N-terminal domain. The C-terminal domain is comprised mainly of loops at the peripheral edge 

of the protein and β-strands, which partly form a beta-sandwich, with gaps due to residue 

disorder/mobility between Thr608 and Thr621, and Val645 and Thr655 in CgrAAO-WT (PDB ID 

6RYV), which could be modelled in the subsequent apo-CgrAAO-WT structure (PDB ID 6STX). 

A loop comprised of residues Leu627 to Gln638 extends from between two β-strands of the C-

terminal domain through the center of the β-propeller, thereby orienting His632, of which NE2 is 

coordinated (2.2 Å) to the copper ion on the opposite side of the protein. Despite absence of the 

copper ion in the apo-CgrAAO-WT structure, the loop and His632 lie in a very similar orientation. 

This arrangement is very similar to that in FgrGalOx and CgrAlcOx, for which the equivalent 

histidine residues are His581 and His423, respectively. 

In addition to His632, the catalytic copper ion is coordinated by the NE2 atom of His534 (2.1 

Å) and the OH group of Tyr316 (2.3 Å) that forms the unusual but characteristic thioether linkage 

to Cys292 (first observed in the structure of FgrGalOx42 and later in CgrAlcOx36) (Figure 5).  



 
 
Figure 5. Active site of CgrAAO-WT, CgrAAO-Y334W and CgrAAO-Y334F. A) Observed 

electron density map of CgrAAO-WT, maximum likelihood weighted (REFMAC) 2Fobs-Fcalc map 



contoured at 0.0172 e-/Å3 (light blue) and anomalous difference density map contoured at 0.0394 

e-/Å3 (gold). B) Continuous wave X-band EPR spectra (9.30 GHz, 165 K) of CgrAAO-WT, -

Y334F and –Y334W in 100 mM Na phosphate buffer pH 7.0 with 10% v/v glycerol. C) CgrAAO- 

WT, -Y334F and –Y334W active site residues overlay with WT interactions with copper. C atoms 

for WT in green, Y334F in gold, Y334W in coral, labels for WT in black. 

 

Additional coordination is provided by the OH group of Tyr533 (3.0 Å), which lies opposite the 

Tyr316-Cys292 moiety, and there is a water molecule 3.4 Å from the metal ion that forms a 

hydrogen bond to Tyr316. Overall, this primary coordination sphere is directly homologous to that 

observed in FgrGalOx and CgrAlcOx (Figure 5). Also characteristic of AA5_2, an aromatic 

stacking interaction is observed over the thioether bond, here from Tyr334. This second-shell 

interaction is similar to that in FgrGalOx and CgrAlcOx, except that a tryptophan (Trp290) and a 

phenylalanine (Phe138), respectively, are found in place of the tyrosine (see Active-site 

Mutagenesis section below). Additional aromatic and hydrophobic groups line the active site: four 

phenylalanine residues (Phe239, Phe271, Phe479, and Phe502), Tyr444, Val501, and Trp373. 

Notably, the Phe271 ring forms an edge-to-face interaction with Tyr316-Cys292 moiety (Figure 

5). 

The electron paramagnetic resonance (EPR) spectrum CgrAAO-WT (Figure 5) showed that, in 

the resting state, the active-site is in its semi-reduced form, with the Cu ion in the +2 oxidation 

state and a neutral (i.e. 1-electron reduced) Cys-Tyr ligand, identical to previous reports on 

FgrGalOx, CgrAlcOx, and CglAlcOx36, 62-65. The spectrum indicated a singly occupied molecular 

orbital (SOMO) with mostly d(x2-y2) character and a typical Type 2 copper site according to the 

Peisach and Blumberg classification66 (gz = 2.27 – 2.28, Az = 530 MHz, Table S2). The spectrum 



also showed well-resolved superhyperfine (SHF) coupling to the coordinated nitrogen atoms, 

which could be simulated by addition of two N atoms with coupling in the order of 45 MHz (Table 

S2 and Figure S8).  

 

Active-site mutagenesis 

To explore the effect of differences in the second-shell stacking residue on substrate specificity 

and catalysis in light of known natural variants of AA5_2 members, we produced the site-directed 

mutants CgrAAO-Y334F (mimicking CgrAlcOx) and CgrAAO-Y334W (mimicking FgrGalOx). 

The recombinant production of both was similar to the wild-type enzyme and yielded 18 mg of 

CgrAAO-Y334W and 11 mg of CgrAAO-Y334F after purification (Figure S2). SDS-PAGE 

analysis following PNGaseF or EndoH treatment also indicated a similar glycosylation pattern to 

the wild-type and molecular masses consistent with those calculated from the primary structure 

(Figure S2). ICP-MS analysis indicated that both variants were fully loaded with copper, on the 

basis of copper-to-protein ratios of 1.07 ± 0.02 and 1.08 ± 0.02 CgrAAO-Y334F and CgrAAO-

Y334W, respectively. 

Structural analysis by crystallography and EPR confirmed the overall fidelity of protein folding 

and revealed a strikingly similar active-site structure. Indeed, superposition of both site-directed 

mutants with the wild-type enzyme shows that all first-shell coordinating residues are positioned 

identically and that the aromatic rings of Tyr334, Phe334, and Trp334 are co-planar and stacked 

homologously with the Tyr-Cys moiety (Figure 5). Apart from the obvious sidechain substitution, 

the only major active-site differences between the variants concern associated water. As discussed 

above, the hydroxyl group of Tyr334 in CgrAAO-WT forms a hydrogen bond to a water molecule, 

which is also hydrogen bonded to OG of Ser289 and O of Ser240. As expected, this hydrogen 



bonding is disrupted in CgrAAO-Y334F. There are also no hydrogen bonding interactions for NE1 

of Trp334 in CgrAAO-Y334W, just as there are none for Trp290 in FgrGalOx (Figure 5). EPR 

spectra of CgrAAO-Y334W and CgrAAO-Y334F (Figure 5) were likewise highly similar to the 

wild-type (gz = 2.27 – 2.28, with Az = 530 MHz for CgrAAO-WT and CgrAAO-Y334F, and Az = 

515 MHz for CgrAAO-Y334W, Table S2). The slight but significant difference in the spin-

Hamiltonian parameters of the Y334W mutant is in accordance with the ability of this second-

shell “stacking residue” to modulate the redox-active Tyr316 residue’s interaction with the copper 

ion, and thus the reactivity of the system. 

To wit, substitution of Tyr334 with phenylalanine, as in CgrAlcOx, or tryptophan, as in 

FgrGalOx, resulted in distinct substrate specificities, as determined by specific activity 

measurements on the same panel of substrates used to characterize the wild-type enzyme (Figure 

2). Briefly, CgrAAO-Y334W exhibited increased specific activity toward all carbohydrates for 

which activity was detected for CgrAAO-WT, and decreased activity towards diols, aryl alcohols 

and furans. CgrAAO-Y334F, on the other hand, exhibited specific activities that were comparable 

to the wild-type for carbohydrates, diols, aryl alcohols, HMF, and HMFCA. In light of these 

results, melibiose and HMF were used to perform pH-rate profile and temperature stability 

measurements with CgrAAO-Y334W and CgrAAO-Y334F, respectively. Both of these variants 

showed little deviation from the behavior of the wild-type enzyme (Figure S3 and S4). 

Subsequently, full Michaelis-Menten kinetic analyses were performed for selected substrates at 

pH 7.0 and 25 °C for direct comparison with CgrAAO-WT (Table 1 and Figure S5).  

The conservative substitution of tyrosine for phenylalanine-334 resulted in essentially no change 

in catalytic efficiency for all compounds, with Km, kcat, and kcat/Km values differing less than a factor 

of two versus CgrAAO-WT (Table 1). Possible exceptions were the poor substrates melibiose, 



raffinose, and 1,2-propanediol, although it should be noted that the high apparent Km values 

associated with these compounds warrant cautious interpretation of the fitted kinetic parameters. 

Analogous to the wild-type enzyme, product analysis indicated that CgrAAO-Y334F produced 

only DFF from HMF, albeit with a reduced conversion (75%) over a similar reaction period (Figure 

S9). Taken together, the data indicate that the distinct substrate specificity profile exhibited by 

CgrAAO-WT vis-à-vis the previously characterized CgrAlcOx (and CglAlcOx)36 do not arise 

solely from a single active-site substitution, but collectively from many differences in their primary 

structures (Figure S1). 

In contrast, substitution of tyrosine with tryptophan, to produce the FgrGalOx-like variant 

CgrAAO-Y334W, resulted in a large, concordant shift in overall specificity. Strikingly, activity 

for all aryl alcohols was significantly reduced, while activity on galactose-containing 

carbohydrates was increased. On one hand, large increases in Km values resulted in an inability to 

achieve substrate saturation of CgrAAO-Y334W with aryl alcohols, despite apparent kcat/Km values 

(determined from linear fits to the data, Figure S5) exhibiting reductions of only 2- to 5-fold. On 

the other hand, increases in galactosyl specificity of CgrAAO-Y334W (10- to 25-fold in the cases 

of the free sugar and the alpha-linked galactosides melibiose and raffinose) resulted from the 

combination of reduced Km values and increased kcat values. Beta-linked lactose had a more modest 

increase in kcat/Km in the CgrAAO-Y334W mutant (4-fold), primarily the result of a corresponding 

reduction in Km. The ability to achieve substrate saturation was also lost in 1,2- and 1,3-propane 

diols, resulting in significantly lower apparent kcat/Km values than for the wild-type enzyme (Figure 

S5). Yet, glycerol oxidation was essentially unaffected. 

Also notable, an order-of-magnitude decrease in catalytic efficiency was observed for both HMF 

and HMFCA. In the case of HMF, this was primarily a Km effect; kcat was essentially unaffected. 



In contrast, the Y334W mutation reduced the kcat value for HMFCA, with Km essentially 

unchanged. Although HMF remained the best substrate for CgrAAO-Y334W, the kcat/Km value 

was only marginally higher on this substrate than for melibiose and raffinose, indicating a 

significant shift toward carbohydrate specificity. Product analysis revealed DFF as the only 

product of HMF oxidation, but with even lower conversion (48%) than for the Y334F variant, 

concordant with the correspondingly lower activity of CgrAAO-Y334W on this compound (Figure 

S9). 

DISCUSSION 

The oxidation of alcohols is of particular biotechnological interest67-69 and over the last years, 

oxidation of the bio-based platform compound HMF has gained considerable attention due to its 

rich chemistry and potentially sustainable production70. While several chemical methods have been 

developed for the specific oxidation of HMF to DFF71-74, they have individual drawbacks including 

the use of expensive metals (Pt, V or Ru) or corrosive chemicals (bromide), harsh reaction 

conditions (elevated temperatures and/or pressures), and/or wastes associated with catalyst 

separation and product purification. Spurred by an interest in developing “greener” processes, the 

past five years have witnessed a significant growth in interest in the use of biocatalysts to generate 

HMF oxidation products with high selectivity under mild reaction conditions18. 

In particular, a diversity of enzymes have been investigated for the conversion of HMF to 

carboxylic acid derivatives, including early studies on a Caldariomyces fumago (fungal) 

chloroperoxidase75, 76, and more recent work on a range of bacterial and fungal flavin-dependent 

Glucose-methanol-choline (GMC) oxidoreductases/aryl-alcohol oxidases14, 17, 76, an Escherichia 

coli xanthine oxidase77, three fungal laccases plus (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl 

(TEMPO)77, and three Pycnoporus cinnabarinus (fungal) AA5_1 glyoxal oxidases59. Of particular 



relevance to the present study, several enzymes have been shown to produce the likewise valuable 

dialdehyde DFF as a terminal product by selective, limited oxidation, including yeast alcohol 

oxidases77, a Myceliophthora thermophila (fungal) AA5_1 glyoxal oxidase78, and wild-type and 

mutant forms of the archetypal Fusarium graminicola/Fusarium austroamericanum AA5_2 

galactose oxidase21, 77, 79.  

In this context, CgrAAO is unique as a biocatalyst since it is ostensibly the first wild-type AA5 

member with predominant aryl-alcohol oxidase (EC 1.1.3.7) and HMF oxidase activity (EC 

1.1.3.47). Until now, this activity has only been associated with AA3 members, in particular flavin-

dependent GMC oxidoreductases34, 80, 81. Although the oxidation of benzylic and other aryl alcohols 

is comparatively efficient in the case of mutant FgrGalOx variants79, 82 it is generally poor for wild-

type AA5 GalOx enzymes44, 63, 83. And while benzyl alcohol is itself a competent substrate for the 

paralog CgrAlcOx, ring-substituted congeners are not tolerated36. In this sense, the substrate scope 

of CgrAAO (Table 1) recapitulates that of the archetypal aryl-alcohol oxidase48, is distinct vis-à-

vis other AA5_2 members, and is correlated with its unique subgroup membership (Figure 1). 

Where necessary, the enzyme can be referred to as “CgrAAO (AA5_2)” to clearly distinguish it 

from AA3 AAOs that may be eventually characterized from this and other Collectotrichum species 

(http://www.colletotrichum.org/genomics/)52. 

A further aspect of the uniqueness of CgrAAO is apparent upon consideration of its ability to 

oxidize HMF and HMFCA, versus those enzymes introduced above for which detailed kinetic 

parameters are available (Table S3). CgrAAO exhibits a kcat/Km value for HMF two orders of 

magnitude higher than those of the three Pycnoporus cinnabarinus (fungal) glyoxal oxidases59 and 

one order of magnitude higher than that of the Myceliophthora thermophila (fungal) glyoxal 

oxidase78 from AA5_1. Likewise, the kcat/Km value for HMF of CgrAAO is two orders of 



magnitude higher than that of a Pleurotus eryngii (fungal) flavin-dependent GMC oxidoreductase 

from AA3, with which incomplete (ca. 60%) conversion was additionally observed after 25 h17. 

CgrAAO also outpaces the eponymous Methylovorus sp. (bacterial) HMF oxidase, an AA3 flavin-

dependent GMC oxidoreductase14 by a factor of 3 in kcat/Km for HMF, due to a ca. one order of 

magnitude higher kcat value (Table S3). CgrAAO is likewise superior to the Methylovorus sp. HMF 

oxidase and the Pleurotus eryngii (fungal) oxidase in the oxidation of HMFCA. As such, we had 

originally considered naming CgrAAO CgrHMFOx, which was ultimately not justified in light of 

the marginal selectivity difference over aryl alcohols (Table 1). 

Notably, the majority of the enzymes discussed here convert HMF to higher oxidation products14, 

17, 59, 75-77, whereas CgrAAO stops cleanly at DFF (Figure 3). Specifically, 270 nM of CgrAAO-WT 

in the presence of HRP and catalase was able to fully convert 20 mM HMF into DFF within 16 h 

in the absence of side products (Figure 3). Although weak oxidase activity was detected for DFF 

during initial screening experiments (Table S1), the addition of ca. 10-fold more enzyme necessary 

to quantify activity (2 µM for DFF versus 270 nM for HMF) nonetheless resulted in a 26400-fold 

difference in specific activity. Intriguingly, while previous studies on the oxidation of aryl alcohols 

by a FgrGalOx mutant have linked a higher degree of product aldehyde hydrate formation to 

increased subsequent conversion to carboxylic acids82, DFF was not a good substrate for CgrAAO 

despite an equilibrium favoring a high proportion (50%) of the monohydrate (Figure 3 cf. Scheme 

1). Commensurate with the initial-rate kinetics results (Table 1), CgrAAO was not able to fully 

convert the primary alcohol of HMFCA to generate to FFCA using the same conditions as for 

complete HMF oxidation (46% of HMFCA was oxidized to FFCA in 16 h, Figure 3). 

To our knowledge, only the wild-type F. graminearum (equivalent to F. austroamericanum and 

Dactylium dendroides) GalOx is capable of similar, high yielding, selective oxidation of HMF to 



DFF21, 77. The recently characterized M. thermophila AA5_1 glyoxal oxidase, which has similar 

kcat/Km values for HMF and glyoxal, could achieve only 56% conversion of 1 mM HMF to DFF 

over 24 h ([E] = 500 nM)78. Likewise, diverse yeast alcohol oxidases produced 16-41% conversion 

to DFF as the exclusive product over 72 h77. It should be noted that even in the successful GalOx 

system devised in the tour-de-force study of Qin et al., incomplete oxidation posed a particular 

challenge, requiring the use of an additional, exotic process step (deep eutectic solvent extraction) 

to isolate the desired DFF77. From a bioprocess perspective, an additional advantage of AA5 copper 

radical oxidases is a lack of dependence on complex organic cofactors for catalysis. 

Finally, we were pleased to observe that we could modulate the activity profile of CgrAAO by 

mutation of the key second-shell active-site residue, Tyr334, to the homologous tryptophan in 

GalOxs, to achieve a corresponding increase in galactosyl activity. Previous extensive protein 

engineering and docking studies of FgrGalOx have highlighted a series of residues composing the 

active-site pocket above the copper center that influences substrate binding and/or turnover84-87 

(Figure S1A, green highlighting). Of these, Trp290 plays a pivotal role in FgrGalOx, as it 

contributes to the stability of the active site tyrosine radical through dual electronic and steric 

effects associated with the stacking of the indole ring with the crosslinked tyrosine-cysteine copper 

ligand64. Trp290 is also within hydrogen bonding distance with the oxygen atom located on 

hydroxyl group attached to the carbon 5 of D-galactose and forms an face-to-face aromatic 

interaction with Tyr329 (FgrGalOx numbering), exhibiting an interplanar angle of 26°88. 

Our analysis of CgrAAO-Tyr334 variants emphasized the crucial role of this second-

coordination sphere residue. Indeed, the presence of a phenol group (WT) or a benzene ring 

(Y334F) seems to preferentially direct the oxidative activity of CgrAAO towards aryl alcohols and 

furans rather than carbohydrates. On the other hand, the presence of an indole ring modulates the 



preference of CgrAAO towards carbohydrates as this variant exhibited better catalytic efficiencies 

towards these compounds (Table 1). Indeed, a measurable, albeit small, shift in the spin 

Hamiltonian parameters for the CgrAAO-Y334W mutant can be observed from simulation of the 

experimental data (Table S2), consistent with a remote electronic effect on the copper center.  

In notable contrast, mutagenesis of the structurally homologous phenylalanine residue in 

CgrAlcOx to a tryptophan did not increase GalOx activity, but rather decreased benzyl alcohol 

specific activity by half and abolished activity for alkanols36. The “reverse” mutation of the native 

tryptophan in FgrGalOx to phenylalanine led to a large reduction in GalOx activity (primarily due 

to a Km effect) without significant increase in 2-methylene-1,3-propanediol oxidase activity64. 

Unfortunately, activities toward aryl alcohols and HMF were not performed in these early, seminal 

studies, thereby precluding a comprehensive like-for-like comparison. Likewise, the paralogous 

Colletotrichum graminicola raffinose/galactose oxidase, which bears a second-shell tyrosine 

identical to CgrAAO (Figure S1A) was not assessed for the oxidation of aryl alcohols43. Thus, a 

lack of systematic measurements against a comprehensive library of potential substrates precludes 

precise definition of protein structure-function relationships that dictate compound class 

specificity among AA5_2 members. In light of the phylogenetic diversity of AA5 and the limited 

structural enzymology on a handful of members, we anticipate that further exploration of this 

family will yield additional unique biocatalysts for green chemical transformations. 

 

MATERIALS AND METHODS 

Sequence alignment, phylogenetic and functional analysis 

A total of 212 bacterial and 43 fungal AA5_2 sequences were collected from the CAZy database 

in December 201734. Sequences of characterized AA5_1 members were also retrieved from the 



CAZy database. In addition, full-length sequences of FgrGalOx (Uniprot P0CS93) and CgrAlcOx 

(Genbank EFQ30446), as well as their corresponding catalytic domains, were used as templates 

for BLAST analysis, retrieving 455 sequences, of Ascomycota and Basidiomycota translated 

genomes in the Mycocosm portal for fungal genomics 

(https://genome.jgi.doe.gov/programs/fungi/index.jsf)89, 90. Where present, signal peptides and 

additional modules, such as carbohydrate-binding modules, were removed to isolate the catalytic 

modules for subsequent analyses. Catalytic modules sharing 100% identity were down-sampled to 

one sequence to eliminate redundancy. A multiple sequence alignment was created with MAFFT 

v7.402 using the L-INS-i algorithm91, on The CIPRES Science Gateway92 (www.phylo.org). Using 

this alignment, catalytic modules having deletions/substitutions at key active site residues, namely 

Cys272 and Tyr316 (which form the cross-linked thioether-tyrosyl cofactor) and other copper 

coordinating residues of FgrGalOx42, were removed. Moreover, obviously erroneous sequences 

generated by incorrect splicing predictions were removed through identification of unusually long 

deletions/insertions. 

Employing this curated multiple sequence alignment, comprising 392 AA5 catalytic modules, a 

maximum likelihood phylogenetic tree was produced using RAxML v.8, with 100 bootstrap 

replications,93 on The CIPRES Science Gateway portal. The defined monophyletic groups were 

supported by bootstrap values >75 and the tree was visualized using FigTree. SSNs were generated 

by computing BLASTP94 all-versus-all local alignments of the 392 curated AA5_2 catalytic 

domains using SSNpipe (https://github.com/ahvdk/SSNpipe), which generated the E-value, bit 

score, alignment length, sequence identity and sequence similarity for all sequence pairs. The data 

was filtered using a bit score threshold between 500 to 600, with increments of 25, to generate the 

final SSNs. A bit score threshold of 550, clustering the sequences into groups, which resolves the 



same monophyletic groups as those observed in the phylogenetic tree, was retained. The SSNs 

were visualized with Cytoscape using yFiles Organic Layout51 and coloring of each node was 

based on monophyletic groups inferred from the phylogenetic tree. 

 

DNA cloning, strain production, and site-directed mutagenesis 

cDNA encoding wild-type CgrAAO (CgrAAO-WT, Genbank ID EFQ27661) without its 

predicted peptide signal (MVRSCAYKAIAAASLLSQLASA)95 was commercially synthesized 

(Integrated DNA Technologies, Coralville, USA) into pUCIDT-AMP and subcloned into the P. 

pastoris expression vector pPicZα-A (Invitrogen) flush with the S. cerevisiae α-factor signal 

peptide coding sequence on the N-terminal part and the c-myc epitope followed by a His6 tag on 

the C-terminal part. CgrAAO-pUCIDT-AMP and pPicZα-A were separately digested using EcoRI 

and XbaI restriction enzymes (New England Biolabs) for 2 h at 37 °C. The resulting products were 

then separated on a 1% w/v agarose gel and the band corresponding to the digested plasmid and 

the coding gene were excised and purified using a gel/PCR DNA fragments kit (Geneaid, New 

Taipei City, Taiwan). 

The digested products were combined in a 3:1 insert to vector ratio and ligated using T4 DNA 

ligase (Lucigen, Middleton, WI, USA) overnight at 4 °C. After inactivation of the ligase at 70 °C 

for 20 minutes, the ligated product was transformed into chemically competent E. coli DH5α using 

the heat-shock method. Transformants were grown overnight at 37 °C on a Luria-Bertani-Low-

Salt (LBLS) agar plate and selected using 25 µg.mL-1 Zeocin (Invitrogen). Surviving colonies were 

picked and grown overnight at 37 °C in 5 mL of Luria Bertani Low Salt (LBLS) medium 

containing 25 µg.mL-1 Zeocin. Plasmids were then extracted using a commercial miniprep-kit 

(Geneaid, New Taipei City, Taiwan). The presence of the insert was confirmed by restriction 



enzyme digestion followed by agarose (1% w/v) gel electrophoresis and the correct insertion into 

the corresponding vector was verified by DNA sequencing. 

Transformation of pEFQ27661 into P. pastoris X33 was performed by digesting 20 µg of 

plasmid DNA for 2 h at 37 °C with PmeI (New England Biolabs). After enzyme inactivation at 65 

°C for 10 minutes, the linearized plasmid was purified using a gel/PCR DNA fragments kit 

(Geneaid, New Taipei City, Taiwan). The resulting digested plasmid (2.26 µg) was transformed 

into electrocompetent P. pastoris X33 cells prepared on the same day96. Transformants were grown 

on yeast extract peptone dextrose (YPD) agar plates for 3 days at 30 °C and selected against 100 

or 500 µg.mL-1 Zeocin. Several colonies were streaked on YPD agar plates containing either 100 

or 500 µg.mL-1 Zeocin and grown for 3 days at 30 °C to select clones with multicopy insertions. 

Nine colonies selected from 100 or 500 µg.mL-1 Zeocin plates were inoculated into 50 mL sterile 

conical tubes containing 10 mL of buffered complex glycerol medium (BMGY) and grown in a 

shaking incubator overnight at 30 °C and 250 r.p.m. Cells were then pelleted by centrifugation at 

3000 r.p.m. for 10 minutes, the BMGY medium was discarded and replaced with 2 mL of BMMY 

containing 1% (v/v) methanol. The cultures were shaken at 250 r.p.m. over 4 days at either 25 °C 

or 16 °C with regular feeding of 1% methanol every 24h to ensure continued protein expression. 

Secreted proteins were separated from the cells by centrifugation at 4700 r.p.m. for 10 minutes 

and protein production was monitored using SDS-PAGE. The clone yielding the highest amount 

of protein was retained for large-scale production. 

Point variants of EFQ27661 were generated using the Q5® Site-Directed Mutagenesis Kit (New 

England Biolabs) according to the supplier’s protocol. Primer sequences and their corresponding 

nucleotide replacements are listed in Table S4. The PCR products were then treated with a kinase-

ligase-DpnI enzyme mix for 5 minutes at room temperature prior to their transformation into 



competent E. coli DH5α using the heat shock method. Positive transformants were selected on 

LBLS plates containing 25 µg.mL-1 Zeocin at 37 °C overnight. Plasmids were isolated from the 

colonies, and those with the correct mutation were identified by sequencing. Each plasmid was 

then linearized with PmeI and transformed into P. pastoris X33 by electroporation, and positive 

transformants were selected as described above. 

 

Protein production and purification 

Single colonies of P. pastoris X33 expressing the gene of interest were individually streaked on 

a YPD agar plate containing 500 µg.mL-1 Zeocin and grown for 2 days at 30 °C. A single colony 

was then used to inoculate 10 mL of YPDand grown at 30 °C shaken at 200 r.p.m. for 8 h. Biomass 

production was initiated by addition of the 10 mL culture to 1 L of BMGY medium in a 4 L baffled 

flask with a foam cap, which was shaken at 250 r.p.m at 30 °C until the OD600 reached 5-6. Cells 

were harvested by centrifugation at 3700 rpm for 10 minutes at room temperature under sterile 

conditions. The cell pellet was quickly resuspended in 400 mL of BMMY supplemented with 0.5 

mM of CuSO4 and 1 % methanol (v/v) in a sterile 2 L flask with a foam cap. The cultures were 

shaken at 250 r.p.m. at 16 °C, or room temperature depending on the protein, for 4 days with 

regular feeding of methanol every 24 h to ensure continuing protein expression. After 4 days, 

proteins in the extracellular medium were separated from cells by centrifugation at 4700 r.p.m. for 

15 minutes at 4 °C and used for subsequent purification. 

Media containing the protein of interest were first raised to pH 7.4 by addition of 5 M NaOH 

with stirring, cleared by filtration through a sterile 0.45 µm polyethersulfone membrane (Millipore, 

Massachusetts, USA) and concentrated 10-fold by ultrafiltration through a polyether-sulfone 

membrane of 10 kDa cut-off (Vivaflow crossflow cassette, Sartorius, Les Ulis, France). The 



concentrated protein sample was loaded onto a 5 mL pre-packed Ni-NTA (GE Healthcare, Velizy-

Villacoublay, France) column pre-equilibrated with five column volumes of binding buffer (20 

mM sodium phosphate buffer, 500 mM NaCl, 10 mM imidazole at pH 7.4). The column was then 

washed with 50 mL of the same binding buffer and proteins were eluted using a linear gradient 

from 2 to 100 % of 500 mM imidazole in 20 mM sodium phosphate buffer, 500 mM NaCl at pH 

7.4 at 5 mL.min-1 and collected in 1 mL fractions. The fractions of interest were pooled and further 

purified and desalted using size exclusion chromatography on a 16 mm x 600 mm column of 

Superdex 75 pre-equilibrated with 100 mM sodium phosphate at pH 7.0 at 1 mL.min-1 and collected 

in 1 mL fractions. The fractions of interest were pooled and concentrated using Vivaspin® 

centrifugal concentrators with a 30 kDa cut-off (Sartorius, Göttingen, Germany) at 4 °C. Finally, 

the proteins were aliquoted, flash frozen in liquid nitrogen and stored at -20 °C. SDS-PAGE were 

performed using pre-cast 4-20% (w/v) polyacrylamide gels in the presence of 2% (w/v) SDS under 

reducing conditions; proteins were visualized with Coomassie blue R-250. Protein concentrations 

were determined by measuring A280 using extinction coefficients of 107760 M-1.cm-1, 111770 M-

1.cm-1 and 106270 M-1.cm-1 for CgrAAO-WT, -Y334W, and -Y334F respectively, which were 

calculated using the ProtParam tool on the ExPASy server (http://web.expasy.org/protparam/). 

Recombinant proteins were N-deglycosylated by treatment with endoglycosidase Hf (New 

England Biolabs) or N-glycosidase F (PNGase F, New England Biolabs) according to the 

manufacturer’s protocol. Briefly, after heat denaturation at 100 °C for 10 minutes, 10 µg of pure 

enzyme were incubated with either endo-Hf or PNGase F for 1 h at 37 °C. Deglycosylation 

efficiency was analyzed on pre-cast 4-20% (w/v) polyacrylamide gradient gels in the presence of 

2% (w/v) SDS under reducing conditions. 

 



Enzyme kinetic analysis 

Oxidation of all substrates was determined using a colorimetric HRP-ABTS coupled assay 

essentially as previously described36. Upon substrate oxidation, AA5_2 CROs consume 1 

equivalent of O2 and concomitantly generate 1 equivalent of H2O2, which is used in turn by HRP 

to catalyze ABTS oxidation (ε420 = 36000 M-1.cm-1). One unit of AA5_2 activity was defined 

therefore as the amount of enzyme necessary for the oxidation of 2 µmol of ABTS per minute, 

corresponding to the consumption of 1 µmol of O2 per minute. 

Each assay was performed at 25 °C in 100 mM sodium phosphate buffer at pH 7 with 0.49 mM 

ABTS, 2.3 µM horseradish peroxidase (HRP), and different substrate concentrations: from 2.5 

mM to 2 M for carbohydrates, 10 mM to 5 M for polyols and diols, 100 µM to 200 mM for benzyl 

alcohols and 100 µM to 100 mM for furans. Reactions were started with the addition of 1.3 to 13 

µmole of purified enzyme and steady-state parameters were determined using Origin software on 

three replicates of each measurement point. The initial reaction rates at different substrate 

concentrations were fitted to the Michaelis-Menten equation for the determination of Km and kcat 

values. 

To determine the effect of temperature on activity, aliquots of purified recombinant enzymes 

were incubated at 25 °C to 50 °C in 100 mM phosphate buffer at pH 7. Samples were taken-out at 

different time intervals for assays with 50 mM HMF for CgrAAO-WT and Y334F or 500 mM 

melibiose for CgrAAO-Y334W. For pH-rate profiles, aliquots of purified enzyme were incubated 

in 100 mM citrate-phosphate buffer from pH 2.5 to 7.0, in 100 mM phosphate buffer from pH 7.0 

to 8.0 and in 100 mM glycine-NaOH buffer from pH 8.0 to 11. Each measurement was made in 

triplicate. 

 



Enzyme product analysis 

Raffinose (10 mM) was dissolved in water (final volume 500 µL) and treated with CgrAAO-

WT (100 µg), HRP (1 U/mg substrate), and catalase (115 U/mg substrate). Reactions were 

incubated for 16 hours at 25 °C. A negative control reaction was performed on the same reaction 

mix without CgrAAO. At time points 0 h, 2 h, 4 h, 8 h and 16 h an aliquot of 100 µL was taken 

and enzymes were removed by ultrafiltration (10 kDa cut-off Centricon-Millipore, Billerica, MA, 

USA). Matrix-assisted laser desorption ionization coupled to time-of-flight mass spectrometry 

(MALDI-TOF MS) was performed on a Bruker Daltonics Autoflex System (Billerica, MA, 

U.S.A.). The matrix, 2,5-dihydroxy benzoic acid (DHB), was dissolved in 50% methanol in water 

to a concentration of 25 mg/ml. Oligosaccharide samples were mixed 1 : 1 (v/v) with the matrix 

solution. Five microliters of this solution were placed on a Bruker MTP 384 ground steel MALDI 

plate and left to air dry for 30 min prior to analysis. 

Reactions containing 10 or 20 mM putative substrate (HMF, DFF or HMFCA) and 1 mg.mL-1 

of both catalase and HRP were initiated by the addition of 270 nM purified enzyme in a final 

volume of 1 mL (100 mM phosphate buffer, pH 7.0). For each reaction, a negative control was 

performed with identical reaction components omitting the purified enzyme. Reactions were 

incubated at room temperature for 16 h, at which time enzymes were removed by ultrafiltration 

(10 kDa cut-off Centricon-Millipore, Billerica, MA, USA). D2O was added to the filtrate to a final 

composition of 10% (v/v). NMR experiments were run on a Bruker AV III HD 400 MHz 

spectrometer equipped with a BBFO smart probe. 1H NMR spectra were collected with water 

suppression (4.7 ppm) using a standard pre-saturation pulse sequence. Chemical shifts were 

calibrated to external TMSI (0 ppm). Standards for each HMF, DFF, HMFCA, FFCA and FDCA 



were used to identify distinct chemical shifts for each molecule. The integration value for relevant 

peak areas were used to determine percent conversions. 

Possible activity of the co-enzyme HRP on relevant aromatic alcohols and aldehydes was 

assessed by aldehyde detection using Purpald® [4-Amino-3-hydrazino-5-mercapto-1,2,4-triazole] 

in microplate format, according to the protocol developed by Quesenberry and Lee97. Briefly, 100 

µL of sample reaction was mixed with 100 µL of 34 mM Purpald® freshly prepared in 2 N NaOH 

and incubated at room temperature for 20 min. Then, 100 µL of 33 mM NaIO4 freshly prepared in 

0.2 N NaOH were added and A550 was read on a Tecan M200 plate reader. Standard curves between 

100 µM and 20 mM for each aromatic aldehyde gave a linear response (r2 > 0.99) with a 

conservative limit-of-detection of 50 µM. Sample reactions with HRP were made by incubating 

50 mM aromatic alcohols or aromatic aldehydes and 10 mM H2O2 with or without 2.3 µM HRP 

for 15 minutes. Then, the enzyme was removed by ultrafiltration (10 kDa cut-off Centricon-

Millipore, Billerica, MA, USA) before aldehyde detection. 

 

Electron Paramagnetic Resonance (EPR) spectroscopy 

Continuous wave (cw) X-band frozen solution EPR spectra of 0.19, 0.15 and 0.21 mM solutions 

of Cu(II)-CgrAAO-WT, -Y334W and –Y334F, respectively, in 100 mM sodium phosphate buffer 

pH 7.0 were recorded, with and without 10% (v/v) glycerol, on a Bruker micro EMX spectrometer 

operating at ~9.30 GHz, with modulation amplitude of 4 G, modulation frequency of 100 kHz and 

microwave power of 10.02 mW at 165 K. Addition of glycerol did not affect the appearance of the 

spectra (Figure S8a). Spectral simulations were carried out using EasySpin 5.2.24 integrated within 

MatLab98. It was assumed that g and A tensors were axially coincident. Accurate determination of 

the perpendicular region parameters was not possible from X-band data alone, although it was 



noted that satisfactory simulations could be achieved with the set of values reported in Table S2. 

Furthermore, addition of two coupled nitrogen atoms to the spin system was necessary to simulate 

the superhyperfine coupling observed in the experimental data. Raw EPR data are available on 

request through the University of York Library, Research Data York service (DOI: 

10.15124/9caf3050-588d-4eac-b787-0b3a59027c51) 

 

ICP-MS 

Protein samples of CgrAAO-WT (95 µM), -Y334W (115 µM), and –Y334F (88 µM) were 

digested in a total volume of 1 mL concentrated HNO3 (70%) in a Teflon vial at 130 °C until total 

evaporation. Once dried, digested proteins were dissolved in 10 mL of 1% HNO3 with 45Sc (20 

ppb) as an internal standard. ICP-MS was performed using a NexION 300D (Perkin Elmer) 

equipped with a SC-2 DX autosampler, DXi-FAST micro-peristaltic pump, a cyclonic spray 

chamber, a triple cone interface, a quadrupole ion deflector and Universal Cell Technology. 

Calibration was performed using IV-Stock-4 calibration standard (Inorganic Ventures). All 

elements were run in reaction mode (using Dynamic Reaction Cell technology) using ammonia as 

a reaction gas to remove potential polyatomic interferences. The detection limit for 63Cu was 

determined to be 0.104 ppb. 

 

Crystallization 

CgrAAO-WT and the two variants Y334W and Y334F were deglycosylated by EndoH treatment 

and crystallized at 15-40 mg.mL-1, with 0.1 mM copper (II) chloride added, using the sitting drop 

vapor diffusion technique. For CgrAAO-WT, crystals were grown with a 1:1 ratio of protein:well 

solution in the drop, with a well solution comprised of 0.2 M ammonium sulfate, 0.1M sodium 



acetate, pH 4.6, 30% (w/v) polyethylene glycol (PEG) 2000 monomethyl ether. CgrAAO-WT 

crystals were used to make a seed stock for crystallizing the mutants, in a drop with a volume ratio 

of 3:1:2 protein: seed stock: well solution over 26% (w/v) PEG 4000, 0.1M sodium acetate, pH 

6.0 for CgrAAO-Y334W, and 25% (w/v) PEG 3350, 0.1 M sodium acetate, pH 4.9 for CgrAAO-

Y334F. CgrAAO-WT was also co-crystallized with 10 – 20 mM benzylmercaptan in an attempt 

to obtain a structure of a complex. The crystals were harvested via a cryoprotectant solution 

comprised of the well solution supplemented with 20% (v/v) glycerol, into liquid nitrogen using 

Hampton ResearchTM CryoLoops.  

 

Data collection and structure refinement  

X-ray data (Table 2) were collected at the Diamond Light Source on beamline io4 for the wild 

type crystal, and beamline io4-1 for the variants and the apo-enzyme from the attempted co-

crystallization with benzylmercaptan. Data were processed using DIALS99 for CgrAAO-WT, 

CgrAAO-Y334W, and apo-CgrAAO-WT; and XDS100 for CgrAAO-Y334F; followed by data 

reduction using AIMLESS101. The CgrAAO-WT structure was solved by molecular replacement 

using MOLREP102, using PDB entry 5C8636 as a model, and built using BUCCANEER103. The 

structure was refined using iterative cycles of REFMAC104 followed by manual building in 

COOT105. The mutant and apo-enzyme structures were solved analogously, using the structure of 

CgrAAO-WT as a model.  

  



Table 2. Data collection and refinement statistics  

 CgrAAO-WT CgrAAO-

Y334F 

CgrAAO-

Y334W 

apo-CgrAAO-WT 

Data collection     
   Space group I23 I23 I23 I23 

   Cell dimensions       

      a, b, c (Å) 
172.1, 172.1, 
172.1 

171.4, 171.4, 
171.4 

172.0, 172.0, 
172.0 

172.3, 172.3, 172.3 

     a, b, g  (°) 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 

   Resolution (Å) 
60.92-2.30 
(2.38-2.30)* 

121.20-2.60 
(2.72-2.60) 

121.65-2.65, 
(2.78-2.65) 

121.85-1.90 (1.94-
1.90) 

   Rsym or Rmerge 0.107 (1.033) 0.174 (3.321) 0.215 (2.692) 0.143 (2.646) 
   Rpim 0.023 (0.216) 0.039 (0.750) 0.045 (0.581) 0.03 (0.549) 
   CC1/2 0.999 (0.612) 0.998 (0.587) 0.998 (0.535) 0.999 (0.631) 
   I / sI 19.2 (3.3) 13.2 (1.2) 12.0 (1.3) 13.9 (1.5) 
   Completeness (%) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 
   Redundancy 24.4 (24.8) 21.4 (21.7) 24.2 (23.3) 24.4 (25.1) 
     
Refinement     
   No. reflections 35829 24557 23451 63444 
   Rwork / Rfree 0.24/0.29 0.22/0.28 0.22/0.28 0.18/0.22 
   No. atoms     
     Protein 4527 4545 4587 4997 
     Ligand/ion 36 11 22 32 
     Water 51 12 11 334 
   B-factors (Å2)     
     Protein 56 63 59 38 
     Ligand/ion 82 85 69 49 
     Water 41 51 48 42 
   R.m.s. deviations     
     Bond lengths (Å) 0.009 0.009 0.008 0.010 
     Bond angles (°) 1.750 1.693 1.666 1.639 
   Ramachandran 
plot residues 

    

     In most 
favorable     regions 
(%) 

93.6 94.4 95.9 96.4 

     In allowed 
regions (%) 

4.9 4.4 3.4 3.0 

PDB code 6RYV 6RYW 6RYX 6STX 
 

* Number in parentheses is value for highest resolution shell. 
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32; WSC, Wall Stress‐responsive Component; WT, wild type; BMMY, Buffered complex 



methanol medium; SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis, 

ICP-MS, Inductively coupled plasma mass spectrometry; PNGaseF, Peptide -N-Glycosidase F; 

EndoH, Endoglycosidase H; HRP, horseradish peroxidase; ABTS, 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid); NMR, nuclear magnetic resonance; EPR, electron 

paramagnetic resonance; SOMO, singly occupied molecular orbital; SHF, superhyperfine; GMC, 

Glucose-methanol-choline; TEMPO, (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl; FAD, flavin 

adenine dinucleotide; NAD(P), Nicotinamide adenine dinucleotide (phosphate); LBLS, Luria 

Bertani Low Salt; YPD, yeast extract peptone dextrose; BMGY, Buffered complex glycerol 

medium; MALDI-TOF MS, Matrix-assisted laser desorption ionization coupled to time-of-flight 

mass spectrometry 
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