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Abstract 

Agitated tubular reactor (ATR) is an intensified, continuous, reactor design in which 

radial mixing is decoupled from axial flow. This study proposed a new CFD approach 

to study fluid dynamics and mixing mechanisms in the ATR. It combines a soft-sphere 

collision model with a dynamic meshing approach on ANSYS Fluent to tackle 

structure-structure and fluid-structure interactions (FSI) simultaneously. Its ability to 

handle FSI is validated on sedimentation of a large sphere in a quiescent fluid. A 

periodic motion of the agitator was predicted, which is mainly driven by contact with 

the external oscillating tube. The fluid motion is complex, with vortex structures forming 

behind the agitator at its highest point and the highest fluid velocities seen as fluid is 

squeezed under the agitator. Performance of Reynolds stress models were evaluated 

and pressure-strain term shows little effect on agitator’s motion. The energy was found 

to be mainly consumed by viscous dissipation. 

 

Keywords: CFD; fluid-structure interaction; agitated tubular reactor; dynamic meshing 

approach; Reynolds stress model; process intensification; 
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1. Introduction 

Flow reactors are widely used in chemical processing for various purposes, such as 

catalytic reaction, crystallization, polymerization, dispersing gases and solids (Bakker 

and Van Den Akker, 1994; David et al., 1991; Derksen, 2003, 2012; Jaisinghani and 

Ray, 1977). The focus of this study is given to a novel agitated tubular reactor, 

intensified for continuous chemical processing and is especially suitable for long 

residence time processes. The ATR system consists of up to ten reactor tubes 

connected in series and is mounted on a shaking platform. Each tube contains a free-

moving internal agitator (Fig. 1). Unlike conventional mechanically agitated reactors, 

there are no drive shafts and baffles (Harvey et al., 2003; Ni et al., 2001). The motion 

of the agitator is driven by collision with the external tube due to lateral shaking of the 

reactor body, and is also affected by interactions with the fluid flow. Different designs 

of the agitator have been proposed, such as solid bar or perforated tube. Fig. 1 shows 

a cross-section of an operational unit of a typical ATR system. End caps are 

deliberately attached to the agitator to prevent direct contact with the tube surface 

such that the chances of milling of any catalyst particles can be reduced. The ATR 

system has many advantages, such as simple geometry and easy sealing. The 

capability of achieving radial mixing while maintaining an orderly axial flow makes it 

well suited for intensifying the handling of slurries, gas/liquid mixtures and catalysed 

reactions (Browne et al., 2011; Gasparini et al., 2012). To date, however, most of the 

studies on the ATR system have focused on their bulk performance, such as residence 

time characterisation, volumetric mass and heat transfer (Gasparini et al., 2012; Jones 

et al., 2012). Nevertheless, understanding of its mixing mechanism is still lacking, 

which hinders the development of general guidelines for design optimization and 

performance enhancement.  

          

Agitator

End cap

Lateral shaking
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Fig. 1. Schematic of the cross-section of one unit of the reactor tube (courtesy AM 

Technology). 

A large number of experimental and computational studies have highlighted the role 

of local flow structure in the mixing performance of mechanically agitated reactors 

(Hartmann et al., 2006; Kerdouss et al., 2006; Zadghaffari et al., 2009). Considerable 

experimental efforts have been devoted to measure the flow field using laser-Doppler 

velocimetry and particle image velocimetry (Pan et al., 2008; Rutherford et al., 1996; 

Zadghaffari et al., 2009). However, application of these techniques to the ATR system 

is still challenging due to the lateral shaking of the reactor body.  

 

In recent years, computational fluid dynamics (CFD) has become a cost-effective 

alternative for studying chemical reactors, as it allows for a detailed understanding of 

physical phenomena occurring within the reactor and permits the development of 

correlations of value in equipment design. For example, turbulent stresses and energy 

dissipation are directly linked to the mixing performance and power consumption in 

such reactors. Nevertheless, application of CFD methods to the ATR system is not 

straightforward. One major question is how to deal with the free-moving internal 

agitator. In chemical reactor modelling, different approaches have been proposed to 

treat moving boundaries. For example, an impeller in a stirred tank can be handled 

using stationary boundary conditions (Brucato et al., 1998). Kresta and Wood (1991) 

modelled the impeller region as a turbulent swirling radial jet, although experimental 

measurements of the peak velocity and angle of the discharge flow are required to 

calculate the momentum source term. The accuracy of these approaches largely 

depends on empirical data which inevitably limits their range of applicability. Interface 

models, on the other hand, have been also used in the modelling of stirred tanks, using, 

for example, multiple frames of references (MFR) and sliding mesh (Kasat et al., 2008; 

Zadghaffari et al., 2009). In these approaches, the whole computational domain is 

divided into a stationary region, a rotating region surrounding the impeller and an 

interface in between. The sliding mesh approach is reported to be more accurate in 

predicting the turbulence properties of the flow than the MFR, but at a higher 

computational cost. The reason for this can be attributed to the transient nature of a 

sliding mesh simulation which requires a time-dependent flow field rather than allowing 

the use of a steady approximation and a time-averaged flow field as used in MFR 

(Singh et al., 2007). The interface model is capable of preserving the mesh quality but 
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requires momentum sources to account for the effect of moving grids. Additionally, 

numerical accuracy can be compromised due to the interpolation scheme used to 

balance mass and momentum across the interface. To date, most CFD studies have 

concerned an agitator with a prescribed motion, namely, the fluid flow has no influence 

on the motion of the agitator while the dynamics of the agitator in the ATR system is 

not predetermined as it is driven by both the fluid flow and collisions with the shaking 

tube. Therefore, accurate prediction of the flow field in the ATR system requires a CFD 

model capable of handling both structure-structure interaction (SSI), i.e. collision of 

the agitator with the tube and fluid-structure interaction. 

 

Considerable efforts have been devoted to simulating fluid flows in the presence of 

immersed moving structures. One approach is to couple different numerical methods 

for the fluid flow and the motion of structures, for example, combining the finite element 

method (FEM) with CFD methods by meshing both fluid and solid phases. The flow 

field is first calculated using CFD methods by assuming the structure as a rigid 

boundary. The fluid force acting on the structure is then fed to the FEM to perform 

structural analysis (Cheng et al., 2005). The use of a single numerical method, such 

as FEM, has also been reported, for example the arbitrary Lagrangian-Eulerian (ALE) 

approach (Bathe et al., 1999) and deforming-spatial-domain/space-time methods 

(Tezduyar et al., 1992). The ALE-based FEM has been applied to study the migration 

(Villone et al., 2011) and alignment behaviours of particles in a viscoelastic fluid 

(Jaensson et al., 2016). It allows for large displacements and nonlinear material 

behaviour of the structure, but at a cost of low accuracy for highly deformable 

boundaries due to deterioration in the mesh quality (Udaykumar et al., 1996). On the 

other hand, Cartesian grid methods and the immersed boundary method (IBM) are 

based on an Eulerian formulation using a stationary mesh for the fluid. A solid then 

moves through the mesh according to a Lagrangian formulation (Balaras, 2004). The 

task of mesh generation is greatly simplified, and the mesh does not conform to the 

shape of the immersed structure. Solid structures are treated differently in the two 

approaches. In the former approach, the area covered by the solid structure is blanked 

out on a background Cartesian grid, resulting in fragmented control volumes (Quirk, 

1994). Proper tracking schemes and interpolation methods are thus necessary to 

enforce boundary conditions in these cut cells (Quirk, 1994; Udaykumar et al., 1996). 

On the other hand, the IBM originally proposed by Peskin (1972) introduces a virtual 
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force field to match the fluid velocity with the motion of the solid structure (Fadlun et 

al., 2000). IBM is more efficient than the Cartesian grid method but it is also difficult to 

impose accurate boundary conditions, which can lead to inadequate representation of 

the boundary layer on the solid (Balaras, 2004).  

 

The objective of this study is to establish numerical method for the ATR system as a 

first step towards understanding agitator’s dynamics, fluid flow field and its mixing 

mechanism. In view of the key features of the ATR system, namely the co-existences 

of fluid-structure and structure-structure interactions, a new CFD model is proposed 

by combining the soft-sphere discrete element method (DEM) with a dynamic meshing 

approach referred as a coupled DEM-dynamic meshing (CDDM) model. To our 

knowledge, this is the first time that these two methods are combined to resolve the 

SSI and FSI simultaneously in the modelling of chemical reactors.  

 

The accuracy of the CDDM model in handling the FSI problem is first verified against 

literature data on the sedimentation of a single sphere. The verified model is then 

applied to an ATR system agitated by a solid bar. The experimental measurement of 

fluid velocities in the ATR system is challenging due to the lateral shaking of the reactor 

body. Therefore, in this work, we do not attempt to carry out a detailed model validation 

for the ATR system due to the absence of appropriate data, but instead our aim is to 

understand the flow pattern and mixing mechanism under typical operational 

conditions. The performance of different pressure-strain models in the Reynolds stress 

model (RSM) employed to predict turbulent flow is also evaluated. Data analysis is 

focused on the dynamics of the agitator, its flow field and power consumption. The 

dominant mixing mechanism is elucidated by considering both the viscous and 

turbulent dissipations within the flow.   

 

2. Computational model for multibody motion and fluid flow 

2.1 Model development 

In the present model, the solid body, or the structure, immersed in the fluid is regarded 

as a single element, as schematically shown in Fig. 2. By analogy with discrete 

element modelling, the structure’s motion is tracked using Newton’s second law of 

motion. Factors determining its motion are (i) gravity, (ii) hydrodynamic forces arising 
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from the fluid-structure interaction, and (iii) forces due to collision between solid bodies. 

The governing equation of the motion can now be written as: m ݐ݀ܞ݀ ൌ ۴௙ ൅ ۴௖ ൅  (1) ܏݉

ܫ ݀૑݀ݐ ൌ ௙܂ ൅  ௖ (2)܂

where m is the mass, I the moment of inertia, ܞ, ૑, the translational and rotational 

velocities of the object, ۴௖ , ܂௖ the force and torques due to collision between solid 

bodies, and ۴௙  .௙ the force and torques due to the hydrodynamic effect܂ , 

 

 

Fig. 2. Schematic demonstrating the modelling approach. ș defines the angular 

position of the immersed structure. 

 

In terms of fluid forces, the present model simultaneously solves the multibody motion 

by modelling the collision using a soft-sphere model and resolving the fluid flow by 

solving the governing equations of the single-phase flow. In conventional CFD-DEM 

coupling, the fluid force imposed on the moving body is calculated by empirical or 

semi-empirical force laws. The cell size for CFD calculation is normally required to be 

larger than the size of the solid body. Consequently, the detailed flow structure, such 

as boundary layer, induced by the moving body cannot be resolved properly. In 

contrast, the present model calculates the fluid force by integrating the fluid stress ો 

over the surface of the movable body on a body-fitted tetrahedral mesh. The 

movement of the solid body is accommodated by dynamic meshing. The momentum 

change of the movable body inversely affects the flow field, achieving a two-way 

coupling between the fluid flow and multibody motion. 
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In terms of solid body forces, the collision between moving bodies is again modelled 

by a soft sphere model. It allows for overlap between solid bodies, thereby allowing 

the contact force to be determined. The collision force ۴௖ includes the normal contact 

force  ۴௖௡ , the normal damping force  ۴ௗ௡ , the tangential contact force ۴௖௧  and the 

tangential damping force ۴ௗ௧ , while the collision torque ܂௖ is composed of ܂௧ caused 

by tangential force and ܂௥ due to rolling friction resulting from the elastic hysteresis 

losses or viscous dissipation (Zhou et al., 1999). The calculation of collision forces is 

based on the magnitude of overlap, in which the normal contact behaviour is described 

by Hertz theory while the tangential elastic frictional contact is based on Mindlin and 

Deresiewicz theory (Mindlin and Deresiewicz, 1953). Table 1 lists the equations used 

for the calculation of these forces. The details can be found elsewhere (He et al., 

2018a; He et al., 2015; He et al., 2018b).  

 

Table 1 Equations used to calculate forces and torques in this work. 

Terms Equation 

Fluid force ۴௙ ൌ ඾ ો ή ෝܖ ݀ܵ 

Fluid torque ܂௙ ൌ ඾ ܀ ൈ ሺો ή ෝሻܖ ݀ܵ 

Normal contact force ۴௖௡ ൌ Ͷ͵ ଵכܴכܧ ଶΤ ௡ଷߜ ଶΤ  ෝܖ

Normal damping force ۴ௗ௡ ൌ ܿ௡൫ͺ݉כܧכඥܴߜכ௡൯ଵ ଶΤ  ௡ܞ

Tangential contact force ۴௖௧ ൌ െߤ௧ȁ۴௖௡ȁ ൥ͳ െ ቆͳ െ min൫ȁ઼௧ȁǡ ௧ǡ୫ୟ୶ߜ௧ǡ୫ୟ୶ ൯ߜ ቇଷ ଶΤ ൩ ෡઼௧ 
Tangential damping force ۴ௗ௧ ൌ െܿ௧ ቆ͸ߤ௧݉כܧȁ۴௡ȁ ඥͳ െ ȁ઼௧ȁ ௧ǡ୫ୟ୶ߜ௧ǡ୫ୟ୶Τߜ ቇଵ ଶΤ  ௧ܞ
Torque due to tangential force ܂௧ ൌ ሺ۴௖௧ ൅ ۴ௗ௧ሻ ൈ  ܀

Rolling torque ܂௥ ൌ ௥ܴȁ۴௖௡ȁ૑ෝߤ ௡ 

 

In Table 1, the effect radius ܴכ is calculated as, ͳ Τכܴ ൌ ͳ ܴ௜Τ ൅ ͳ ௝ܴΤ  (3) 

with ܴ୧ and ܴ୨ being the radius of two bodies in contact. The effect elastic modulus כܧ 
is calculated as, 
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ͳכܧ ൌ ሺͳ െ ௜ଶሻ௜ܻߥ ൅ ൫ͳ െ ௝ଶ൯௝ܻߥ  (4) 

where ௜ܻ and ߥ௜ are the Young’s Modulus and Poisson’s ratio of particle ݅, respectively; ߜ௡ and ઼௧ represent the overlap in normal and tangential directions; ߜ௧ǡ୫ୟ୶ ൌ ʹ௧ሺߤ െ ʹ௡ߜሻߥ െ ߥʹ  (5) 

with ߤ௧ the sliding friction and ߤ௥ the rolling friction and ෡઼௧ ൌ ઼௧ ȁ઼௧ȁΤ .; ૑ෝ ௡ ൌ ૑௡ ȁ૑௡ȁΤ   (6) 

with ૑௡  the angular velocity; The damping coefficient can be linked to the restitution 

coefficient ݁ as, ܿ௡ ൌ lnሺ݁ሻඥߨଶ ൅ lnଶሺ݁ሻ (7) 

where ݁ is defined as the ratio of post-collisional contact velocity to the pre-collisional 

contact velocity and ܿ୲ is the tangential damping coefficient. 

 

2.2 Model implementation 

The commercial CFD software, ANSYS Fluent v17.1, was used as the modelling 

platform to solve the standard continuity and Navier-Stokes equations, closed using 

the turbulence models discussed further below, based on a finite-volume discretization 

scheme.  

 

For dynamic meshing, there are three types of meshing methods available in ANSYS 

Fluent, namely, smoothing, dynamic layering and remeshing. Mesh smoothing only 

works on interior cells by adjusting the position of nodes to improve cell quality, without 

affecting the number of nodes and their connectivity. Dynamic layering is only 

applicable to prismatic meshes by adding or removing layers of prismatic cells 

adjacent to a moving boundary to account for its translational motion. It is thus not 

applicable for the multibody motion discussed here. Remeshing, on the other hand, 

agglomerates degenerated cells and then locally remeshes those agglomerated cells 

or faces. In the present study, the smoothing and remeshing methods were adopted 

for dynamic meshing. For spatial discretization, an inflation layer of prismatic cells was 

created on the surface of the solid body while the rest of the domain was discretized 

using tetrahedral cells due to its compatibility with remeshing. The inflation layer was 

grouped into a separate cell zone. By doing so, rigid body motion was also specified 
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to the inflation layer to preserve the cells throughout the simulation and the 

remeshing/smoothing is only performed on the remaining tetrahedral CFD cells. 

Remeshing is triggered only when the size and skewness (defined as the difference 

between the shape of the cell and the shape of an equilateral cell of equivalent volume) 

of the cell exceeds a specified threshold. It is worth noting that the current approach 

requires a finite space between the surfaces of two approaching bodies due to the use 

of attached rigid prism layers. This is resolved by using a virtual collision radius that is 

slightly larger than the actual body radius to avoid mesh deformation of the boundary 

layer. This virtual collision radius is then determined by the physical size of the solid 

body and also the thickness of the inflation layer. In some cases, if resolving the 

boundary layer is not a critical issue, the virtual collision radius can be the same as 

that of the physical collision radius. However, it has no effect on the ATR system 

discussed above since direct physical contact between the agitator and the tube is 

avoided through the use of end caps attached to the ends of the agitator, hence leaving 

a gap between the internal agitator and the external tube. Therefore, the virtual 

collision radius for ATR system is the same as the size of the plastic cap.The proposed 

model was fully implemented through the user defined functions. Based on this 

general purpose fluid flow solver, there is no limitation to the complexity of the 

geometrical structure of the immersed solid body, whereby the incorporation of new 

designs of immersed structure is readily accomplished.  

 

The calculation sequence was as follows. At each CFD time-step, the hydrodynamic 

forces and torques acting on the immersed body were evaluated by summing up 

(discrete integration) the pressure and viscous stress over its surface after resolving 

the surrounding flow field. The collision forces were calculated only if the solid body 

was in contact with the bounding walls. The translational and angular velocities of the 

solid body were then calculated from the resulting forces and torques by means of an 

explicit time integration method (forward Euler method), which were later assigned to 

the immersed object as a boundary condition in the CFD solver. The CFD solver 

subsequently used this information data to determine the new position of the object 

and to update the flow field for the next time-step. It is worthwhile to note that CFD 

time step is not only limited by the CFL(Courant-Friedrichs-Lewy) condition but also 

the propagation of Rayleigh wave between two colliding bodies, as it needs to be 

sufficiently small to resolve the collision between solid bodies (Zhu et al., 2007).   
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3. Validation of fluid structure interaction: falling sphere 

To validate the proposed CDDM model, the settling of a single sphere in silicon oil was 

simulated, for which detailed experimental measurements of trajectories and velocities 

of the sphere are available (ten Cate et al., 2002). This test serves as a validation of 

the proposed method in handling FSI problems and is closely related to the modelling 

of the ATR system since the fluid force plays a key role in determining the 

displacement and the flow field surrounding the free-moving object in both cases. A 

schematic view of the simulation setup is shown in Fig. 3.  A spherical particle with a 

diameter of 15 mm and density of 1120 kg m-3 was released from a height of 120 mm 

in a closed box. Different combinations of viscosity and density were considered in the 

experimental work of (ten Cate et al., 2002), resulting in four Reynolds numbers, Re, 

as listed in Table 2, where the Re is defined based on the terminal velocity of a sphere 

in an infinite medium (ten Cate et al. (2002). The relation for the drag coefficient ୢܥ 

due to (Abraham, 1970) was used to determine the terminal velocity ܷஶ, given as: ୢܥ ൌ ʹͶሺͻǤͲ͸ሻଶ ൬ͻǤͲ͸ξܴ݁ ൅ ͳ൰ଶ
 (8) 

with the characteristic time ݐஶ defined when the velocity of the sphere reached 99.99% 

of the terminal velocity. As shown in Table 2, the difference between predicted (Usim) 

and theoretical (ܷஶ) terminal velocities is within 10%, with the difference mainly due 

to wall effects, while the average difference with experimental (Uexp) values is less than 

5%. 

               

      (a)                                                       (b) 

Fig. 3 (a) Schematic view and (b) mesh representation of the simulation of a single 

settling sphere (only the central slice is shown). 
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Table 2 Experimental conditions, and measured and predicted terminal velocities. 

Case 

Fluid 

Re ݐஶ(s) 

Terminal velocity (m s-1) ୱܷ୧୫ܷஶ  
ୱܷ୧୫ୣܷ୶୮ Density 

(kg m-3) 

Viscosity 

(Nsm-3) 
ܷஶ ୣܷ୶୮ ୱܷ୧୫ (Standard 

deviation) 

1 970 0.373 1.50 0.182 0.038 0.0369 0.0349 (4.9×10-5) 0.918 0.946 

2 965 0.212 4.10 0.263 0.060 0.0589 0.0576 (3.5×10-4) 0.960 0.978 

3 962 0.113 11.6 0.366 0.091 0.0871 0.0875 (7.5×10-5) 0.962 1.004 

4 960 0.058 31.9 0.476 0.128 0.1232 0.1220  (2.8×10-4) 0.953 0.990 

 

Fig. 4 compares the sphere trajectories and settling velocities obtained experimentally 

and using the present model for the four cases listed in Table 2. The variation of the 

transient velocity of the sphere suggests that it experiences three stages during 

settling: a short period of acceleration, steady fall and a quick deceleration when 

approaching the bottom wall. As shown in Fig. 4, the predicted trajectories and 

velocities of the falling sphere are in good agreement with the experimental 

measurements.  The dynamic motion of the sphere in the high Re case, case 4, is well 

captured. Some discrepancy is, however, noticeable for the case of the smallest 

Reynolds number (case 1) when the sphere is close to the bottom of the box. This 

implies that the model is weakly sensitive to the Reynolds number. The discrepancies 

observed in the acceleration period may be due to experimental error, such as release 

of the sphere in experiments, and numerical error due to interpolation of the velocity 

from the trajectory of the sphere and resolution of high speed camera. Discrepancies 

in the near wall region can be to some extent attributed to the presence of the attached 

rigid prismatic cells of the boundary layer which prevents the sphere from contacting 

with the bottom wall. This is also the reason why the height of the sphere does not 

reduce to zero, as shown in Fig. 4(b). For the ATR system, however, there are caps 

at both ends of the agitator to prevent direct contact with the external tube. It is thus 

reasonable to assume that the present model is adequate for the simulation of the 

ATR system.  
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Fig. 4. Comparison between (a) trajectories and (b) velocities of a falling sphere 

obtained by simulation and measurement (ten Cate et al. (2002). 

 

Apart from sphere motion, the prediction of the flow field is equally important. Fig. 5 

shows the predicted flow fields for two cases: Re = 1.5 and Re = 31.9. For the larger 

Re, the wake behind the failing sphere is more developed and elongated. When the 

sphere approaches the bottom of the box, both cases show a deformed flow in front 

of the sphere, leading to a lateral motion of the fluid. The profiles of vertical velocity 

noted above are qualitatively in line with those obtained using the lattice-Boltzmann 

method (ten Cate et al., 2002). According to ten Cate et al. (2002), the difference in 

the shape of the flow field is related to the ratio of the particle advection time (߬ୟ ൎ݀୮ ஶΤݑ ) and the momentum diffusion time (߬ఔ ൎ ݀୮ଶ Τߥ ) at different Reynolds numbers. 
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For large Re, the momentum takes longer time to diffuse than particle advection, 

thereby leading to an elongated wake. 

 
                                 t = 0.56s             t = 1.6s              t = 3.56s              t = 3.8s 

         (a) 

 
                                        t = 0.26s             t = 0.6s               t = 1.14s                 t = 1.6s 

           (b) 

Fig. 5 Contours of velocity magnitude during a sphere settling at (a) Re = 1.5 and (b) 

Re = 31.9.  

 

In terms of energy dissipation, the faster the sphere moves, the more energy is 

imparted to the fluid and thus a larger volume is required to convert this to heat.  Since 

the Reynolds number of sedimentation is quite low (Re < 32), the majority of the 

energy is consumed through viscous dissipation. Hence, the total energy dissipation 

rate can be estimated by integrating the viscous dissipation over the whole volume of 

the fluid, which can be given as, ߝ ൌ න ૌ઻ሶ ܸ݀ (9) 

with ૌ being the fluid stress and ઻ሶ  the strain rate. After the sphere reaches the terminal 

velocity, the rate of energy input is due to the loss of potential energy which can be 

calculated as, ൫ߩ୮ െ ୤൯݃ߩ ୮ܸܷ୫ୟ୶ (10) 
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where ୮ܸ  is the volume of the sphere and ܷ୫ୟ୶  is the terminal velocity the sphere 

reaches without the influence of the bounding walls. As shown in Fig. 6, the rate of 

energy consumption due to viscous dissipation at the terminal velocity matches well 

with the rate of energy input due to the loss of potential energy, with differences of 

within 5% further confirming the validity of the present model in predicting fluid-

structure interaction from the perspective of energy conservation. 

 

Fig. 6 Comparison of energy input and consumption rate due to viscous dissipation. 

 

4. Application to ATR system agitated by a solid bar 

4.1 ATR model setup and simulation conditions 

Basic hydrodynamic parameters, such as the characteristic velocity or a Re number, 

are generally not available for the ATR systems. However, the system has two 

directions of motion, a horizontal motion driven by the lateral oscillation, and a 

pressure driven axial flow. The axial flow velocity can be used to define an axial 

Reynolds number:  ܴ݁ୟ୶ ൌ ୲ܦߩ ୟܸ୶ߤ  (11) 

with ܦ୲ the diameter of the reactor tube. The temporal velocity and displacement of 

the lateral oscillation were modelled as sinusoidal motion, given by: ܷሺݐሻ ൌ ሻݐሻ (12) ܺሺݐ݂ߨʹcosሺܣ݂ߨʹ ൌ  ሻ (13)ݐ݂ߨʹsinሺܣ

with f the excitation frequency and A the oscillation amplitude. The lateral oscillation 

was imposed as a velocity boundary condition in the CFD code. Radial mixing is driven 
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by the agitator. As the agitator speed relative to the external wall is unknown, we define 

a characteristic radial velocity ୫ܸୟ୶ based on the maximum speed of lateral oscillation, 

which is calculated as:  

୫ܸୟ୶ ൌ  (14) ܣ݂ߨʹ

The agitator, or radial, ܴ݁୰ can now be defined based on the maximum lateral speed, 

and the agitator diameter ܦୟ: ܴ݁୰ ൌ ୟܦߩ ୫ܸୟ୶ߤ  (15) 

In the present study, an ATR system agitated by a solid bar is investigated. The 

diameter of the agitator and the external tube are 14 mm and 22 mm, respectively, as 

shown in Fig. 7(a). The device is designed for residence times of 2-60 min resulting in 

a superficial axial velocity ୟܸ୶  between 0.00123 m s-1 and 0.0368 m s-1. The 

corresponding ܴ݁ୟ୶ ranges from 27 to 810. Typically, the lateral motion is the result of 

frequencies f between 1 and 6 Hz and amplitudes A of 10-25 mm, giving a radial ܴ݁୰ 
between 800 and 13,000. Comparing the radial and axial Reynolds numbers it is clear 

that the motion in the device is dominated by radial flows induced by the lateral 

movement. 

 

It is prohibitive to model the whole length of the reactor tube mainly due to the 

computational expense associated with dynamic meshing and turbulence modelling. 

Hence, only a section of the ATR system with a length of 44 mm was modelled. A 

periodic boundary condition was applied in the axial direction by imposing a mean 

pressure gradient as a source term to the momentum equations used to derive the 

axial flow. The working fluid was water. For the periodic condition, a mass flow rate of 

0.002 kg s-1 was imposed along the axial direction of the reactor tube which 

corresponds to a superficial axial velocity of 0.0088 m s-1. In the simulations, a 

constant frequency of 5 Hz and amplitude of 12mm were used (see Table 3). For the 

simulated case, the axial Reynolds number ܴ݁ୟ୶ was 192 based on the axial flow rate 

while the radial Reynolds number ܴ݁୰ was 5268 based on the maximum velocity of the 

tube. Fig. 7(b) shows the initial computational mesh used in this study, which consists 

of two components: a prism mesh in the boundary layer and a tetrahedral mesh in the 

rest of the computational domain. An enhanced wall treatment was used with the 

turbulence modelling in the near-wall boundary layer to capture the flow characteristics 

in the viscous sub-layer.  
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                                  (a)                                                                            (b) 

Fig. 7. (a) Geometrical and (b) mesh representation (cut by two planes for better 

visualization) of the simulated ATR system agitated by a solid bar (caps are not 

shown).  

 

As shown in Fig. 1, end caps are present to prevent the agitator from direct contact 

with the reactor tube. To model structure-structure interaction, the collision diameter 

used to determine when a collision between the agitator and the reactor tube happens 

was thus determined by the size of the end caps. All the parameters used in the 

simulations are summarized in Table 3, which are typical of design and operational 

parameters. Initial sensitivity studies showed that the contact parameters, such as the 

Young’s modulus, Poisson ratio, sliding friction and damping coefficients, have little 

impact on the dynamics of the internal agitator. The rolling friction coefficient affects 

the rotational speed of the agitator, whose value was chosen to give a typical peak 

rotational speed around 10 rad/s.  

 

Table 3 Parameters used in simulations. 

Parameters Value 

Amplitude, A (mm) 12 

Frequency, f  (Hz) 5  

Thickness of end cap, ܵୡୟ୮(mm)   1.0 

Mass of agitator, m (kg) 0.0846 

Moment of Inertia, I (kg m2) 7.191 × 10-6 

Young’s modulus, E (Pa) 1.0 × 108  

Poisson ratio, Ȟ 0.3 
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Rolling fiction coefficient, ߤ୰ 0.02 

Sliding friction coefficient, ߤ୲ 0.3 

Damping coefficient, ܿ୬ǡ ܿ୲ 0.2 

Fluid density, ߩ (kg m-3) 998.2 

Viscosity, ߤ (kg m-1 s-1) 0.001 

 

Sub-processes, such as bubble collision, and particle dispersion, depositions and 

resuspension that may occur in certain types of ATR require accurate prediction of the 

turbulence in the reactor. Power consumption is also often used as a criteria for device 

scaling, and this also calls for accurate predictions of turbulence levels. In this study, 

turbulence in the ATR system was modelled using a Reynolds stress model (RSM). 

The RSM explicitly solves transport equations for each component of the Reynolds 

stresses without relying on the hypothesis of an isotropic eddy-viscosity. The stress 

equations are solved in conjunction with an equation for the turbulence energy 

dissipation rate. The effect of the anisotropic nature of turbulence is accounted for in 

Reynolds stress models in a more rigorous manner. It is thus expected to yield more 

accurate predictions of the flow in the ATR system. In the RSM, the stress transport 

equation is written as: ߲߲ݐ ൫ݑߩపᇱݑఫᇱതതതതതത൯ ൅ ௞ݔ߲߲ ൫ݑߩ௞ݑపᇱݑఫᇱതതതതതത൯ ൌ ǡ௜௝்ܦ ൅ ௅ǡ௜௝ܦ ൅ ௜ܲ௝ ൅ ௜௝ߎ ൅ ௜௝ߝ ൅ ܵ (16) 

with the two terms on the left hand side being the local time derivatives of the stress 

and convective transport, respectively, ்ܦǡ௜௝  is the turbulent diffusion term, ௅ǡ௜௝ܦ   the 

molecular diffusion term,  ௜ܲ௝ the stress production term, ߎ௜௝ the pressure-strain term, ߝ௜௝  the dissipation term and ܵ  a source term. The pressure-strain term acts to 

redistribute energy among Reynolds stresses. Thus, the performance of an RSM 

strongly depends on the closure model for the pressure-strain correlation.  

 

In this study, the performance of three models for the pressure-strain term was 

evaluated, namely the quadratic pressure-strain model (Speziale et al., 1991), the 

stress-omega pressure-strain model (Wilcox, 1998) and the stress-baseline (BSL) 

pressure-strain model. The quadratic model is based on an -equation (where ߝ is the 

turbulence energy dissipation rate) and uses a quadratic relation for the pressure-

strain correlation, while the other two models are -based (߱ ൌ ߝ ݇Τ , with ߱  the 
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specific dissipation rate and k the turbulence kinetic energy) and use a linear model 

for the pressure-strain correlation. The advantage of the ߱-based equations is that 

they allow for a more accurate near-wall treatment by automatically switching from a 

wall function to a low-Reynolds number formulation based on the mesh spacing. 

Compared to the stress-omega pressure strain model, the stress-BSL pressure-strain 

approach adopts a blending between the k- model near the surface and the k- model 

in outer regions of the flow, and thus removing the sensitivity to freestream conditions 

observed with the stress-omega pressure-strain model. 

 

For discretization, the least squares cell-based gradient method was adopted, whilst 

the QUICK scheme was used for momentum and a second-order scheme for pressure 

interpolation. The SIMPLE scheme was used for pressure-velocity coupling. The 

method is second-order accurate in both time and space.  

 

4.2 Grid independence  

Grid resolution is a key factor affecting the numerical accuracy and the computational 

expense of CFD simulation. Common practice is to perform sensitivity tests to grid 

resolution by refining the finite-volume cell size and/or its distribution until no 

noticeable difference is observed in the flow variables of interest. However, the cell 

number cannot be maintained during the process of remeshing due to the continuously 

deforming domain. In fact, the cell number during remeshing is indirectly controlled by 

the thresholds of the cell size and the cell skewness, beyond which the cells are 

marked for smoothing or remeshing at the next time step.  

 

In this study, variation in grid resolution was achieved by starting from the same initial 

grid while using different criteria for remeshing. The threshold of cell skewness was 

set to 0.75 to avoid excessive deformation of the grid cell. Variation in grid resolution 

was accomplished by using different size thresholds: 0.8mm, 1.0mm and 1.2mm. For 

this exercise, turbulence was modelled using RSM with the quadratic pressure-strain 

model. By tracking the cell number in the system, significant fluctuations in that 

number were observed during the process of remeshing, as shown in Fig. 8. This is 

primarily caused by the periodic motion of the agitator, leading to a repeatable change 

of the computational domain. The number of the grid cells increases with decreasing 
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threshold of the cell size. The degree of fluctuation in the cell number for the smallest 

size threshold (0.8mm) is lower than for the other cases, suggesting that grid 

resolution can be better preserved by a smaller size threshold during the process of 

remeshing.  

 

Fig. 8.  Time evolution of the number of grid cells of the simulated ATR system. 

 

Fig. 9 shows the temporal evolution of the relative translational and angular velocities 

of the agitator. Regular fluctuating patterns are observed shortly after the start-up 

phase, indicating a well-behaved periodicity. The results from the different size 

thresholds collapse onto each other, with a standard deviation smaller than 0.01%. 

This therefore suggests that the effect of grid resolution on the motion of the agitator 

is very small within the considered size range.  
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Fig. 9. Influence of size threshold of dynamic meshing on the motion of the agitator 

in the reference frame of the tube: (a) translational motion and (b) rotational motion. 

 

The same conclusion can also be drawn regarding the induced flow structure.  Fig. 10 

shows the mean velocity profile of the fluid along a vertical line located at the centre 

of the reactor tube. The velocities are sampled in the reference frame of the tube. 

There is no velocity information in the range of -6 mm to 4 mm due to the presence of 

the agitated bar. Three different phases are selected, with no notable difference 

observed. Similar results were found to for the fluid’s turbulence quantities. Since both 

the agitator’s motion and the induced flow structure show negligible variation, it is 

reasonable to conclude that the selected grids are well suited for the flow analysis in 

the ATR system. Nevertheless, to be conservative, the analysis that follows is based 

on the case with a size threshold of 0.8 mm during dynamic meshing. 
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Fig. 10. Profile of fluid mean velocity along the vertical middle line obtained using 

different size thresholds of dynamic meshing at different phases, in which phase A = 

0, B = 0.2 and D = 0.7. 

 

4.3 Dynamics of the agitator 

Due to the periodicity of the sinusoidal shaking, phase-averaged results are presented 

in the following. A total physical time of 4 s was simulated, corresponding to 20 periods 

of oscillation. Simulation was sampled after an initial period of 2 s. The choice of 

pressure-strain term in the RSM was found to have a negligible impact on the motion 

of the agitator, hence only the results derived using the quadratic pressure-strain 

model are shown below. The displacement of the reactor tube and the agitator, shown 

in Fig. 11(a), and the velocity of the tube, Fig. 11(b), are presented in the global 

reference frame; while the velocity of the agitator is presented in the reference frame 

of the tube, Fig. 11(b). This is done as it is the relative velocity that is driving the flow 

inside the tube.  

 

The maximum relative velocity of the agitator is approximately 0.138 m/s which is 

about 36.6% of the maximum velocity of the shaking tube. If the radial Reynolds 

number were redefined based on the agitator’s velocity, ܴ݁୰ would change from 5268 

to 1928, indicating a transitional flow regime. Overall, the motion of the agitator shows 

a phase lag compared that of the tube. From phase 0 to ʌ/2, the reactor tube moves 

toward the right hand side with a decreasing velocity, while the agitator accelerates 

towards the bottom of the tube followed by a deceleration when it moves upwards. 

During this stage, the angular velocity of the agitator increases from 2.25 rad/s to a 

peak of 8.81 rad/s at phase 0.5ʌ (Fig. 11(c)), suggesting that the frictional force resists 

translational motion whilst it facilitates rotation. After 0.5ʌ, there is a small fluctuation 

in the agitator’s velocity, especially in the vertical direction. This is mainly caused by 

the reverse of the tube’s direction of motion which increases the contact force and thus 

the frictional force acting on the agitator. In addition, the reduction in the angular 

velocity of the agitator indicates that friction starts to facilitate translational motion, 

resulting into a slight increase in the translational velocity (Fig. 11(b)). Fig. 11(d) shows 

the overlap į used in the calculation of contact force between the agitator and the tube, 

where ߜ ൌ ݀ ൅ ݎ ൅ ܵୡୟ୮ െ ܴ, with d the distance between the agitator’s centre and the 
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centre of the moving tube, r is the radius of the agitator and R the radius of the tube. 

The variation of the overlap is less than 4% of the end cap’s thickness and always 

greater than 0, indicating that the agitator does not bounce off the surface of the tube 

during oscillation. Fig. 11(e) plots the velocity magnitude as a function of the angular 

position of the agitator, where the angular position is defined based on the centre of 

the oscillating tube, as indicated in Fig. 2. It is found that the moving regime of the 

agitator is between -72o and 72o. The agitator follows different velocity paths when it 

moves up and down. Moreover, the location of the maximum velocity does not occur 

at the bottom of the tube ( =0o). The maximum velocity occurring at a negative angle 

is mainly due to the phase lag between the motion of the agitator and the oscillation 

of the external tube. As shown in Fig. 11a, when the agitator reaches the bottom of 

the tube (0.2ʌ), the external tube is still accelerating and thus leading to further 

increase of agitator’s velocity. 
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Fig. 11. (a) Displacement of the agitator (Xa_G, Ya_G) and the tube (Xt_G) in the global 

reference frame, nondimensionalized by the amplitude of shaking and illustration of 

seven selected phases: A=0, B=0.2, C=0.4, D=0.7, E=1.0, F=1.2 and G=1.4., 

(b) translational velocity of the agitator in the reference frame of the tube (Va_T, Vxa_T 

and Vya_T) and translational velocity of the tube (Vt_G) in the global reference frame, 

(c) angular velocity of the agitator (Ȧa), (d) overlap during collision force calculation, 

and (e) Velocity of the agitator as a function of angular position in the reference frame 

of the tube, where șa is defined relative to the vertical line at the centre of the tube, as 

shown in Fig. 2. 

 

In the ATR system, the agitator is driven by a combination of gravitational, fluid and 

contact forces due to interaction with the reactor tube. The present model allows for a 

direct comparison of these forces due to their explicit consideration in the collision 

model. Fig. 12 shows the pressure and viscous force due to fluid flow predicted by 

different pressure-strain models in the RSM during an oscillation period. The trends of 

these two forces are similar for different pressure-strain models. During the period of 

upward agitator motion (0.2ʌ<ĭ<0.7ʌ), there is a sudden increase in the pressure 

following a sharp drop, which is related to the slight increase of the translational 

velocity due to the reverse of the tube oscillation. This slight increase of the 

translational velocity likely also leads to the increase of the viscous force. However, 

this effect is offset by the decreasing angular velocity, thus leading to a continuous 

reduction in the viscous force. At the stage of downward motion (0.7ʌ<ĭ<1.2ʌ), both 

the pressure and the viscous force show a considerable increase due to the combined 

effect of the increasing translational and rotational velocities. Comparable results were 

also obtained by the other pressure-strain models. The pressure predicted by the 
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quadratic model is in general slightly lower than that of the other pressure-strain 

models, while the vicious force predicted by the quadratic model is significantly smaller. 

It should be noted that the magnitude of fluid forces are much smaller compared to 

that of the collision force, suggesting that the motion of the agitator is mainly dominated 

by inertia and interaction with the tube and thus the dynamics of the internal agitator 

is somewhat independent on the choice of turbulence model. 

 

 

0.0 0.4 0.8 1.2 1.6 2.0
0.00

0.05

0.10

0.15

0.20

0.25

P
re

ss
ur

e 
fo

rc
e 

(N
)

Phase,  ()

 Stress-Omega
 Stress-BSL
 Quadratic

(a)

0.0 0.4 0.8 1.2 1.6 2.0
0.000

0.001

0.002

0.003

0.004

0.005

V
is

co
us

 fo
rc

e 
(N

)

Phase, ()

 Stress-Omega
 Stress-BSL
 Quadratic

(b)



25 

 

Fig. 12. Comparison of (a) pressure force, (b) viscous force and (c) contact force 

acting on the agitator by different pressure-strain models in the RSM. 

 

4.4 Induced flow structure 

To better assess the performance of the different pressure-strain models in the RSM, 

comparisons are made in terms of both the flow pattern and turbulence quantities at 

different phases (seven in total), as illustrated in Fig. 13(a). The results of a laminar 

flow model are also presented for comparison. An illustration of the agitator’s position 

together with its rotational direction are also shown in Fig. 13. The agitator in phases 

C, E and G is located at the same vertical position as in phase A, but with a different 

direction of motion. The agitator in phases B and F is located at the bottom of the tube, 

while the agitator reaches its highest point during the oscillation in phase D.  

 

Fig. 13 shows the velocity profile of the fluid flow in the reference frame of the tube. 

The velocity distributions are comparable amongst all the models, with large values 

localized in the contact region between the agitator and the reactor tube. The fluid is 

squeezed out of the contact region, forming a local region with low pressure. Similar 

magnitude of the fluid velocities are obtained by the stress-omega and stress-BSL 

pressure-strain models, which are close to that of the laminar model but slightly larger 

than that of the quadratic model. The difference is more significant when the agitator 

reaches the highest point (in phase D). Moreover, the velocity distribution of the 

quadratic pressure-strain model is smoother than that of the other two approaches, 

indicating larger dissipation by turbulence. This is primarily related to the fact that both 

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.4

0.8

1.2

1.6

2.0

C
on

ta
ct

 fo
rc

e 
(N

)

Phase,  ()

 Stress-Omega
 Stress-BSL
 Quadratic

(c)



26 

the stress-omega and the stress-BSL pressure-strain models are based on turbulence 

frequency, whilst quadratic model is based on turbulence eddy dissipation.  

 

 
(a) Stress-omega pressure-strain model 

 
(b) Stress-BSL pressure-strain model   

 
(c) Quadratic pressure-strain model 
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(d) Laminar flow model 

Fig. 13. Velocities in the reference frame of the reactor tube obtained using different 

pressure-strain models in the RSM at phases A=0, B=0.2, C=0.4, D=0.7, E = 

1.0, F = 1.2 and G =1.4. 

 

Instantaneous velocity vectors at different phases in the reference frame of the tube 

are also shown in Fig. 13. The dominant flow pattern is similar for all the models, with 

the fluid being pushed and divided into separated paths. The main difference lies in 

phase D where one large turbulent eddy is clearly shown at the lower left side of the 

agitator in the quadratic pressure-strain model predictions. Moreover, the quadratic 

pressure-strain model produced a more orderly flow than that of the other models. The 

irregularities seen in the fluid structure predicted by the other models are due to the 

flow in the axial direction. Additionally, the flow structures are predicted to be largely 

symmetrical by the quadratic pressure-strain model, as shown in phases A and E, 

when the agitator is located at the same height but at different sides of the tube.   

 

In mixing devices, energy is mainly supplied to both the bulk flow and the regions with 

high shear rate. High levels of turbulence activity and high velocity gradients are often 

associated with regions of large turbulence kinetic energy. The turbulence structure 

thus plays an important role in determining the mixing capacity and the dominant 

mixing mechanism of the reactor. It is thus worthwhile to evaluate how the turbulence 

kinetic energy, k, evolves with time and how it is distributed within the ATR system. 

Fig. 14 shows the variation of the volume-averaged turbulence kinetic energy 

predicted by different pressure-strain models in the RSM. It can be observed that k 
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fluctuates in a periodic way for both the stress-BSL and the quadratic pressure-strain 

models. The quadratic pressure-strain model gives a consistently higher level (2.3-3 

times larger) than that of the stress-BSL pressure-strain model. The turbulence kinetic 

energy peaks at around 0.5ʌ and 1.5ʌ which corresponds to the locations where the 

velocity of the tube vanishes. On the other hand, the stress-omega pressure-strain 

model yields essentially zero values, suggesting that this model is unable to capture 

the turbulence generated in the ATR system.  

 

Fig. 14. Evolution of the volumetric turbulence kinetic energy by different pressure-

strain models used in the RSM.  

 

Fig. 15 shows the corresponding distribution of the turbulence kinetic energy in 

different phases. The stress-omega model failed to predict any turbulence in the ATR 

system at all stages, and hence is not included in this figure. The overall distributions 

of k predicted by the other two models are similar, with large values localized in front 

of the agitator when it moves towards the bottom of the reactor in phase A, and 

concentrated into the wake region in phase D. It should be noted that the distribution 

of k predicted by the quadratic pressure-strain model is wider and smoother than that 

of the stress-BSL pressure-strain model in which turbulence largely occurs in the 

contact region.   
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                                               Phase A                           B                                      D 

(a) Stress-BSL pressure-strain model   

 

                                               Phase A                           B                                      D 

 (b) Quadratic pressure-strain model 

Fig. 15. Distribution of the turbulence kinetic energy using different pressure-strain 

models in the RSM in phase A=0, B=0.2 and D=0.7. 

 

Energy dissipation by turbulence is closely related to the flow structure at the 

microscale (Ng and Yianneskis, 2000). Knowledge of its magnitude and distribution is 

useful in understanding processes that depend on the degree of micro-mixing, such 

as the break-up of droplets and bubbles, chemical/biochemical reactions and particle 

dispersion. However, accurate determination of the dissipation rate is still challenging 

both computationally and experimentally, partly due to the small size of the dissipative 

scales that need to be resolved. Fig. 16 shows the distribution of the turbulence 

dissipation rate, İ, obtained by the different pressure-strain models (again excluding 

the stress-omega model as there was very little turbulence dissipation). For the other 

two models, the distribution of İ is very inhomogeneous, varying over a wide range of 

magnitudes. Results of the stress-BSL and the quadratic pressure-strain model are 

largely similar except that the latter model shows a smoother distribution of turbulence 



30 

dissipation than that of the stress-BSL model. This is in line with the distribution of the 

turbulence kinetic energy.   

 
                                               Phase A                           B                                      D 

 (a) stress-BSL pressure-strain model   

 
                                               Phase A                           B                                      D 

 (b) Quadratic pressure-strain model 

Fig. 16. Distribution of the turbulence energy dissipation rate using different 

pressure-strain models in the RSM in phase A=0, B=0.2 and D=0.7. 

 

4.5 Power consumption 

The power input by the agitator is an important parameter for reactor design, affecting 

mixing and circulation time, and thus the performance of heat and mass transfer 

processes. The accurate estimation of power input is important for the scale-up, 

operation and optimization of reactor designs (Taghavi et al., 2011). For the ATR 

system, the power input only comes from the contribution of the agitator. The specific 

power consumption can be calculated as:  

ܲ ܸΤ ൌ െ σሺ۴ ή ܞ ൅ ܂ ή ૑ሻܸ  
 

(17) 
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where v is the translational velocity and Ȧ the angular velocity of the agitator in the 

reference frame of the tube. F and T are the forces and torques due to the fluid flow, 

respectively.  

 

The power consumption in the ATR system can be estimated from the energy 

dissipation in the fluid. There are two types of mechanism that lead to energy 

dissipation: turbulence dissipation and viscous dissipation. The volumetric energy 

dissipation rate can be estimated as: ߝ ൌ ௧ߝߩሺ׬ ൅ ૌ઻ሶ ሻܸ݀ ܸΤ   (18) 

where ߝ௧ is the turbulence energy dissipation rate, ߬ the fluid stress and ߛሶ  the fluid 

strain rate.  

 

Fig. 17(a) shows the evolution of power input per volume predicted by the different 

pressure-strain models. The predicted power inputs are quite close for the two -

based pressure-strain models, whilst the -based quadratic pressure-strain model 

predicts a slightly lower level than the other approaches. This likely due to the 

difference in predictions of the pressure force acting on the agitator, as shown in Fig. 

12(a). It worth noting that the agitator does not always impart energy into the fluid, as 

evidenced by both the positive and negative values of the power. The negative work 

done by the agitator is mainly due to the reverse in the shaking direction of the tube. 

During this stage (0.4-0.6ʌ and 1.4-1.6 ʌ), the velocity of the tube is close to zero. 

Consequently, the agitator is no longer driven by the shaking tube, and its motion is 

increasingly affected by the fluid flow, thus leading to negative values of the power 

input.  
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Fig. 17. (a) Power input and (b) power consumption per unit volume predicted by the 

different pressure-strain models in the RSM. 

 

Fig. 17(b) shows the evolution of energy dissipation predicted by the different 

approaches. The levels of viscous dissipation predicted by the two -based pressure-

strain models are comparable, and are consistently larger than those of the quadratic 

pressure-strain model. However, the highest level of turbulence dissipation was 

predicted by the stress-BSL pressure-strain model followed by the quadratic model. 

Essentially, no turbulence dissipation was predicted by the stress-omega model. It can 

be found that, for all the pressure-strain models, most of the energy is dissipated by 

viscous dissipation rather than by turbulence dissipation. This is contrary to what 
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occurs in most chemical reactors, such as stirred tanks, in which turbulence dissipation 

is the dominant mode of energy dissipation. 

 

Fig. 18. Comparison of volumetric power input and power consumption. 

 

Lastly, Fig. 18 compares the volumetric power input with the energy dissipation 

predicted by the different pressure-strain models used in the RSM. All the models 

adopted in the study appear to fail to predict enough energy dissipation. The reason 

for this is mainly due to the unresolved dissipative scales. High-order discretization 

schemes and scale-resolving methods, such as large eddy or direct numerical 

simulation, are expected to achieve better prediction of the power consumption. 

Relatively speaking, the stress-BSL and the stress-omega pressure-strain models 

appear more successful than the quadratic pressure-strain model (39% and 38%, 

versus 18%) in predicting power consumption in the ATR system. Considering the fact 

that the stress-omega pressure-strain model fails to predict any significant levels 

turbulence in the ATR system, while stress-BSL pressure-strain model predicts the 

highest levels of turbulence dissipation, further study using the stress-BSL model is 

recommended. 

 

5. Conclusions 

In this study, a new hybrid model to predict structure-structure and the fluid-structure 

interactions encountered in new designs of mechanically agitated tubular reactor was 

proposed. The proposed model combines a soft-sphere collision model, to resolve the 

interaction between structures, with a dynamic meshing approach, to couple the 
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motion of the moving structure with the fluid flow. The fluid forces and torques acting 

on the moving structure were calculated by integrating the pressure and viscous stress 

over its surface while dynamically re-meshing the computational domain to explicitly 

resolve the surrounding flow field. Compared to existing methods for FSI and SSI, the 

proposed CDDM approach is able to handle more complex geometries and to resolve 

boundary layer more accurately due to the use of body-conformal mesh, but at a cost 

of higher computational cost due to remeshing. The proposed model is fully 

incorporated into the CFD solver ANSYS Fluent through its user defined functions, 

thus enabling further extension to more general case studies.  

 

The ability of the present model to handle FSI was demonstrated against literature 

data on the settling of a single sphere. The trajectories and velocities of the sphere 

during settling were well captured by the present model, showing quantitative 

agreement with experimental measurements. The flow structure around the sphere 

was also qualitatively captured, with an elongated wake present behind the sphere in 

the case of large Reynolds numbers. The energy consumption predicted by viscous 

dissipation was also in good agreement with the power input due to gravity, further 

confirming the validity of the present model in predicting fluid-structure interaction. 

 

The developed model was further applied to the modelling of the ATR system. 

Sensitivity tests on grid resolution during dynamic meshing were conducted by varying 

the threshold of cell size, with no noticeable differences observed in terms of the 

dynamics of the agitator and the profile of fluid velocity at different phases of the 

agitator motion. Under lateral oscillation of the reactor tube, the internal agitator 

demonstrates a collision-dominated periodic movement pattern, yielding a maximum 

relative velocity of approximately 36.6% of that of the shaking tube. The agitated flow 

pattern varies between different phases of the inner tube oscillation, with vortex 

structures formed behind the agitator when it moves to its highest point. In addition, 

turbulence is also localized into the wake region of the agitator. Contrary to most large 

scale mixing devices, viscous dissipation was found to be the dominant mechanism 

for energy consumption in the ATR system.   

 

The performance of three different pressure-strain models in the RSM was discussed. 

The pressure-strain model mainly affects the prediction of the viscous force due to 
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fluid flow. The -based quadratic model predicts the highest levels of turbulence kinetic 

energy when compared to the two -based pressure-strain models considered, with 

the stress-omega pressure-strain model failing to predict any significant levels of 

turbulence, highlighting the importance of accurate prediction in the near-wall region 

of the ATR system. Comparison between energy input and energy dissipation 

suggests an under-prediction of the energy consumption for all three pressure-strain 

models, although the stress-BSL pressure-strain model demonstrated the best 

performance when compared to the other two approaches. Further investigations 

using scale-resolving methods, such as large eddy or direct numerical simulation, 

have the potential to better capture the turbulence in the ATR system. 
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