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 

Abstract—Iterative feedback tuning (IFT) method is a 
data-driven control method, which can tune the parameters of 
the system controller without knowing the system model. 
Pneumatic artificial muscles (PAMs) are flexible actuators that 
are widely used in the field of rehabilitation robots because of 
their flexibility and light weight. However, its nonlinearity, 
difficult modeling and time-varying parameters make it difficult 
to control. In this paper, a model-free adaptive iterative learning 
control (MFAILC) method based on IFT is proposed for a 
strong nonlinear system such as PAM. The method obtains the 
dynamic linearization model of PAM behavior according to the 
dynamic linearization theorem, then designs the controller 
structure, and finally uses the IFT method to optimize the 
controller parameters. The method proposed in this paper was 
compared with the MFAILC method. The simulation results 
show that the proposed method has a faster convergence speed 
and smaller tracking errors in the desired trajectory tracking 
control, and its effectiveness is also verified. 
 

I. INTRODUCTION 

Compared with traditional manual rehabilitation, 
robot-assisted rehabilitation has many advantages, such as 
high control accuracy, good repeatability and many training 
modes. It has been used to help the elderly and the patients 
with motor disabilities to train [1]. Pneumatic artificial 
muscles (PAM) is a kind of flexible driver, which is generally 
composed of a rubber tube with an approximate cylinder 
inside and a rigid fiber braided net outside. When the PMA is 
inflated, it will expand and produce contractile movement. 
When deflated, the PMA will gradually return to their original 
size and length. Because of its advantages of imitating human 
muscles, it has been widely used in the field of rehabilitation 
robots [2]. However, due to its nonlinear characteristics and 
time-varying parameters, it is very difficult to control it 
accurately. Because the establishment of mathematical models 
of PAM is difficult, it is difficult to achieve better control 
effects by using traditional model-based control methods. 
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Therefore, it is important to find a control method that does 
not require modeling and can achieve higher control precision 
to control nonlinear systems such as PAM. 

Model-Free Adaptive Control (MFAC) is a new 
data-driven control method proposed by Hou [3]. Its controller 
design and analysis do not require the use of model 
information, only the measurement of I/O data. The basis of 
MFAC is the dynamic linearization method. By introducing 
the concept of Pseudo-partial derivative (PPD), the equivalent 
dynamic linearization model is established at each working 
point of the original nonlinear system to replace the original 
system. The PPD of the model is estimated online by using the 
I/O data of the system. On this basis, the adaptive control law 
is designed [4]. Chi combined MFAC with iterative learning 
control in his doctoral dissertation in 2006. Based on a new 
iteration related nonparametric dynamic linearization scheme, 
the model-free adaptive iterative learning control (MFAILC) 
method was proposed. The design and analysis of the 
controller only depend on the I/O data of the system, and it is a 
model-free method [5]. Mei et al. applied the MFAILC 
method to the equalization control simulation experiment of 
the urban expressway main and auxiliary road system, which 
improved the efficiency of the fast road system [6]. In 2016, 
Zhao applied a model-free adaptive iterative learning control 
algorithm based on partial format dynamic linearization to 
noncircular turning tool feed system [7]. In 2018, the 
model-free adaptive iterative learning control algorithm based 
on full-format dynamic linearization is applied to the 
noncircular turning system [8], which improves the position 
error of the system. A distributed model-free adaptive iterative 
learning control method is proposed for a class of unknown 
nonlinear multiagent systems, which ensures that all agents 
can track the required trajectories [9]. 

Iterative feedback tuning (IFT) method is a model-free 
method driven by system I/O data, presented by the Swedish 
scholar H. Hjalmarsson in 1994 [10] and is now a well- 
established design methodology [11, 12]. The specific idea of 
this method is: given the structure of the controller beforehand, 
a LQG-type optimal performance index is proposed for the 
controlled system, and the experiment is completed iteratively 
on the closed-loop system. The gradient of the performance 
index function to the controller parameters is calculated with 
the obtained data, and then the Gauss-Newton iteration 
algorithm is used to search the controller parameters which 
minimize the index function, and finally the controller 
parameter vector converges to the local minimum point. The 
advantage is that it can learn and optimize controller 
parameters from repetitive scenarios without knowing the 
actual system, resulting in better controller performance [13, 
14]. In 2017, a robust iterative feedback tuning technique was 
proposed for repetitive training control of compliant parallel 
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ankle rehabilitation robots [15]. In 2016, Marcel develop an 
IFT approach with robustness constraints [16]. Instead of 
exploring the conventional model-based approaches, a 
multiple degree-of-freedom constrained iterative feedback 
tuning (CIFT) method is proposed [17]. Wang introduces the 
iterative feedback tuning into a Youla parameterization 
scheme for fault-tolerant control [18]. A model-free robust 
control method in form of iterative feedback tuning is 
proposed to tune the robot controller parameters [19]. 

The application of PAM-driven rehabilitation robots has 
become more widespread. In the recovery process of 
rehabilitation robots-assisted, fast tracking of desired 
trajectory means that time overhead can be reduced, which is 
very important for improving control performance. Fast 
tracking of desired trajectory means improving the 
convergence speed of MFAILC. However, the current 
research on the convergence of MFAILC method is limited. 
The convergence speed of the MFAILC method depends on 
the value of the controller parameters. When there is no 
suitable method to adjust the controller parameters, it can only 
be adjusted manually, which is a great burden.  In this paper, a 
model-free adaptive iterative learning control method based 
on iterative feedback tuning is proposed, which combines 
MFAILC with IFT. This method can adjust the controller 
parameters to improve the convergence speed of the controller. 
The simulation results show the effectiveness of the method. 
The rest of this paper is arranged as follows: Section II 
introduces the design of the controller and the tuning method 
of its parameters. In Section III, simulation experiments are 
carried out. The conclusion is drawn in Section IV. 

II. CONTROLLER DESIGN  

A. Model-free Adaptive Iterative Learning Control  

Consider a repeatable nonlinear discrete-time SISO 
system as follows: 

 
( , 1) ( ( , ), ( , 1), , ( , ),

( , ), ( , 1), , ( , )),
y

u

y k t f y k t y k t y k t n

u k t u k t u k t n

    

  
 (1) 

where ( , )u k t  and ( , )y k t are the input and output of the 
system at time instant t  of -thk  iteration , respectively. 

0,1, , 1t N  , k Z , N  is a finite positive integer. un , 
yn are two unknown positive integers representing the system 

order. ( )f   representing an unknown nonlinear function. For 
system (1), the control objective is to find a suitable bounded 
control input signal to act on the system so that the system 
output is equal to the given desired trajectory. 

Make the following assumptions for system (1): 

Assumption 1:  The system (1) is observable and 
controllable, i.e., there exists a bounded control input signal, 
which makes the output of the system equal to the given 
desired trajectory driven by the control input signal. 

Assumption 2:  The partial derivatives of ( )f   with 
respect to control inputs ( , )u k t  is continuous. 

Assumption 3:  System (1) is generalized Lipschitz, for all  
0,1, , 1t N   and k Z , when  , 0u k t 

 
, that is 

    , 1 , ,y k t b u k t                             (2) 

where ( , 1) ( , 1) ( 1, 1)y k t y k t y k t       , 
( , ) ( , ) ( 1, )u k t u k t u k t    , b  is a finite positive constant. 

The above three assumptions are reasonable and 
acceptable. Assumption 1 is the basic assumption that a 
general nonlinear system should satisfy. Assumption 2 
includes a large class of nonlinear systems. Assumption 3 
gives the relationship between the input increment and the 
output increment of the system along the iteration axis at any 
time during any motion cycle. The existence of the constant b  
is a limitation on the output variation of the system, that is, a 
finite change in input energy can only bring about a finite 
change in output energy, which is clearly true for a large class 
of nonlinear systems. 

Lemma 1: Consider nonlinear system (1) satisfying 
Assumption 1-3. For any ( , ) 0u k t  , there exists a 
parameter ( , )k t  so that: 

 ( , 1) ( , ) ( , ),y k t k t u k t                       (3) 

where ( , )k t  is call pseudo-partial derivative (PPD) which  
satisfies ( , )k t b  . For detailed certification process, please 
refer to the literature[5]. 

B. Iterative Feedback Tuning  

Assume that a nonlinear system can be described as[20]: 
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Where the Where ( )f   is an unknown nonlinear function, 
( )z t  is the ideal output of the controlled object, generally 

interfered by the ( )v t , ( )y t  is the actual output of the system, 
( )u t  is the control input, the integers zn , un  are the system 

order, and their values have no effect on the tuning of the 
controller parameters, do not have to be known. 

In order to control the controlled object, select the 
controller as follows 

 ( ) ( , ( ), , ( ), ( ), , ( )),y ru t g y t y t n r t r t n       (5) 

where ( )r t  is the reference input and   are the controller 
parameters which we want to tune.  

The purpose of the control is to adjust the parameter   to 
meet the control target, and the following performance 
indicators should be met: 

 2 21( ) ( ( ( ) )) ( ) ,
2 2y d uJ E L y y E L u

               (6) 

where yL , uL ,  are filters ( 1y uL =L   is usually selected for 
convenience of calculation),   is used to adjust the balance 
between control performance and control effect, and usually 
the performance indicator can also be without the control 
signal. 



 

The approximate value obtained by minimizing the cost 
function (6) (for simplicity, 0  ). 

   0 ( ) ,i i d iJ E y y y          (7) 

The approximate value of   can be obtained by the 
following formula 

  1
1 ,i i i i i

J
R   







 


 (8) 

where i  is a positive value, indicating the step size of the 
controller parameter optimization, and iR  is a matrix that 
searches for the controller parameter toward the optimization 
direction. Here, the Gauss-Newton optimization strategy is 
used, which is represented by the following formula. 
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 (9) 

According to (7), the difficulty in finding ( )J   is how to 
obtain ( )y  . Because the system (1) is unknown, ( )y   
cannot usually be accurately calculated, so it must be obtained 
in other ways. The IFT method only needs the system's I/O 
data to get ( )y  . The following is a brief step, please refer to 
the literature [20] for details. 

A reference signal is input to the system to complete the 
first experiment, thereby obtaining a set of trajectory 
sequences  0 0 0( ), ( ), ( )y t u t r t . At this time, the system can be 
described by Taylor expansion along the trajectory: 
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Similarly, the controller can also be described by the 
Taylor expansion along the first experimental trajectory. 
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Since the controller is assumed to be used to stabilize the 
system, the nonlinear system can be described as a linear 
time-varying system when the reference signal we use is very 
close to the reference signal used in the first experiment, as 
shown in Fig. 1. 

For convenience, the following definitions are introduced: 

 
Figure 1.  Linearization structure of a nonlinear system. 
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     (12) 

where 

  
   0 0,

( ) ,zn

z u

f t
f t =

z t n


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              (13) 

and ( )unf t , ( )yng t , ( )rng t  and  are defined analogically. 

From Fig. 1, the system can be rewritten to: 

 
0 ,

z F u

y z v v

  
    

                         (14) 

Introduce the linearized closed loop system 

 (1 ) ,cG TF FS                           (15) 

In summary, ( )y  can be obtained by 

      0 0 0 0
1 1, , ,

1 c

T
y y F g y r G g y r

FS T T
     


(16) 

We can summarize the calculation steps of the controller 
parameter   as follows: 

1. Complete the first experiment with 0r  to get the 
trajectory  0 0 0, ,y u r . 

2. Calculate   0 0,g y r   and filter the result by 1 T . 

3. Complete a series of experiments with 

  0 0 0,r r g y r T    , 1 dim    to obtain y . The 
constant  should be chosen so that r  is “close” to 0r . 

4. Calculate 0( )y y y     . 

5. Update the controller parameter   by (8). 

From this, the controller parameter   optimized by IFT 
can be obtained. 



 

C. Controller Design and Parameter Tuning  

The purpose of the controller design is to find a suitable 
control input, which is that the output of the system equals the 
expected output. Consider the following criteria function: 
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                  (17) 

where   is a weighting coefficient. Substituting (3) into the 
criterion function and using the optimal condition 

( ( , )) ( , ) 0J u k t u k t =  , we have 

  ,
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where ,k t  is the step factor, and (18) is the learning law of 
model-free adaptive iterative learning control. Since ( , )k t  is 
unknown, it needs to be estimated online. Correspondingly, 
the learning control law (18) is rewritten as 

  ,
2

( , ) ( 1, )
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 (19) 

The criterion function for the estimated value ˆ( , )k t  of 
( , )k t  is: 
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where 0   is positive weighting factor. Using the optimal 
condition ˆ ˆ( ( , )) ( , ) 0J k t k t =   , we have 
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 (21) 

where ,k t  is the step factor. In order to ensure that the 
dynamic linearization model along the iterative axis is always 
true and has better tracking ability for time-varying parameters, 
the following reset algorithm needs to be introduced: 

 0
ˆ ˆ ˆ( , )= ( ),  if ( , )  or ( , ) ,k t t k t u k t        (22) 

where   is a small positive constant. For the stability and 
convergence analysis of the controller, please refer to the 
literature [5]. 

By (18) we have: 

  ( , ) ( 1, ) ( 1) ( 1, 1) ,du k t u k t y t y k t        (23) 

where 2
, ( , ) ( ( , ) )k t k t k t      . 

From (23), the design of the nonlinear controller ( , )u k t  
has only one controller parameter   to be optimized, and we 
can use the IFT method. The tuning steps for the controller 
parameter   are as follows: 

1. Complete the first experiment with the reference input 
signal 0 ( )kr t  to obtain the trajectory  0 0 0( ), ( ), ( )k k ky t u t r t . 

2. Calculate   0 0, ( 1) ( 1, 1)k k dg y r =y t y k t


      we 

have 1 0 1( 1) ( 1) ( ( 1) ( 1, 1))k k dr t r t y t y k t T        , let 
the filter 1T  . 

3. Complete the experiment with 1( 1)kr t   and we get 

1( 1)ky t   . 

4. Calculate by 1 1 0 1( )k k ky y y     to get ( )y  . 

5. Substitute (7) and get iJ   . 

6. Select matrix R  by (9). 

7. Update the controller parameter   by (8). 

III. SIMULATION RESULTS AND ANALYSIS 

In order to verify the control effect of the proposed method, 
simulation experiments were conducted in which we introduce 
the following system as the control object: 
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where ( ) 0.1 ( /100)a t round t   is the system time-varying 
parameter and ( ) sin( / )t t   is the repetitive interference. 
Obviously, the system is a nonlinear discrete-time system, and 
both the parameters and the structure are time-varying. 

The desired trajectory is set to: 
( /100)0.5 ( 1) , 250

( 1) 0.5 sin( /100)
+0.3 cos( / 50),250 500

round t

d

t

y t t

t t




   
  
   

 

The original MFAILC method is used to control the 
system. The parameters of the MFAILC controller are selected 
as: 1  , , 1k t  , 2  , , 0.6k t  , and the initial PPD is 
ˆ 10ini  . The simulation results are shown in Fig. 2 and Fig. 3. 

In Fig. 2, the red solid line indicates the desired trajectory, and 
the dotted line indicates the actual output trajectory during 
different iterations. It can be seen from Fig. 2 and Fig. 3 that 
with continuous iteration, the maximum tracking error is  
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Figure 2.  Trajectory tracking results using MFAILC. 
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Figure 3.  Convergence curve of maximum tracking error using MFAILC. 

continuously reduced, and finally converges to the allowable 
range, the actual trajectory gradually tracks the desired 
trajectory, and the trajectory can completely track the desired 
trajectory within a finite time. 

The system is controlled by the IFT-based MFAILC 
method proposed in this paper. The parameters required for 
iterative feedback tuning are set to 0.001  , 0.9  , 

0.01  , and the initial value of the tuning parameters is set 
to 0.30ini  . The simulation results are shown in Fig. 4 and 
Fig. 5. After the simulation is over, the IFT-based MFAILC 
controller parameters is 0.1745  . It can be seen from Fig. 
4 and Fig. 5 that the method proposed in this paper can also 
realize the progressive tracking of the actual trajectory to the 
desired trajectory, and achieve the full tracking of the desired 
trajectory in a limited time. Comparing Fig. 2 with Fig. 4, the 
proposed method has faster convergence speed and better 
tracking effect than the original MFAILC method, and the 
IFT-based MFAILC needs to set the initial value less than the 
MFAILC. When iterating 40 times, the proposed method can 
track the expected trajectory well, and the tracking result of 
the original MFAILC method has a large error. 

The comparison of the maximum tracking error curve of 
the proposed method with the original MFAILC method is 
shown in Fig. 6. As can be seen in the figure, the maximum  
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Figure 4.  Trajectory tracking results using IFT-MFAILC. 
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Figure 5.  Convergence curve of maximum tracking error using 

IFT-MFAILC. 
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Figure 6.  Comparison of maximum tracking error curves between 

MFAILC and IFT-MFAILC. 

tracking error of the proposed method in the 20th iteration is 
almost the same as that of the MFAILC method in the 55th 
iteration. From the point of view of convergence speed, the 
proposed method is faster than the MFAILC method. From the 
perspective of maximum tracking error, the maximum 
tracking error of the proposed method is smaller than that of 



 

the MFAILC method. Therefore, the proposed method is 
better than the original MFAILC method. The results show 
that for the strong nonlinear systems such as PAM, the 
proposed method can track the desired trajectory well and 
ensure the control accuracy. This is important for precise 
control of the PAM. 

IV. CONCLUSION 
In this paper, a model-free adaptive iterative learning 

controller based on iterative feedback tuning algorithm and 
its parameter tuning method is proposed. Firstly, the 
non-parametric dynamic linearization principle is used to 
build a dynamic model. Based on this, the controller structure 
is designed. Then the IFT algorithm is used to tune the 
parameters of the controller, so that a performance index of 
the system can be optimized. Compared with the MFAILC 
method, the method proposed in this paper needs fewer 
parameters to set the initial value, and the tuning method is 
simple. It improves the convergence speed of the algorithm 
while reducing the tracking error. The simulation results 
show that the proposed method is effective and reasonable. In 
the future, the problem of PAM-driven rehabilitation robot 
tracking variable reference trajectory will be studied, so as to 
overcome the limitation of two basic assumptions of 
traditional iterative learning control, make the control 
conditions closer to reality, and improve the control 
performance and application scope of the robot. 
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