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Analysis and Design of a Dielectric Insular Image

Guide
Lukui Jin, Razak M. A. Lee and Ian Robertson

Abstract—In this paper, a detailed theoretical analysis of the
dielectric insular image guide (DIIG) is presented to provide
a solution for low-loss millimeter-wave (mm-wave) transmission
lines. The effective dielectric constant (EDC) method is utilised
to derive the characteristic equations and attenuation constants.
A DIIG prototype in the Ka band is fabricated using a standard
LTCC technique. Results from measurements agree well with
theoretical calculations and simulations. A loss of 0.012 dB/mm
at 35 GHz is achieved, which indicates great potential for fur-
ther development to realise highly-integrated low-loss microwave
components and systems.

Index Terms—Millimeter wave circuits, transmission lines,
multichip modules, Dielectric devices.

I. INTRODUCTION

THE study of the dielectric guide (DG) started as early

as 1910 when Hondros et al. analysed the propagation

characteristics of electromagnetic waves along cylindrical DGs

[1]. In 1952, King first proposed a large pure metallic layer at

the bottom of the DG, which gives rise to a new configuration

popularly referred to as the dielectric image guide (DIG). This

enables the possible applications of the DG at the millimeter-

waves (mm-waves) and proves to be the simplest dielectric

integrated guide structure [1], [2].

In the search for a low-loss millimeter-wave transmission

line, however, the DIG is not a perfect solution. The DIG

suffers from conductor loss, with a large field concentration

near the metallic ground plane when it’s operating in the

fundamental TM
y
11 mode. This can be reduced by introducing

a low-permittivity (normally lower than that of the DIG

dielectric) low-loss dielectric layer between the DIG dielectric

and the ground plane [3]. This layer works as an insulator

which keeps the fields away from the ground plane and, hence,

this alternative form of DIG is referred to as dielectric insular

image guide (DIIG) [1].

To theoretically analyse the DG and its variations, Mar-

catili’s paper [4] in 1969 is the earliest and most compre-

hensive effort to give a deep insight into the waveguiding

mechanisms of the low-permittivity rectangular DG. In this

paper, Marcatili introduced an approximate solution by ne-

glecting the electromagnetic fields in certain regions. Based

on that premise, Marcatili calculated the propagation constants

and provided a solution for both a single and two coupled

DGs in the form of transcendental equations, which is further

approximated into a closed form. With the establishment of

characteristic equations for this boundary value problem, it

was then found that this DG model can be split into two
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independent and simpler slab guides with infinite extension

along one single direction, respectively, i.e., the horizontal

and vertical slab guides [4].

In 1970, Knox et al. followed Marcatili’s approximation

and introduced an effective dielectric constant (EDC) method,

which was applied to the DIG. Up until now, it is still the

most commonly used method for analysing the propagation

characteristics of the rectangular DIG [5]. Through the image

theory, it can be inferred that DIG represents the top half

of a rectangular DG of twice the height, except that certain

modes are shorted out by the metallic ground plane and

hence suppressed. This is a distinct advantage over the DG,

giving a much wider frequency bandwidth for single mode

operation [1].

Apart from these two approximate methods, rigorous meth-

ods have also been developed with the wide application of

computers. Taking into account what’s neglected in Marcatili’s

method and the EDC method, the accuracy has been improved,

although the complexity has also been significantly increased.

Research on this subject has given rise to the mode-matching

method [6]–[8], the generalised telegrapher’s equations [9]

and the finite element iterative method [10], etc. All these

numerical methods tolerate the existence of geometrical dis-

continuities which enable the coupling among different modes

and create hybrid ones [11].

This paper focuses on the DIIG and presents detailed

analysis in terms of the propagation characteristics using the

EDC method in [5]. In Section II, the characteristic equations

are given and the analytical expressions for the attenuation

constant, α, and its constituents are also derived. Results from

theoretical calculations are compared with the simulated ones

from a commercial simulator, HFSSTM, based on the FEM

method in Section III. Finally, three DIIG prototypes working

in Ka-band are fabricated using LTCC material and measured

to verify the design in Section IV.

II. THEORY

This section deals with the theoretical analysis of the TMy
mn

and TEy
mn modes in the DIIG using the EDC method. Both the

phase constant, β, and the attenuation constant, α, are derived.

As shown in Fig. 1(a), an insular layer with a low dielectric

constant of ǫr2 and a thickness of d/2 is added below the

original DIG dielectric (ǫr1 ). Using the EDC method, the DIIG

can be divided into three constituent regions each of which can

be then extended into infinite horizontal slab guides. After the

equivalent dielectric constants, ǫre1 and ǫre2 are extracted, the

vertical slab guides can also be established in Fig. 1(b).
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(a)

(b)

Fig. 1. The cross-sectional view of: (a) the DIIG, (b) equivalent horizontal
and vertical slab guides for the EDC method.

A. TMy
mn Mode

1) Characteristic equations: The DIIG is first extended into

infinite horizontal slab guides, as shown in Fig. 1(b). Hence,

the characteristic equations for the horizontal slab guides in

the three regions are derived and given as:

1 +
ky2

ǫr2ky3
tanh (ky2d/2)−

ky1
ǫr1ky3

tan (ky1b/2)

+
ǫr1ky2
ǫr2ky1

tanh (ky2d/2) tan (ky1b/2) = 0, Region I (1a)

1−
ky4

ǫr2ky5
tan (ky4d/2) = 0, Regions II & III (1b)

where

ky1 =
√

ǫr1k20 − β2
h1

ky2 =
√

(ǫr1 − ǫr2)k20 − k2y1

ky3 =
√

(ǫr1 − 1)k20 − k2y1

ky4 =
√

ǫr2k20 − β2
h2

ky5 =
√

(ǫr2 − 1)k20 − k2y4

(2)

With ky1 and ky4 solved, Regions I, II, and III are then

transformed into three uniformly-distributed media whose

equivalent relative dielectric constants are

ǫre1 = ǫr1 −
(

ky1
k0

)2

ǫre2 = ǫr2 −
(

ky4
k0

)2
(3)

As a result, the infinite vertical slab guide is built up to

obtain its characteristic equation as:

1 +
k2x0 − k2x1
kx0kx1

tan (kx1a/2)− tan2 (kx1a/2) = 0 (4)

which can then be split into

1−
kx1
kx0

tan (kx1a/2) = 0, even mode

1 +
kx0
kx1

tan (kx1a/2) = 0, odd mode

(5)

where

kx1 =
√

ǫre1k20 − β2

kx0 =
√

(ǫre1 − ǫre2)k20 − k2x1

(6)

Note that β is the final phase constant of the DIIG.

It is also worth noting that the transendental equations, (1)

and (4), have infinite roots. The TMy
mn mode is determined

by the mth root of kx1 through (4) and the nth root of ky1
through (1).

2) Field components: According to [4], [5], Ey and Hx

are the dominating field components for the TMy
mn mode.

Furthermore, the wave behaviours in Areas 1, 2, 3, and 4

(shown in Fig. 1(a)) are the same as those in the DIG, i.e.,
standing inside the dielectric, whereas decaying exponentially

with distance outside it in the x and y directions. The fields in

the insular layer, however, are different: for Area 5, the fields

stand along the x direction and decay along the y direction;

for Areas 6 and 7, the fields decay on both x and y directions

extending toward infinity.

Since TM
y
11 is the dominant mode in the single-mode

frequency band and belongs to the even-mode family, only the

field expressions of even TMy
mn modes are given. Through the

EDC method, the field expressions in those five areas shown

in Fig. 1(a) are as follows: main electric field, Ey ,

Ey1 = A1

√

ωµβh1

kx1ky1
cos(kx1x)

{

cos [ky1(y − d′)]

+A2 sin [ky1(y − d′)]
}

Ey2 = A1A3

√

ωµβh1

kx1ky3
cos(kx1x)e

−ky3[y−(b′+d′)]

Ey3 = A1

√

ωµβh1

kx0ky1
sin(kx1a

′)
{

cos [ky1(y − d′)]

+A2 sin [ky1(y − d′)]
}

e−kx0(x−a′)

Ey4 = A1

√

ωµβh1

kx0ky1
sin(kx1a

′)
{

cos [ky1(y − d′)]

+A2 sin [ky1(y − d′)]
}

ekx0(x+a′)

Ey5 = A1A4

√

ωµβh1

kx1ky2
cos(kx1x)(e

ky2
y + e−ky2

y),

− a′ ≤ x ≤ a′

Ey6 = A1A4

√

ωµβh1

kx0ky2
sin(kx1a

′)e−kx0(x−a′)

(eky2
y + e−ky2

y), a′ ≤ x ≤ ∞

Ey7 = A1A4

√

ωµβh1

kx0ky2
sin(kx1a

′)ekx0(x+a′)

(eky2
y + e−ky2

y), −∞ ≤ x ≤ −a′

(7)
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main magnetic field, Hx,

Hx1 =

√

ǫ1β

µβh1
Ey1

Hxi =

√

ǫ0β

µβh1
Eyi, i = 2, 3, 4

Hxj =

√

ǫ2β

µβh1
Eyj , j = 5, 6, 7

(8)

where

A2 =
ky1 tan(ky1b

′)− ǫr1ky3
ky1 + ǫr1ky3 tan(ky1b′)

A3 =
ǫr1ky3

ky1 cos(ky1b′) + ǫr1ky3 sin(ky1b′)

A4 =
ǫr1ky2sech(ky2d

′)

2ǫr2ky1

a′ = a/2, b′ = b/2, d′ = d/2

(9)

3) Attenuation constant, α: Following the perturbation

method in [12], the attenuation constant, α, of the DIIG is

given by:

α =
Pl

2P
=

Plc + Pld + Plr

2P
= αc + αd + αr (10)

where

P = P1 + P2 + P3 + P4 + P5 + P6 + P7

Plc = Plc5 + Plc6 + Plc7

Pld = Pld1 + Pld5 + Pld6 + Pld7

Plr = P2 + P3 + P4

Before α is derived through (10), the simplification param-

eters need to be defined as:

Mx =
kx1a+ sin(kx1a)

k2x1

Nx =
sin2(kx1a/2)

k2x0
My =

{

(1 +A2
2)ky1b+ (1−A2

2) sin(ky1b)

+ 2A2 [1− cos(ky1b)]
}

/k2y1

Ny =
A2

3

k2y3

T =
[√

ǫr1MxMy + 2MxNy + 2NxMy

+2
√
ǫr2Qy(Mx + 2Nx)

]

−1

(11)

where

Qy =
A2

4(2ky2d+ eky2
d − e−ky2

d)

k2y2
(12)

After that,

αc =4Rs

√

ǫ0β

µβh1

ǫr2(Mx + 2Nx)T

ky2

αd =
ω

2

√

µǫ0βh1

β
[(tan δ1)ǫr1MxMy+

2(tan δ2)ǫr2Qy(Mx + 2Nx)]T

αr =

[

MxNy +NxMy − 8Rs

√

ǫ0β

µβh1

ǫr2Nx

ky2

−2ω

√

µǫ0βh1

β
(tan δ2)ǫr2NxQy

]

T

α =αc + αd + αr

=

{

MxNy +NxMy + 4Rs

√

ǫ0β

µβh1

ǫr2Mx

ky2

+
ω

2

√

µǫ0βh1

β
[(tan δ1)ǫr1MxMy

+2(tan δ2)ǫr2MxQy]

}

T

(13)

where tan δ1 and tan δ2 are the loss tangents of the main

dielectric and insular layer, respectively.

B. TEy
mn Mode

According to the TMy
mn mode, the characteristic equations

for the TEy
mn mode can be obtained in a similar format.

For the horizontal slab guides,

1 +
ky3
ky2

tanh (ky2d/2) +
ky3
ky1

tan (ky1b/2)

−
ky1
ky2

tanh (ky2d/2) tan (ky1b/2) = 0, Region I (14a)

1−
ky4
ky5

tan (ky4
d/2) = 0, Regions II & III (14b)

where the defination of ky1 ∼ ky5 is the same as that in the

TMy
mn mode given by (2).

For the vertical slab guide,

1+
(ǫre1kx0)

2 − (ǫre2kx1)
2

ǫre1ǫre2kx0kx1
tan (kx1a/2)−tan2 (kx1a/2) = 0

(15)

which can then be split into

1 +
ǫre1kx0
ǫre2kx1

tan (kx1a/2) = 0, even mode

1−
ǫre2kx1
ǫre1kx0

tan (kx1a/2) = 0, odd mode

(16)

where the definition of ǫre1, ǫre2, kx0, and kx1 is the same as

that in the TMy
mn mode given by (3) and (6).

Finally, by obtaining the mth root of kx1 through (15)

and the nth root of ky1 through (14), the TEy
mn mode is

determined.

For brevity, the field components and attenuation constant,

α, will not be listed here.
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(a)

(b)

Fig. 2. The normalised guided wavelength vs. the normalised dimension D
of the rectangular DIIG for b/a = 1: (a) comparisons among the EDC and
FEM methods when p = 0.1, (b) various p’s for the EDC method.

III. CALCULATION AND SIMULATION

A rectangular DIIG with an aspect ratio of b/a = 1 is

analysed, where various values of the insular ratio, p = d/b,
are considered. The DupontTM GreenTapeTM 9K7 LTCC sys-

tem is used as the dielectric material of the DIG, which has

a relative dielectric constant, ǫr of 7.1 at 10 GHz. Its loss

tangent is also characterised at 10 GHz to be tan δ = 0.001.

The material used as the metallic ground plane here is copper

plated on a RT/duroid 5880 board, which has a conductivity

of σ = 5.8e7 S/m, a relative dielectric constant of 2.2 and a

loss tangent of 0.001 at 10 GHz.

A. Phase Constant, β

Fig. 2 shows the normalised phase constant, β, as a function

of the normalised dimension, D:

D =
a+ b

λ0

√
ǫr − 1. (17)

In Fig. 2(a), the EDC and FEM methods are applied and

compared for the case of b/a = 1 and p = 0.1. It can be seen

that good agreement between the two methods is achieved for

the three lowest-order modes.

Fig. 3. The field distribution inside the DIIG of b/a = 1: (a) TM
y
11

, (b)

TE
y
12

, (c) TM
y
21

.

Fig. 4. The comparison between the EDC and FEM method in terms of the
attenuation constant, α, of the TM

y
11

mode vs. the normalised dimension, D,
of the rectangular DIIG for b/a = 1.

In Fig. 2(b), the EDC method is applied to find out how

different insular ratios may affect the propagating characteris-

tics. As can be seen, the normalised guided wavelength, λ0/λg

which is equal to β/k0, of the TMy modes goes upward

with the increase of p; while that of the TEy modes does

the opposite. This leads to a reduction in the single-mode

bandwidth. So, the insular ratio, p, cannot be too large to

maintain a reasonable single-mode bandwidth.

To provide a direct view of the field distribution within the

cross-section of the DIIG, Fig. 3 shows three lowest-order

modes for with an aspect ratio of b/a = 1 obtained through

the rigorous FEM method. As the nomenclature of the DIIG

modes follows that of the DG, the field variations in the y
direction in Fig. 3 is in fact doubled, represented by n [4].

B. Attenuation Constant, α

The attenuation constant, α, of the fundamental TM
y
11 mode

is calculated here for the aspect ratio of b/a = 1 which exhibits

the widest single-mode band. Both the EDC and FEM methods

are employed.

Fig. 4 shows the calculated attenuation constant from the

EDC and FEM methods in terms of αd and αc. A slowly-

diminishing gap (about 10%) can be seen between two αd’s.

In contrast, the agreement of αc is much better.

Now the three constituent constants of α, αd, αc, and αr

are studied individually.

With the introduction of an insular layer, αd decreases for

all p’s compared with that for p = 0 (the DIG). As far as the

single-mode band of (normally D < 2) a transmission line is

concerned, the higher p is, the lower αd is..

The most obvious improvement from employing an insular

layer is the significant reduction of the conductor loss, αc, as
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(a)

(b)

(c)

Fig. 5. The attenuation constant, α, of the TM
y
11

mode vs. the normalised
dimension, D, of the rectangular DIIG for b/a = 1: (a) αd, (b) αc and αr ,
(c) α.

Fig. 6. Three fabricated DIIG samples of length 20 mm, 40 mm, and 60 mm.

observed in Fig. 5(b). For the DIG where p = 0, αc increases

with D; while for the DIIG, αc decreases and tends to 0 at

high D’s. Furthermore, the higher p is, the lower αc is. This is

because the thicker the insular layer is, the more separation it

creates. However, the radiation loss deteriorates for the DIIG.

The reason for this is that the introduction of a low-permittivity

dielectric loosens the confinement of electromagnetic fields

and make them easily radiate. Since αr is relatively low, the

overall impact is not serious.

Finally, for the combination, α, significant reduction for all

p’s compared with the DIG can be observed in Fig. 5(c). In

the single-mode band of the DIIG, a thicker insular layer will

yield a lower loss.

IV. MEASUREMENT

Three dielectric rods with lengths of 20 mm, 40 mm, and

60 mm were fabricated using a standard LTCC technique and

then assembled onto RT/duroid 5880 substrates to form DIIGs,

as shown in Fig. 6. The DupontTM GreenTapeTM 9K7 LTCC

system with a relative dielectric constant of 7.1 is employed

as the dielectric, while the RT/duroid 5880 board, which has

a relative dielectric constant of 2.2 and a thickness of 0.254

mm is adopted as the insular layer. Due to the restrictions of

the LTCC technique, the thickness of the DIIG is chosen as

1.54 mm, formed from 7 layers of LTCC tape (0.22 mm for

each layer after firing). So the insular ratio, p, is 0.16 which

falls into the recommended range. To ensure the DIIG works

in the Ka-band, the width of the DIIG is derived as 1.32 mm

through the theoretical calculation.

As can be seen in Fig. 6, tapered transitions are added at

both ends of the DIIG in order to be fed from a standard

WR28. Note that the transitions are tapered in both horizontal

and vertical planes to ensure a smooth transition.

Through the calibration technique introduced in [13], the

propagation constant of the DIIG was extracted from the

measured S-parameters of the three lines, and is illustrated

in Fig. 7. The propagation constant simulated using HFSS is

plotted in the same figure for comparison.

In Fig. 7, the measured phase constant, represented by the

normalised guided wavelength, stays close to the simulated

one, although it has some ripple. As for the measured loss

constant, α, it is obviously higher than the simulated one,

which indicates that the actual sample is more lossy. Possible

reasons may lie in that the loss characteristics of the materials

tend to be worse at higher frequencies and the bond between
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Fig. 7. Extracted propagation constant of the Ka band DIIG.

the LTCC and PCB board might not be perfect. Nevertheless,

an α of 1.4 Np/m or 12.1 dB/m at 35 GHz is still an excellent

loss performance.

V. CONCLUSION

Through the EDC method, a detailed theoretical analysis of

the dielectric insular image guide (DIIG) has been presented.

On one hand, the attenuation constant, α is significantly

reduced by the introduction of the insular layer; on the other

hand, the phase constant, β, of the fundamental and adjacent

modes tend to get closer when the insular layer gets thicker,

which narrows the single-mode bandwidth. The reduction of

loss is, in fact, at the cost of a reduced single-mode bandwidth.

This trade-off leads to a compromise of the insular ratio,

p, with a recommended value between 0.1 and 0.3. The

calculated results are compared with those from the rigorous

FEM method and measurements. DIIGs comprising LTCC

dielectric rods on RT Duroid substrate have been fabricated.

Good agreement between theory and measurement has been

demonstrated for the phase constant, β, and the attenuation

constant of 12.1 dB/m at 35 GHz is an excellent loss per-

formance. Further application of this analysis, and fabrication

using other materials, can be expected to yield excellent results

at higher frequencies, potentially even in the terahertz region.
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