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Abstract—This paper proposes a new robot-assisted bilateral
upper limb training strategy, focusing on the bilateral coordination
of users’ upper limbs. The strategy isimplemented and evaluated on
a bilateral upper limb rehabilitation device (BULReD) that isan H-
bot mechanism actuated by two Maxon DC motors. The control
system consists of a position controller, an admittance controller and
an adaptive algorithm, where the BULReD stiffness is modified
session by sesson based on training performance. This strategy is
also integrated with subject-specific workspace for enhanced
training safety. Experiments were carried out with five subjects
through active reaching tasks. Results indicate that the proposed
training strategy requires significant coordination of bilateral upper
limbs for task completion, and is able to tune control parametersto
an appropriate difficulty level based on participants’ training
performance. Future work will focus on its clinical evaluation on
patients with upper limb disabilities.

Keywords. Robot-assisted, bilateral, upper limb, training strategy,
subject-specific workspace.

l. INTRODUCTION

outcomes with long-term bilateral training with subjects who
were much more impaired. Medical literature also supports
bilateral rehabilitation training to activate the prignamotor
cortex and supplementary motor area of the intact [ifhis. can
increase the likelihood of voluntary muscle contractiohthe
impaired limb when symmetrical movements are exedutd

Robot-assisted bilateral upper limb training systems can be
generally classified into three configuration categories
independent robotic devices [14-18], one robotic deviceamith
assistive system (EMG-based as an example) [19, 20hreand
device with two handles [21-23].The two-independent-device
bilateral system is generally able to achieve diffeténds of
training modes [24], including joint space symmetry (mirror-
image) [14-17, 19], visual symmetry [17, 18, 20, 22, 23], point
mirror symmetryj21-23] and asymmetry [16, L Bxamples are:
Guo, et al. [14] implemented passive-mirroring on a singte-a
robot in a masteslave configuration using an external haptic
device. Rashedi, et al. [15] developed a robotic devigegus
healthy hands to move the impaired side in mirror-inmaggon

While longitudinal studies suggest that 30% to 66% of strokattern. Lum, et al. [18] used a hand-object-hand system to

survivors do not have full arm function six months posikst

achieve transport tasks that move a pencil-like objetk bad

[1], evidence has suggested that upper limb motor skills can ferth rhythmically to audible ticks. Stinear and Byblow [16]

improved by following rehabilitation interventionf2-4].

achieved an active-passive bimanual movement therapy by

Various upper limb rehabilitation robotic systems have beefonducting wrist reaching tasks in both mirror symmetric and
developed and used with many kinds of patients with disabilitie8Symmetric (a phase lag of 60 degrees) pattern. Miab, [&7]

over the past few decadés8], with promising clinical efficacy
for example on MIT-Manus and ARMin Il syster#sg, et al.

used two different universal robots to achieve joint spac
symmetry, visual symmetry and asymmetric patterns forruppe

[9] used MIT-Manus combined with electroencephalographylimb training

based motor imagery brain-computer interface technology
through a randomized controlled trial on 26 hemiplegic subject g

and achieved positive results. Klamroth-Marganska,. ¢1.@]

delivered ARMin Il robotic training system on 38 patientthw
motor impairment for over six months, where results showe
improvements in terms of Fugl-Meyer assessment (FMéxgesc 4,

The second category of robotic system is more frequently
ed for delivering joint space or visual symmetry coupléd wi
an external assistive system. Leonardis, et al. [19] used the
RAVO hand exoskeleton system to achieve a mirror grasping
sks through an EMG-controlled system estimating thoe fof

e non-paretic hand and transferring to the device. Lien, et a

Existing robotic systems for upper limb rehabilitation can b [20] developed a bilateral training system containing an

classified into unilateral and bilateral devices. Brackenridge

al. [6] reviewed a variety of upper limb robotic systewith

more unilateral ones than bilateral ones, including exyegrial
prototypes and commercial products can be infered that
robot-assisted unilateral training technolagyelatively mature
for upper limb rehabilitation, some of them being currensigd
in rehabilitation clinics and hospitals. However, somelists

exoskeleton robot NTUH-II and an inertia motion unit to eeali
passive and active-assistive visual symmetry traihingenera|

it can be summarized that two-independent-device and one-
device-one-assistive-system  bilateral  training  systems
predominantly focus on using healthy limbs to provideresiee
movements while the devices providing assistance tanse

to impaired limbs. While these robotic systems caplément

have suggested that bilateral training has promising imgrovevarious training modes, the requirement for active cooperation

clinical efficacy, especially when used for coordinatiaming.
Summers, et al. [11] found significant improvements ihats

term bilateral versus unilateral training study with mildly oy
impaired subjects. Stoykov, et al. [12] showed superior

of human bilateral limbs for tasks is minimal.

In contrast the third category of one-device-two-handle
otic systems [21-23] focus moren cooperation and



coordination training of bilateral limbs. Johnson, etal. [Bdd  whole training process, ensuring a constant relativetiosi
the driver’s SEAT providing assistancefor the weak arm to with the robotic device. An average set of human segment
complete point symmetric steering tasks based on EMQengths expressed as a percentage of body heightpieddass
measured force signals. Trlep, et al. [22] proposed mgtaisks  provided by Winter [26]Considering the height of a subject as
which involved tracking an on-screen target by manipulatingd, the height of shoulderB = 0.818 * H, the distance between
two handles on a Haptic Master robot. The handlebantatien  shouldersS = 0.259 * H, the length of palm i€.108 = H, and

was used as control signals for virtual 4airplane movemendther parametersL; = 0.186*H, L, =0.146*H, L; =
where the unaffected limb is scaled down using an adagtine g 0.054 « H (estimated half of the palm sjzén this study, we set

to stimulate use of the paretic arm. Squeri, et al. [28fitse D, = 405mm as the distance on the Y-axis between OGC and
Braccio di Ferro to conduct reaching tasks where patieres wethe human bodyand D, = 1182mm as the height of OGC.
required to move towards a target whilst keeping the bar at
predefined angle. The reinforcement learning scheme is

expressed by means of suitable force fields rendered eby th efgtcs,houlderjoint 4 X; ””””
haptic device, adapting to the participant’s performance. It is ® Right shoulder joint : )
highlighted that comparing with the SEAT system for only e / :
rotational movement, the systeing22, 23] enable translational St
and rotational movements (denotad visual symmetry and BULReD i' = B
point symmetryrespectively. However, they are expensive due 3 H
to the use of Haptic devices and/or multi-axis load cells YRR |

This study proposesnew robot-assisted bilateral upper limb . i
training strategy with subject-specific workspace for training Ly = 0.054  H ! 5
safety and efficacjd 7]. It was implemented and evaluated with D, = 405mm 3 P
a previously developed bilateral upper limb rehabilitationcgev =~ v Dz = Hi82mm LDy

(BULReD) [25], and an adaptive admittance controller. ThisF, 1 Schematic d  thebotassisted hilateral imb traini

; oA ; ig.1: Schematic diagram o ot-assisted bilateral upper limb training
'".‘p'.e ment?‘tlon IS IOW cost and features random reachlggt_!a system. (The orange arrowed lines refer to the glolmtamate system

within subject-specific workspace, as well as adaptatm o

training performance based on multiple variables. The paper B. Training Strategy

organized as follows: a detailed robot-assisted evéatupper The newly proposed robot-assisted bilateral upper limb
limb training system is described in section Il which ek training strategy with subject-specific workspdsgresented in
system configuration, training strategy, control system angtig 2. The black square represents the workspace of the
sgbjeqt—specific Workspace determinatiBixperimental results BULReD whose X axis ranges betwe¢r160mm 160mm],

with five healthy subjects are presented next, folbw®  and Y axis betweerfomm 320mm]. The grey irregular closed
Discussion and Conclusion. curve is the feasible workspace boundary (FWB), which is
function of a specific participant’s body size The black dot
denotes the start poiit_s of training trajectory, and the red

A System Configuration ones are training target¥arget_1, Target_2,..., Target n).

The BULReD consists of three main components, namely thEn€ arrowed red line represents the desired training tnajec
base module, the motion module, and the hand holder [a8]. T I "€ blue bar represents the handle hofbiee virtual tunnel line
base module acts as a foundation to support the motion modufdth red shadow (VT_)and the virtual tunnel angle with blue
The motion module consists of two mutually perpendicula®@dow (VT_A) are denoted as training trajectory and angle,
linear slide systems, the bridge and the cart. The handrtimlde 'eSPectively. The green dashed line is paraliel tods. ahe
rigidly connected with the cart through a three-axis feegesor.  Plack dashed line represents the desired angular posigioof
In this paperthe structure of the device installs an angle sensdf'€ hand holder, and the blue one represents its measiyaler
under the hand holder to measure the angular position of tiR@sition 8. Parameter),. and Oy, correspond to VT_L
hand holder. To guarantee the safety of bilateral uppds limand VT_A, respectively.
training, there are four main options included in the raboti

Il. METHODS

. L . . Y(mm) T 320
system. Firstly, four limit switches are set up lougtat the
corner of the workbench to restrict the end-effector enmnt
inside the robotic workspace. Secondly, a stop button is
available to make the device out of active operati@mwgtime. — Fwe

Thirdly, both handle bars are designed without hand contstyai
so the participants can voluntarily hold or release tHanng
the training. Finally, the presented strategy is based on Qunr \\Tafetz
admittance control, which is capable of making the huroanotr

interaction compliant.

- . . L %0
A schematic diagram of the robotic layout is preseintédg. Handle 9‘)?
1, where the origin of global coordinate (OGC) is labetiad holder 3
key dimensions are identified on a subject specificsb&sich — e 16);("‘”“)

participant is required to remain standing upright during the



Fig.2: Schematic diagram of the proposed trainingesgsat(The grey irregular
closed curve represents the feasible workspace bou(ats). The black dot
P_s is the start point of the training trajectories. RegionsVT_L and VT_L
representQ.,, and O,,., respectively. The paramet@y is desired angular
position, and6 is measured angular position.)

The proposed training strategy includes three main steps: R

determining the subject-specific workspace and random ta
target distribution; 2) manipulating the handle holded atin a

virtual angle tunnel, and moving the handle holder towards the

_ F
C (K3t +Ak)!
Considering the specification of the electric motaas,

sition controller is used to convegt into required motor
ltageU = [U; U,]T , which can be obtained in (3)

dr (2

1

U

60
S Rayvi 't @)

task target along a virtual path tunnel within a desired time

period t4; and 3) generating another random dot target withigvhere R = r—1

appropriate workspace for a new round in the same session
training when the current target is reached.

C. Control System with Adaptation

[1 1 ] as the inverse kinematic matrix,

d)énoted as the radius of the pullgy.is the reduction ratio of
the gearheady, is the speed constant of the motor, ani the
time required for moving such an angular displacement.

To enable the BULReD to implement the proposed training  Fig.4 shows the process of target generation. The g do

strategy, a control system is developed consisting of an
admittance controller, a position controller modukad an
adaptivelaw based on training performance, as presented i
Fig.3.
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Fig.3: Control diagram d¢he BULReD. (The parameterily, D4 and K4 are
the inertia, stiffness and damping parameters, resgctiThe measured force
F is from the participant. The output of the adamtie controllerq; is the
increased position, and the input of the positiontller U is the input voltage
for motors. For the adaptive law, the parametegs, e, and e, are
performance evaluation indicators correspondingdsitipn, angle and time
deviation. After feature scaling, the gaiYk is calculated by weighting.)

Admittance control makes the device operate with a specifi
inertia, damping and stiffness by measuring and contrdliag
force from the force sensor. The admittance equéaiamitten
asin (1).

_ F (2)
9= MysZ + Dgs + (K51 + AR
Here, F=[Fx Fy]T is denoted as the measured

interaction force vector along X axis and Y axi$,, D4 and
Kq
respectively. The gain valugk is calculated by adaptive law.
Setting qf = [X¢ Y{]T as the increased position vector
corresponding tdF, the admittance law can be simplified into
(2) as a linear spring, whedy; = D4 = 0.

blue dots, orange dots and purple dots respectively represent th
generated inside targetk target), outside targetsO( target),
fhside but inappropriate target$_target) and modified targets
(M_target). The numbers signify the sequence of each target.
The grey thick line represents the FWB. The blue imagina
lines and red lines are uncorrected trajectories UT artifieth
trajectories MT, respectively

A new target will be randomly generated in the workspace
of the device once the handle reasiteAs shown in Fig.4, the
first target 1 (the followed targets will be called $8quence
numbers for short) ia I_target, which is distinguished from
O_target by a ray-based method. The link between P_sland
represents the first training trajectory. It is notewpttiat 2 is
generated outside of the feasible workspace. To avoid the
training trajectory beyond ROM of the participaatM_target
3 being the intersection of the link from 1 to 2 and tkiéBHs
utilized to replace 2. Similarly, the trajectory fromal i is
substituted by the trajectory from 4 to 6. Although 6 @raede
both located inside of the feasible workspace, a pahteofink
between 6 and 7 comes out through the feasible workspace d
to irregularity. An analogous strategy is to find all the
intersections of the link between 6 and 7 and the F\N&) t
select the closet one 8 as the modified target.

Y (I’Tl m) 320

® | _target
@ O_target
@® M_target
@® |l target
= UT

- MT

X(mm2
160

-160

represent the desired inertia, damping and stiffness,

Fig.4: Target generation strategy. (The targets |_targétO_target represent
targets generated inside and outside the feasible paxks The target

M_target is the modified target. The targlettarget is the inappropriate target
inside the feasible workspace. The grey thick lin¢his feasible workspace

boundary FWB. The lines UT and MT respectively esent uncorrected

trajectories and modified trajectories.)



The parameter®,,, Ou, and Ty, are givenby the

virtual tunnels. To evaluate training performance, three

indicators are used which are position deviatigp from
desired trajectory, angle deviatiay from desired angléy,
and time deviatione, that has been applied by Lewis and
Perreault [27]. More specificallye, and e, are used to
appraise the ability of moving ability, aregg is for coordinate
ability estimation. It is defined that the position wecyy,, =
[X{lar Ytgr]T and q?atl = [X{latl Ytr;jl]T are thenth target

and (n + 1)t target. The parametéq™ = [ X", 'Y"] is the

en’ = 1 (12)
d chr
)
ed’ (13)
0 G)thr
,_ e
el = (14)
¢ Tthr

When subjects drive the robotic system under a high
resistance level, it takes a l@rgime for them to reach the target.

it sampling poinof desired voluntary trajectory between theseln this case the position and angle deviations are sriafier

two dot targets. The parameteieg is the position deviation
between 'q™ and the desired trajectory (the line path betwee
qfar and qiyi'). The position deviation value'ey can be
expressed in equations (4) to (7).

|an ixnipn fynicnl

i n <
ez ca= Qo o N

'ef = _ (4)
Qthr ‘eS > Qtnr

AY = YR - Y, (5)

B" = Xtar — Xfar' (6)

C" = X Yiar — Xtar Yiar | (7

Then, the normalized position deviatief betweenqg,, and
qixcan be obtained based on (8),

N
el = l ien
q N q
i=1

where N is the sampling number between these two targets

(8)

In a similar way, the measured angle of e sampling
point betweengl, and q&t! is denoted as '0". The
parameter ‘eg is the angular deviation betweefd” and 64,

adjustment value Ak™ during q%, and q&! can be
rglescribed by weighting in equati¢ib),
AK™ = wqel’ + wgeh + weel’ (15)

where wg, wg and w, are weights.

D. Subject-Specific Feasible Workspace

Miao, et al. [17] proposed a three-stage method to determi
human hands’ workspace on a subject-specific basis. This
considered the human upper limb as a model with seven degrees
of freedoms, and used the Denavit-Hartenberg methderice
the human hand workspace. In a similar wtye subject-
specific workspace within the BULReD can be obtained, as
presented in Fig.5. Part 1 shows the workspadeothf hands
based on a 175mm-height subject under the BULRe
configuration, where W-R_hand represents the workspabe of
right hand and W-L_hand for the left hand. The J-R_shoulder
and J-L_shoulder represent the right and left shoulder joint,
respectively Due to the applicatiofor planar training, part 2
gives the workspace of hands on pldhe 0. As shown in
Fig.2, the subjects are asked to stay at desired d@hgl¢he
workspace of the handle combined with hands workspace needs
to be analyzed. For part 3 indicates W-Device is the
workspace of BULReD, and W-L_handle is the workspace of
handle’s left side. o is the intersection between W-L_handle

and can be expressed in (9). Correspondingly, the normaliz&hd W-L_hand. Similarly,8 is the intersection between W-

angle deviation betweeqn?,, and q&:'can be obtained based

on (10.
) iqn __ ian -
e = {' 0 i Sd|’ 6= 15N O
Gthr: € > ethr
N
n 1 isn 0
=5 el (10)

It is defined that the desired complete time: js and thus
the measured time and time deviation betwggn and gii?
are t™ and ef, respectively, as inl().

n_ {tn - td’ e{-_l < Tthr
e =

11
Ty, ef > Tenr D

To standardize the range ef, eg andef, scaling to unit
length strategy is used for feature scaling as shown irtiequa
(12) to (14).

R_handle and W-R_hand. It is defin@d is the handle’s right-

side workspace corresponding & which can be achieved by
translating a . Then, the intersectiornpg = NP is the
handle’s right-side feasible workspace, and the device feasible
workspace@g can be achieved in part 4 layf, translation.

A, Experiments

Five healthy subjects (three males: age 28.33+4.73 years,
height 1786.70+40.41 mm, weight 86.33+3.21 kg, and two
femalesage 21.00+0.00 years, height 165.00+7.00 mm, weight
46.75£0.75 kg) volunteered to participate in this study. The
study was approved by the University of Auckland, Human
Participants Ethics Committee (019707) and consents were
obtained from all participants. During the experimentsheac
participant was agldto actively reach 20 targetsd including
P_s). These 20 targets randomly and sequentially appeared on
the computer screen to direct the training inside the aubje
specific workspacdn this studythe start point P_s and desired
angle 8; are set at[020] and 45", respectively. Three
threshold valueQy,,., Oy and Ty, are defined as 20mm,
10° and 5s, respectivelythe parametet, is set as the time

EXPERIMENTAL RESULTS



completing the trajectories at a constant speed of 15riimés. and -0.04, respectively. Considering all the participantsgbei
weighting factorsw,, wg and w, are defined as 0.040.02  healthy, the initialk! was seft 0.05.

L 1 (Wﬁrl{space ofhands )% | 2 [ Workspaceon Z=0 3 1 Nodes
: T “WRRd  © 1 500 e.Rshouder *W-R hand i __ _
; : m__:r:nu:d " : ; oL W-L_hand { W R hand Warkspace af right hand
- o 1L choulder : i ! W Lhand  Workspace of leff hand
i - { JL_shoulder Joirg afleff hand
! ; " E } R shoulder Joi of right hand
E,.. 600 - E- | W-Device Warspace af device
E 20 ; ¢ ! WL _handle Workspace af handle leff side
1200 0 H ¢ 4 Iatersection between W L
: T;O J . b : hand and W_L handle
$R el 500 I | WR handle Workspace afhandle right side
:. 0 510 s Yfmm],: : B Itersection between W_R
" X{mm) 1000 S % hand and W_R handle
‘ 4 L Feasible workspace ) [ 3 k Insection o and B )
350 1 « J-L_shoulder —W-Device * J-R_shoulder — W-Device
: W-L_hand —W-L_handie *W-R_hand  W-R_handle
e : ; 20 Intersection o 500 ¢ Intersection 3
Feasible workspace

250 =—Deviceworkspace
£200 e B £ 0
E E E
=150 = = =

100} | S0y 500 |

50
0 -1000 -1000
-100 0 100 -800 -400 0 400 -500 0 500
X{mm) f X(mm) X(mm)
Fig.5 The process of subject-specific feasible worksggneration. (The generation sequence is from numtoet.]
B. Results trajectory and desired voluntary trajectory. Fig.7 (espnts

desired voluntary and measured voluntary trajectorieshich

Experimental results for the five healthy subjects avergi  blue, red, browngreen and purple lines match to subjects (a) to
in Fig.6 (a) to (e) corresponding to subjects (a) yoHach plot  (e). Fig.7 (b) shows the trajectory tracking errors of the
presents the FWB, random task targets, measured voluntagy)| ReD.

T T T T T T T

300 | —Desired voluntary trajet?tory I 300 | —— Desired voluntary trajectory |
Measured voluntary trajectory Measured voluntary trajectory
—=FWB = FWB
250 | === Device workspace | 250 1 === Device workspace -
® P_s ® P s
O P_target o P:target
200 f H
£
g 150 { i
100 { H
50 i
0 ) |
-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150
X(mm) X(mm)



300 —Desired voluntary trajectory 300 H . .
Measured voluntary trajectory Desired voluntary trajet?tory
= FWB Measured voluntary trajectory
=== Device workspace FwB
250 | oPs P 250 = Device workspace
- ® P_s
O P_target o P_target
200 200
g g
=150 1 > 150,
100 100
50 50
0 0
-150  -100 -50 0 50 100 150 -150  -100 -50 0 50 100 150
X(mm) X(mm)
(©) (d)
300 1 —Desired voluntary trajectory
Measured voluntary trajectory
== F\WB
250 | == Device workspace
®Ps
O P_target
200
g
g 150
100
50
0
-150  -100 -50 0 50 100 150
X(mm)
(e)
Fig.6: The total experimental results of every sobjérhe figures (a) to (e) correspond to the resultsiofests (a) to (e).)
S ‘ ' —Xerror-mean X error-SD
£ 200 g L
% -100
g 50 100 150 200 250 300 350
Time(s)
€ ‘ T ‘
= F — Y error-mean Y error-SD -
E, . TR ”
o 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Time(s) Time(s)

Fig.7: The trajectory tracking error. (a) represents #srdd and measured voluntary trajectories, (b) reptesiee trajectory tracking error.
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Fig.8: The results of performance evaluation and patanadjustment. (The figures (a) to (e) correspond toahdts of subjects (a) to (e)).

Statistical results of trajectory tracking performarare The performance evaluation of the five subjects and
summarized in Table 1, where the mean values of rootimeamodified values(K;* + Ak) are given in Fig.8. To make it
square error (RMSE) afie39mm and 1.2hm, respectively, for  clearer to analyze the relevance, tfi€;! + Ak) value are
X-axis and Y-axis. The mean values of normalized ro@me myltiplied by 50. It can be seen that the modified val(is" +
square error (NRMSE) on X-axis and Y-axis are 0.74% andy) vary a lot during the first 10 or 12 training rounds but

0.83%, respectively. These results show satisfactojctory  sjightly change for last 10 or 8 rounds in Figs 8 (a)-(d). This can
tracking during robot-assisted bilateral upper limb training.



be accounted by that subjects (a) to (d) tried to adagitong  exists once patients adapt to the provided assistahagh) can
tasks in early stage, and became familiar for last 1Ganr@ls.  negatively affect rehabilitation efficiency”

More specifically, the modified value&;* + Ak) of subject ec . . e
(b) still varies obviously during the last 10 rounds, which may,, 1€ Proposed robot-assisted bilateral upper limb training

suggesta longer slower adaptation o task diffculty. ey, i, PPESGRRE, JB O EE R R e ey
the data presented in Fig.8 (e) show continuous riséeof t

. - ) complete a task session instead of real-time assestan
(Kg' + Ak) value, either in the first 5 rounds or the last 5 b

S 0 . resistance. Its control parameters are adjusted ossiosed
rounds. However, it is worth mentioning that subject (e) redort P ) y

X . ) session basis, rather than in real-time. This may ledad/do
her tired arms during the second-half stage and failedctesf  \2i0 advantages: 1) continuously challenging patients and thus
on the completion of training tasks. This can be the reakgn J ges: 1) y ang p

-1 ! X encouraging more active engagement with training tasks; and 2)
the (K3 + Ak) values of subject () do not flatten during thepe|ping with identifying the most appropriate trainingtpcol

late stage of the training tasks. in terms of task execution time, determination of the optima
Table 1 Statistical results of trajectory trackingfpenance. training path tunnel and pose angle tunnel.
X-axi Y-axi , i .
NO. e () TNESE o) T RVSE mm) TNRVE @) Another benefit of the proposed training strategy is #fe s
@ 1.44 0.74 1.20 0.79 and effective workspace determination on a subject-specif
(b) 1.36 0.76 1.26 0.79 basis Previous studies generally used the healthy arm to guide
(© 1.42 0.85 1.27 0.86 the injured side based on the healthy limb workspacelf5,
) 1.33 0.66 1.42 0.91 31]. It should be noted that the use of the healthy side parks
() 1.38 9.7 0.89 0.80 may be unsafe for the training of injured limbs duehteirt
Mean 1.39 0.74 121 0.83 Yy 9 |

reduced range of motion. In contrast, this study developed an
V. DISCUSSION appropriate workspace on an individualibassing a three-stage
workspace determination method [17], as detailed in FithiS
fhethod relies on preliminary assessment of the human use’s

. M ! joint range of motion, and thus the derived subject-specific
space symmetry (mirror) training and visual symmetry mod orkspace can ensure the training safety. However, it cloeul

based on two robotic devices or one device with an e*tem?ioted that the proposed strategy works better in a normal

gfvf;lzgﬁrti&gs, tlhgg-trlg ilr?i r\]l\éo;%tngr%n:;%??g;gaglgfgr?drgzggii }c/:ondition, rather than when human users start feeling exyemel
There are two typical one-device-two-handle robotitesys Ired and is physically unable to conduct tasks.

specially designed for cooperation and coordination traifing o While the proposed bilateral training strategy has been
bilateral limbs, with one developed by Trlep, et al. [28] ane  validated with five healthy subjects, this study suffesmfsome
by Squeri, etal. [23]. Trlep, et al. [22] reduced the forogiged  limitations. First, this study defines training tasks onlg imvo-
by the healthy limb to imitate the impaired lifabnovement.  dimensional space, while actual activities of dailyinky
Squeri, et al. [23] adjusted the amount of assistanegllmsa generally happen in a three-dimensional space. Second, the
force field. However, providing too much assistance hasveighting factors used for controller tuning are defined éut o
negative consequences [28], and encouraging engagewrant f experience, and thus optimization technigues could be irdolve
human users may lead to better training efficatys suggests for optimal control performance. Third, only five hégit
assisting participants only as much as needed accordihgito subjects were recruited as a preliminary evaluatiorthef
real-time training performance. proposed training strategy, and a larger sample of people with
reduced upper limb workspace due to a disability should be
involved. Fourth, the presented strategy still needs some
Mnodifications before clinical applications on patienith wpper
limb disabilities, such as enhanced training safety mesmsma
more comprehensive training performance evaluation indexes.

Robot-assisted bilateral upper limb training is an emergin
form of stroke rehabilitation. Most of previous studissd joint

To increase patients’ engagement, assist-asneeded (AAN)
algorithms are proposed to achieve better bilateral uppér li
training effectiveness [29, 3Marischandra and Abeykoon [29]
proposed a novel impedance controlled bimanual robtit wi
fuzzy logic based adaptive assistance. The AAN controtes
designed using a simple proportional controller with a fuzzy V. CONCLUSION
regulator for gain scheduling, which can provide assistance . . .
torque based on patient’s ability to coordinating his/her arms. . Thls_ Paper proposes a new robot-assgted_bllatera_l upper
Shahbazi, et al. [30] proposed a therajpighe-loop framework limb tralnlnq strategy, focus[ng on thg coordlnat!on tralr!mg o]
for robotics-assisted mirror rehabilitation integrated hwit human users’ bilateral upper limbs. Its implementation within

adaptive assisisneeded therapy. The framework used aSUPiect-specific feasible workspace contributes to enhanced
patient’s functional limb as the medium to transfer therapeutic training safety, and an adaptive stiffness adjustment eigori

training from the therapist to the patient’s impaired limb. It assists participants in qompletlng training tasks at an appepriat
implemented two motor function assessment metrics tidwo  difficulty level. Experimental results demonstrate thae th
objective assessment of the impaired limb’s motor deficiency. It proposed trza’lnlr]g strategy requires significant coordlnat|on of
also and presented an adaptation law to adjust the igtefisit human users’ bilateral upper limbs for task completion,

the therapy delivered to the patient in real time andcbasghe  ndicating it has potential for clinical application. Fewwork
aforementioned estimation of the impairment level of th will increase the number of participants for training experits,

impaired limb. However, the sadled “slacking” principle and focus on theresented strategy’s clinical evaluation on
' ' patients with upper limb disabilities. This strategy wicabe

investigated for lower limb rehabilitation.
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