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Abstract—This paper proposes a new robot-assisted bilateral 
upper limb training strategy, focusing on the bilateral coordination 
of users’ upper limbs. The strategy is implemented and evaluated on 
a bilateral upper limb rehabilitation device (BULReD) that is an H-
bot mechanism actuated by two Maxon DC motors. The control 
system consists of a position controller, an admittance controller and 
an adaptive algorithm, where the BULReD stiffness is modified 
session by session based on training performance. This strategy is 
also integrated with subject-specific workspace for enhanced 
training safety. Experiments were carried out with five subjects 
through active reaching tasks. Results indicate that the proposed 
training strategy requires significant coordination of bilateral upper 
limbs for task completion, and is able to tune control parameters to 
an appropriate difficulty level based on participants’ training 
performance. Future work will focus on its clinical evaluation on 
patients with upper limb disabilities. 

Keywords: Robot-assisted, bilateral, upper limb, training strategy, 
subject-specific workspace.  

I.  INTRODUCTION 

While longitudinal studies suggest that 30% to 66% of stroke 
survivors do not have full arm function six months post-stroke 
[1], evidence has suggested that upper limb motor skills can be 
improved by following rehabilitation interventions [2-4]. 
Various upper limb rehabilitation robotic systems have been 
developed and used with many kinds of patients with disabilities 
over the past few decades [5-8], with promising clinical efficacy, 
for example on MIT-Manus and ARMin III systems. Ang, et al. 
[9] used MIT-Manus combined with electroencephalography-
based motor imagery brain-computer interface technology 
through a randomized controlled trial on 26 hemiplegic subjects 
and achieved positive results. Klamroth-Marganska, et al. [10] 
delivered ARMin III robotic training system on 38 patients with 
motor impairment for over six months, where results showed 
improvements in terms of Fugl-Meyer assessment (FMA) score. 

Existing robotic systems for upper limb rehabilitation can be 
classified into unilateral and bilateral devices. Brackenridge, et 
al. [6] reviewed a variety of upper limb robotic systems with 
more unilateral ones than bilateral ones, including experimental 
prototypes and commercial products. It can be inferred that 
robot-assisted unilateral training technology is relatively mature 
for upper limb rehabilitation, some of them being currently used 
in rehabilitation clinics and hospitals. However, some studies 
have suggested that bilateral training has promising improved 
clinical efficacy, especially when used for coordination training. 
Summers, et al. [11] found significant improvements in a short-
term bilateral versus unilateral training study with mildly 
impaired subjects. Stoykov, et al. [12] showed superior 

outcomes with long-term bilateral training with subjects who 
were much more impaired. Medical literature also supports 
bilateral rehabilitation training to activate the primary motor 
cortex and supplementary motor area of the intact limb. This can 
increase the likelihood of voluntary muscle contractions of the 
impaired limb when symmetrical movements are executed [13].  

Robot-assisted bilateral upper limb training systems can be 
generally classified into three configuration categories: two 
independent robotic devices [14-18], one robotic device with an 
assistive system (EMG-based as an example) [19, 20], and one 
device with two handles [21-23].The two-independent-device 
bilateral system is generally able to achieve different kinds of 
training modes [24], including joint space symmetry (mirror-
image) [14-17, 19], visual symmetry [17, 18, 20, 22, 23], point 
mirror symmetry [21-23] and asymmetry [16, 17]. Examples are: 
Guo, et al. [14] implemented passive-mirroring on a single-arm 
robot in a master-slave configuration using an external haptic 
device. Rashedi, et al. [15] developed a robotic device using 
healthy hands to move the impaired side in mirror-image motion 
pattern. Lum, et al. [18] used a hand-object-hand system to 
achieve transport tasks that move a pencil-like object back and 
forth rhythmically to audible ticks. Stinear and Byblow [16] 
achieved an active-passive bimanual movement therapy by 
conducting wrist reaching tasks in both mirror symmetric and 
asymmetric (a phase lag of 60 degrees) pattern. Miao, et al. [17] 
used two different universal robots to achieve joint space 
symmetry, visual symmetry and asymmetric patterns for upper 
limb training.  

The second category of robotic system is more frequently 
used for delivering joint space or visual symmetry coupled with 
an external assistive system. Leonardis, et al. [19] used the 
BRAVO hand exoskeleton system to achieve a mirror grasping 
tasks through an EMG-controlled system estimating the force of 
the non-paretic hand and transferring to the device. Lien, et al. 
[20] developed a bilateral training system containing an 
exoskeleton robot NTUH-II and an inertia motion unit to realize 
passive and active-assistive visual symmetry training. In general, 
it can be summarized that two-independent-device and one-
device-one-assistive-system bilateral training systems 
predominantly focus on using healthy limbs to provide reference 
movements while the devices providing assistance or resistance 
to impaired limbs. While these robotic systems can implement 
various training modes, the requirement for active cooperation 
of human bilateral limbs for tasks is minimal. 

In contrast, the third category of one-device-two-handle 
robotic systems [21-23] focus more on cooperation and 



coordination training of bilateral limbs. Johnson, et al. [21] used 
the driver’s SEAT providing assistance for the weak arm to 
complete point symmetric steering tasks based on EMG-
measured force signals. Trlep, et al. [22] proposed training tasks 
which involved tracking an on-screen target by manipulating 
two handles on a Haptic Master robot. The handlebar orientation 
was used as control signals for virtual 4airplane movement, 
where the unaffected limb is scaled down using an adaptive gain 
to stimulate use of the paretic arm. Squeri, et al. [23] used the 
Braccio di Ferro to conduct reaching tasks where patients were 
required to move towards a target whilst keeping the bar at a 
predefined angle. The reinforcement learning scheme is 
expressed by means of suitable force fields rendered by the 
haptic device, adapting to the participant’s performance. It is 
highlighted that comparing with the SEAT system for only 
rotational movement, the systems in [22, 23] enable translational 
and rotational movements (denoted as visual symmetry and 
point symmetry, respectively). However, they are expensive due 
to the use of Haptic devices and/or multi-axis load cells. 

This study proposes a new robot-assisted bilateral upper limb 
training strategy with subject-specific workspace for training 
safety and efficacy [17]. It was implemented and evaluated with 
a previously developed bilateral upper limb rehabilitation device 
(BULReD) [25], and an adaptive admittance controller. This 
implementation is low cost and features random reaching targets 
within subject-specific workspace, as well as adaptation to 
training performance based on multiple variables. The paper is 
organized as follows: a detailed robot-assisted bilateral upper 
limb training system is described in section II which includes 
system configuration, training strategy, control system and 
subject-specific workspace determination. Experimental results 
with five healthy subjects are presented next, followed by 
Discussion and Conclusion. 

II. METHODS 

A. System Configuration 

The BULReD consists of three main components, namely the 
base module, the motion module, and the hand holder [25]. The 
base module acts as a foundation to support the motion module. 
The motion module consists of two mutually perpendicular 
linear slide systems, the bridge and the cart. The hand holder is 
rigidly connected with the cart through a three-axis force sensor. 
In this paper, the structure of the device installs an angle sensor 
under the hand holder to measure the angular position of the 
hand holder. To guarantee the safety of bilateral upper limb 
training, there are four main options included in the robotic 
system. Firstly, four limit switches are set up locating at the 
corner of the workbench to restrict the end-effector movement 
inside the robotic workspace. Secondly, a stop button is 
available to make the device out of active operation at any time. 
Thirdly, both handle bars are designed without hand constraints, 
so the participants can voluntarily hold or release them during 
the training. Finally, the presented strategy is based on 
admittance control, which is capable of making the human-robot 
interaction compliant. 

A schematic diagram of the robotic layout is presented in Fig. 
1, where the origin of global coordinate (OGC) is labelled and 
key dimensions are identified on a subject specific basis. Each 
participant is required to remain standing upright during the 

whole training process, ensuring a constant relative position 
with the robotic device. An average set of human segment 
lengths expressed as a percentage of body height is adapted as 
provided by Winter [26]. Considering the height of a subject as 
H, the height of shoulders B ൌ ͲǤͺͳͺ כ H, the distance between 
shoulders S ൌ ͲǤʹͷͻ כ H, the length of palm is ͲǤͳͲͺ כ H, and 
other parameters Lଵ ൌ ͲǤͳͺ͸ כ H , Lଶ ൌ ͲǤͳͶ͸ כ H , Lଷ ൌͲǤͲͷͶ כ H (estimated half of the palm size). In this study, we set Dଵ ൌ ͶͲͷmm as the distance on the Y-axis between OGC and 
the human body, and Dଶ ൌ ͳͳͺʹmm as the height of OGC. 
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Fig.1: Schematic diagram of the robot-assisted bilateral upper limb training 
system. (The orange arrowed lines refer to the global coordinate system.)  

B. Training Strategy 

The newly proposed robot-assisted bilateral upper limb 
training strategy with subject-specific workspace, is presented in 
Fig.2. The black square represents the workspace of the 
BULReD whose X axis ranges between ሾെͳ͸Ͳmm ͳ͸Ͳmmሿ, 
and Y axis between ሾͲmm ͵ʹͲmmሿ. The grey irregular closed 
curve is the feasible workspace boundary (FWB), which is a 
function of a specific participant’s body size. The black dot 
denotes the start point P̴s of training trajectory, and the red 
ones are training targets (Target̴ͳǡ Target̴ʹ,…, Target̴n). 
The arrowed red line represents the desired training trajectory. 
The blue bar represents the handle holder. The virtual tunnel line 
with red shadow (VT_L) and the virtual tunnel angle with blue 
shadow (VT_A) are denoted as training trajectory and angle, 
respectively. The green dashed line is parallel to X axis. The 
black dashed line represents the desired angular position Ʌୢ of 
the hand holder, and the blue one represents its measured angular 
position Ʌ . Parameters Q୲୦୰  and ȣ୲୦୰  correspond to VT_L 
and VT_A, respectively. 
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Fig.2: Schematic diagram of the proposed training strategy. (The grey irregular 
closed curve represents the feasible workspace boundary (FWB). The black dot P̴s is the start point of the training trajectories. Regions VT_L and VT_L 
represent Q୲୦୰ and ȣ୲୦୰, respectively. The parameter Ʌୢ is desired angular 
position, and Ʌ is measured angular position.) 

The proposed training strategy includes three main steps: 1) 
determining the subject-specific workspace and random task 
target distribution; 2) manipulating the handle holder at Ʌୢ in a 
virtual angle tunnel, and moving the handle holder towards the 
task target along a virtual path tunnel within a desired time 
period tୢ; and 3) generating another random dot target within 
appropriate workspace for a new round in the same session of 
training when the current target is reached. 

C. Control System with Adaptation 
To enable the BULReD to implement the proposed training 

strategy, a control system is developed consisting of an 
admittance controller, a position controller module, and an 
adaptive law based on training performance, as presented in 
Fig.3. 
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Fig.3: Control diagram of the BULReD. (The parameters Mୢ, Dୢ and Kୢ are 
the inertia, stiffness and damping parameters, respectively. The measured force 
F is from the participant. The output of the admittance controller q୤  is the 
increased position, and the input of the position controller U is the input voltage 
for motors. For the adaptive law, the parameters e୯ , e஘  and e୲  are 
performance evaluation indicators corresponding to position, angle and time 
deviation. After feature scaling, the gain οk is calculated by weighting.) 

Admittance control makes the device operate with a specific 
inertia, damping and stiffness by measuring and controlling the 
force from the force sensor. The admittance equation is written 
as in (1). q୤ ൌ FMୢsଶ ൅ Dୢs ൅ ሺKୢିଵ ൅ οkሻିଵ 

(1) 

Here, F ൌ ሾF୶ F୷ሿ୘  is denoted as the measured 
interaction force vector along X axis and Y axis, Mୢ, Dୢ and Kୢ  represent the desired inertia, damping and stiffness, 
respectively. The gain value οk is calculated by adaptive law. 
Setting q୤ ൌ ሾ�୤ �୤ሿ୘  as the increased position vector 
corresponding to F, the admittance law can be simplified into 
(2) as a linear spring, where Mୢ ൌ Dୢ ൌ Ͳ. 

q୤ ൌ FሺKୢିଵ ൅ οkሻିଵ (2) 

Considering the specification of the electric motors, a 
position controller is used to convert q୤  into required motor 
voltage U ൌ ሾUଵ Uଶሿ୘ , which can be obtained in (3),  U ൌ ͸ͲʹɎ Rq୤ɀv୲ି ଵtିଵ (3) 

where R ൌ rିଵ ቂͳ ͳͳ െͳቃ  as the inverse kinematic matrix, r 

denoted as the radius of the pulley. ɀ is the reduction ratio of 
the gearhead,  v୲ is the speed constant of the motor, and t is the 
time required for moving such an angular displacement. 

Fig.4 shows the process of target generation. The red dots, 
blue dots, orange dots and purple dots respectively represent the 
generated inside targets (I̴target), outside targets (O̴target), 
inside but inappropriate targets (II̴target) and modified targets 
(M̴target). The numbers signify the sequence of each target. 
The grey thick line represents the FWB. The blue imaginary 
lines and red lines are uncorrected trajectories UT and modified 
trajectories MT, respectively.  

A new target will be randomly generated in the workspace 
of the device once the handle reaches it. As shown in Fig.4, the 
first target 1 (the followed targets will be called by sequence 
numbers for short) is a I̴target, which is distinguished from O̴target by a ray-based method. The link between P_s and 1 
represents the first training trajectory. It is noteworthy that 2 is 
generated outside of the feasible workspace. To avoid the 
training trajectory beyond ROM of the participant, a M̴target 
3 being the intersection of the link from 1 to 2 and the FWB is 
utilized to replace 2. Similarly, the trajectory from 4 to 5 is 
substituted by the trajectory from 4 to 6. Although 6 and 7 are 
both located inside of the feasible workspace, a part of the link 
between 6 and 7 comes out through the feasible workspace due 
to irregularity. An analogous strategy is to find all the 
intersections of the link between 6 and 7 and the FWB, then 
select the closet one 8 as the modified target. 
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Fig.4: Target generation strategy. (The targets I_target and O_target represent 
targets generated inside and outside the feasible workspace. The target 
M_target is the modified target. The target II_target is the inappropriate target 
inside the feasible workspace. The grey thick line is the feasible workspace 
boundary FWB. The lines UT and MT respectively represent uncorrected 
trajectories and modified trajectories.) 



The parameters Q୲୦୰ , ȣ୲୦୰ , and T୲୦୰  are given by the 
virtual tunnels. To evaluate training performance, three 
indicators are used which are position deviation e୯  from 
desired trajectory, angle deviation e஘ from desired angle Ʌୢ, 
and time deviation e୲  that has been applied by Lewis and 
Perreault [27]. More specifically, e୯  and e୲  are used to 
appraise the ability of moving ability, and e஘ is for coordinate 
ability estimation. It is defined that the position vector q୲ୟ୰୬ ൌሾ�୲ୟ୰୬ �୲ୟ୰୬ ሿ୘ and q୲ୟ୰୬ାଵ ൌ ሾ�୲ୟ୰୬ାଵ �୲ୟ୰୬ାଵሿ୘ are the n୲୦  target 
and ሺn ൅ ͳሻ୲୦ target. The parameterq୧ ୬ ൌ ሾ �୧ ୬ǡ �୧ ୬ሿ is the i୲୦ sampling point of desired voluntary trajectory between these 
two dot targets. The parameter e୧ ୯୬ is the position deviation 
between q୧ ୬ and the desired trajectory (the line path between q୲ୟ୰୬  and q୲ୟ୰୬ାଵ ). The position deviation value e୧ ୯୬  can be 
expressed in equations (4) to (7). 

e୧ ୯୬ ൌ ቐቚ୅౤ ଡ଼౤ା୆౤౟ ଢ଼౤ାେ౤౟ ቚඥሺ୅౤ሻమାሺ୆౤ሻమ ǡ e୧ ୯୬ ൑ Q୲୦୰Q୲୦୰ ǡ e୧ ୯୬ ൐ Q୲୦୰ , i=1,2,…,N (4) 

A୬ ൌ �୲ୟ୰୬ାଵ െ �୲ୟ୰୬  (5) B୬ ൌ �୲ୟ୰୬ െ �୲ୟ୰୬ାଵ (6) C୬ ൌ �୲ୟ୰୬ାଵ�୲ୟ୰୬ െ �୲ୟ୰୬ �୲ୟ୰୬ାଵ (7) 

Then, the normalized position deviation e୯୬ between q୲ୟ୰୬  and q୲ୟ୰୬ାଵcan be obtained based on (8), 

e୯୬ ൌ ͳN ෍ e୧ ୯୬୒
୧ୀଵ  (8) 

where N is the sampling number between these two targets. 

In a similar way, the measured angle of the i୲୦  sampling 
point between q୲ୟ୰୬  and q୲ୟ୰୬ାଵ  is denoted as Ʌ୧ ୬ . The 
parameter e୧ ஘୬ is the angular deviation between Ʌ୧ ୬ and Ʌୢ, 
and can be expressed in (9). Correspondingly, the normalized 
angle deviation between q୲ୟ୰୬  and q୲ୟ୰୬ାଵcan be obtained based 
on (10). e୧ ஘୬ ൌ ቊห Ʌ୧ ୬ െ Ʌୢหǡ e୧ ஘୬ ൑ ȣ୲୦୰ȣ୲୦୰ǡ e୧ ஘୬ ൐ ȣ୲୦୰ ǡ i ൌ ͳǡʹǡ ǥ ǡ N (9) 

e஘୬ ൌ ͳN ෍ e୧ ஘୬୒
୨ୀଵ  (10) 

 

It is defined that the desired complete time is tୢ, and thus 
the measured time and time deviation between q୲ୟ୰୬  and q୲ୟ୰୬ାଵ 
are t୬ and e୲୬, respectively, as in (11). e୲୬ ൌ ൜t୬ െ tୢǡ e୲୬ ൑ T୲୦୰T୲ǡ e୲୬ ൐ T୲୦୰  (11) 

To standardize the range of e୮୬, e஘୬ and e୲୬, scaling to unit 
length strategy is used for feature scaling as shown in equation 
(12) to (14). 

e୯୬ᇱ ൌ e୯୬Q୲୦୰ (12) 

e஘୬ᇱ ൌ e஘୬ȣ୲୦୰ (13) 

e୲୬ᇱ ൌ e୲୬T୲୦୰ (14) 

When subjects drive the robotic system under a high 
resistance level, it takes a longer time for them to reach the target. 
In this case the position and angle deviations are smaller. The 
adjustment value οk୬  during q୲ୟ୰୬  and q୲ୟ୰୬ାଵ  can be 
described by weighting in equation (15), οk୬ ൌ ɘ୯e୯୬ᇱ ൅ ɘ஘e஘୬ᇱ ൅ ɘ୲e୲୬ᇱ (15) 

where ɘ୯, ɘ஘ and ɘ୲ are weights. 

D. Subject-Specific Feasible Workspace 
Miao, et al. [17] proposed a three-stage method to determine 

human hands’ workspace on a subject-specific basis. This 
considered the human upper limb as a model with seven degrees 
of freedoms, and used the Denavit-Hartenberg method to derive 
the human hand workspace. In a similar way, the subject-
specific workspace within the BULReD can be obtained, as 
presented in Fig.5. Part 1 shows the workspace of both hands 
based on a 175mm-height subject under the BULReD 
configuration, where W-R_hand represents the workspace of the 
right hand and W-L_hand for the left hand. The J-R_shoulder 
and J-L_shoulder represent the right and left shoulder joint, 
respectively. Due to the application for planar training, part 2 
gives the workspace of hands on plane Z ൌ Ͳ. As shown in 
Fig.2, the subjects are asked to stay at desired angle Ʌୢ , the 
workspace of the handle combined with hands workspace needs 
to be analyzed. For part 3, it indicates W-Device is the 
workspace of BULReD, and W-L_handle is the workspace of 
handle’s left side. Ƚ is the intersection between W-L_handle 
and W-L_hand. Similarly, Ⱦ is the intersection between W-
R_handle and W-R_hand. It is defined Ⱦᇱ is the handle’s right-
side workspace corresponding to Ƚ, which can be achieved by 
translating Ƚ . Then, the intersection ɔ஘୰ ൌ Ⱦ ת Ⱦᇱ  is the 
handle’s right-side feasible workspace, and the device feasible 
workspace ɔ஘ can be achieved in part 4 by ɔ஘୰  translation. 

III.  EXPERIMENTAL RESULTS 

A. Experiments 

Five healthy subjects (three males: age 28.33±4.73 years, 
height 1786.70±40.41 mm, weight 86.33±3.21 kg, and two 
females: age 21.00±0.00 years, height 165.00±7.00 mm, weight 
46.75±0.75 kg) volunteered to participate in this study. The 
study was approved by the University of Auckland, Human 
Participants Ethics Committee (019707) and consents were 
obtained from all participants. During the experiments, each 
participant was asked to actively reach 20 targets (not including P̴s). These 20 targets randomly and sequentially appeared on 
the computer screen to direct the training inside the subject-
specific workspace. In this study, the start point P_s and desired 
angle Ʌୢ  are set at ሾͲ ʹͲሿ  and Ͷͷι , respectively. Three 
threshold values Q୲୦୰ , ȣ୲୦୰  and T୲୦୰  are defined as 20mm, ͳͲι and 5s, respectively. The parameter tୢ is set as the time 



completing the trajectories at a constant speed of 15mm/s. The 
weighting factors ɘ୯, ɘ஘ and  ɘ୲ are defined as 0.04, -0.02 

and -0.04, respectively. Considering all the participants being 
healthy, the initial kଵ was set at 0.05. 

 
Fig.5 The process of subject-specific feasible workspace generation. (The generation sequence is from number 1 to 4.) 

B. Results 
Experimental results for the five healthy subjects are given 

in Fig.6 (a) to (e) corresponding to subjects (a) to (e). Each plot 
presents the FWB, random task targets, measured voluntary 

trajectory and desired voluntary trajectory. Fig.7 (a) presents 
desired voluntary and measured voluntary trajectories, in which 
blue, red, brown, green and purple lines match to subjects (a) to 
(e). Fig.7 (b) shows the trajectory tracking errors of the 
BULReD. 

 
(a) 

 
(b) 



 
(c) 

 
(d) 

 
(e) 

Fig.6: The total experimental results of every subject. (The figures (a) to (e) correspond to the results of subjects (a) to (e).) 

Fig.7: The trajectory tracking error. (a) represents the desired and measured voluntary trajectories, (b) represents the trajectory tracking error. 



Statistical results of trajectory tracking performance are 
summarized in Table 1, where the mean values of root-mean-
square error (RMSE) are 1.39mm and 1.21mm, respectively, for 
X-axis and Y-axis. The mean values of normalized root mean 
square error (NRMSE) on X-axis and Y-axis are 0.74% and 
0.83%, respectively. These results show satisfactory trajectory 
tracking during robot-assisted bilateral upper limb training. 

The performance evaluation of the five subjects and 
modified values ሺKୢିଵ ൅ οkሻ  are given in Fig.8. To make it 
clearer to analyze the relevance, the ሺKୢିଵ ൅ οkሻ  value are 
multiplied by 50. It can be seen that the modified values ሺKୢିଵ ൅οkሻ vary a lot during the first 10 or 12 training rounds but 
slightly change for last 10 or 8 rounds in Figs 8 (a)-(d). This can 

 

(a)                                                            (b)  

 

(c)                                                         (d) 

 

(e) 

Fig.8: The results of performance evaluation and parameter adjustment. (The figures (a) to (e) correspond to the results of subjects (a) to (e)). 



be accounted by that subjects (a) to (d) tried to adapt to training 
tasks in early stage, and became familiar for last 10 or 8 rounds. 
More specifically, the modified values ሺKୢିଵ ൅ οkሻ of subject 
(b) still varies obviously during the last 10 rounds, which may 
suggest a longer slower adaptation to task difficulty. Differently, 
the data presented in Fig.8 (e) show continuous rise of the ሺKୢିଵ ൅ οkሻ  value, either in the first 5 rounds or the last 5 
rounds. However, it is worth mentioning that subject (e) reported 
her tired arms during the second-half stage and failed to focus 
on the completion of training tasks. This can be the reason why 
the ሺKୢିଵ ൅ οkሻ values of subject (e) do not flatten during the 
late stage of the training tasks. 

Table 1 Statistical results of trajectory tracking performance. 

No. X-axis Y-axis 
RMSE (mm) NRMSE (%) RMSE (mm) NRMSE (%) 

(a) 1.44 0.74 1.20 0.79 
(b) 1.36 0.76 1.26 0.79 
(c) 1.42 0.85 1.27 0.86 
(d) 1.33 0.66 1.42 0.91 
(e) 1.38 0.70 0.89 0.80 

Mean 1.39 0.74 1.21 0.83 

IV. DISCUSSION 

Robot-assisted bilateral upper limb training is an emerging 
form of stroke rehabilitation. Most of previous studies used joint 
space symmetry (mirror) training and visual symmetry modes 
based on two robotic devices or one device with an external 
element [14-17, 19]. It is worth mentioning that using multiple 
devices makes the training system more complex and expensive. 
There are two typical one-device-two-handle robotic systems 
specially designed for cooperation and coordination training of 
bilateral limbs, with one developed by Trlep, et al. [22] and one 
by Squeri, et al. [23]. Trlep, et al. [22] reduced the force provided 
by the healthy limb to imitate the impaired limb’s movement. 
Squeri, et al. [23] adjusted the amount of assistance based on a 
force field. However, providing too much assistance has 
negative consequences [28], and encouraging engagement from 
human users may lead to better training efficacy. This suggests 
assisting participants only as much as needed according to their 
real-time training performance. 

To increase patients’ engagement, assist-as-needed (AAN) 
algorithms are proposed to achieve better bilateral upper limb 
training effectiveness [29, 30]. Harischandra and Abeykoon [29] 
proposed a novel impedance controlled bimanual robot with 
fuzzy logic based adaptive assistance. The AAN controller was 
designed using a simple proportional controller with a fuzzy 
regulator for gain scheduling, which can provide assistance 
torque based on patient’s ability to coordinating his/her arms. 
Shahbazi, et al. [30] proposed a therapist-in-the-loop framework 
for robotics-assisted mirror rehabilitation integrated with 
adaptive assist-as-needed therapy. The framework used a 
patient’s functional limb as the medium to transfer therapeutic 
training from the therapist to the patient’s impaired limb. It 
implemented two motor function assessment metrics to provide 
objective assessment of the impaired limb’s motor deficiency. It 
also and presented an adaptation law to adjust the intensity of 
the therapy delivered to the patient in real time and based on the 
aforementioned estimation of the impairment level of the 
impaired limb. However, the so-called “slacking” principle 

exists once patients adapt to the provided assistance, which can 
negatively affect rehabilitation efficiency” 

The proposed robot-assisted bilateral upper limb training 
strategy overcomes the above-mentioned limitation of 
continuous assistance. It enables participants to independently 
complete a task session instead of real-time assistance or 
resistance. Its control parameters are adjusted on a session by 
session basis, rather than in real-time. This may lead to two 
major advantages: 1) continuously challenging patients and thus 
encouraging more active engagement with training tasks; and 2) 
helping with identifying the most appropriate training protocol 
in terms of task execution time, determination of the optimal 
training path tunnel and pose angle tunnel.  

Another benefit of the proposed training strategy is the safe 
and effective workspace determination on a subject-specific 
basis. Previous studies generally used the healthy arm to guide 
the injured side based on the healthy limb workspace [15, 19, 
31]. It should be noted that the use of the healthy side workspace 
may be unsafe for the training of injured limbs due to their 
reduced range of motion. In contrast, this study developed an 
appropriate workspace on an individual basis using a three-stage 
workspace determination method [17], as detailed in Fig. 5. This 
method relies on preliminary assessment of the human use’s 
joint range of motion, and thus the derived subject-specific 
workspace can ensure the training safety. However, it should be 
noted that the proposed strategy works better in a normal 
condition, rather than when human users start feeling extremely 
tired and is physically unable to conduct tasks. 

While the proposed bilateral training strategy has been 
validated with five healthy subjects, this study suffers from some 
limitations. First, this study defines training tasks only in a two-
dimensional space, while actual activities of daily living 
generally happen in a three-dimensional space. Second, the 
weighting factors used for controller tuning are defined out of 
experience, and thus optimization techniques could be involved 
for optimal control performance. Third, only five healthy 
subjects were recruited as a preliminary evaluation of the 
proposed training strategy, and a larger sample of people with 
reduced upper limb workspace due to a disability should be 
involved. Fourth, the presented strategy still needs some 
modifications before clinical applications on patients with upper 
limb disabilities, such as enhanced training safety measures and 
more comprehensive training performance evaluation indexes. 

V. CONCLUSION 

This paper proposes a new robot-assisted bilateral upper 
limb training strategy, focusing on the coordination training of 
human users’ bilateral upper limbs. Its implementation within 
subject-specific feasible workspace contributes to enhanced 
training safety, and an adaptive stiffness adjustment algorithm 
assists participants in completing training tasks at an appropriate 
difficulty level. Experimental results demonstrate that the 
proposed training strategy requires significant coordination of 
human users’ bilateral upper limbs for task completion, 
indicating it has potential for clinical application. Future work 
will increase the number of participants for training experiments, 
and focus on the presented strategy’s clinical evaluation on 
patients with upper limb disabilities. This strategy will also be 
investigated for lower limb rehabilitation. 
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