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Upper Limb Muscle Force Estimation During Table 
Tennis Strokes 

Yiming Guo, Yingfei Sun*, Yi Ren, Zhipei Huang, Jiankang Wu, Zhiqiang Zhang 
 
 

Abstract—Based on an EMG-adjusted method in 
neuromusculoskeletal model, this study aims to predict the 
individual muscle force in shoulder and elbow during table 
tennis strokes. Muscle force estimation makes muscle 
activation analysis more physiological in sports. Twenty 
subjects, divided into professional group and amateur group, 
were adopted in this study. They were asked to do a basic 
stoke motion: backhand block. Surface electromyography 
(sEMG) of nine muscles was recorded, as well as the motion 
data collected by three inertial sensors. A Hill-type 
musculotendon model was then adopted to estimate individual 
muscle force by combining adjusted sEMG and motion data. 
The result shows that the method can estimate individual 
muscle force during table tennis strokes accurately, and the 
two groups show significant difference in muscle force of 
shoulders and elbows. 
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I. INTRODUCTION  
In recent years, sports biomechanics analysis has been 
widely used in optimizing movement technology and 
guiding sports training of table tennis. At present, the upper 
limb strength characteristics [1][2] play an important role in 
the biomechanical research on human body movement in 
table tennis. As for backhand block, players predominantly 
use the shoulder and elbow joints to hit the ball, with a little 
assistance of waist and wrist. It is, therefore, a significant 
way to evaluate the motion by analyzing muscle activity 
during the strokes. As far as we know, this previous analysis 
basically depended on the process of surface 
electromyography (sEMG) directly [3]. Meanwhile no 
research based on the musculoskeletal model to predict the 
muscle force during strokes has been implemented. Muscle 
force estimation, which opens up the possibility of 
objectively evaluating human motion in both mechanical 
and physiological way [4], should be introduced to 
quantitative evaluation of players’ motion. However, direct 
measurement of muscle strength is usually not feasible in 
clinical setting.  

 Traditional EMG-driven model is a common method in 
non-invasive muscle force prediction, which has been 
widely used on so many different anatomical sites like knee, 
ankle, elbow, shoulder and wrist [5]. However, due to the 
missing information of deep muscles and noise caused by 

skin or electrode movement while collecting surface EMG 
signals, the EMG-driven method is not accurate enough. 
Inverse dynamic method is also used to analyze the internal 
mechanism of muscle movement during the table tennis 
strokes [6], in which muscle forces and velocities come out 
through the motion data and estimated activation patterns of 
muscles. Uncertainty of the patterns still limits the accuracy 
of the method. 

With both motion data and sEMG signals, we used a 
static optimization method based on EMG-driven model to 
adjust EMG values to optimize the joint moments, so that 
we could estimate muscle forces. The result indicates that 
the method can predict individual muscle forces during 
strokes accurately, making it possible for us to get a deeper 
understanding of human dynamic movement mechanism. In 
this paper, we first explain how the approach works during 
the process. Then we analyse the difference between 
individual muscle forces of two groups. Last, we draw a 
conclusion that could help in a scientific and systematic 
teaching training program.  

II. METHOD 

A. Data Collection 

We collected twenty healthy young subjects (age:23.6±2.1 
years; height: 173.9±4.5kg) in this study. ten of them were 
from the table tennis association of the University of 
Chinese Academy of Sciences, and another ten subjects 
were amateurs. They were divided into professional group 
and amateur group. A ball machine was employed to serve 
balls under stable frequency, speed and landing point. The 
participants were required to hold the bat upright, used the 
backhand block movement to return five balls continuously. 

The motion data and sEMG signals were both recorded 
by the Trigno wireless sEMG recording system 
(DELSYSINC, Massachusetts, USA). The motion data were 
collected (148.15 Hz) by four motion sensors, attached to 
waist, upper arm, forearm and wrist, respectively. 
Meanwhile, nine electrodes were used to collect sEMG 
signal of anterior deltoid (DELT_A), middle deltoid 
(DELT_M), posterior deltoid (DELT_P), clavicular head of 
pectoralis major (PECM), latissimus dorsi (LAT), long head 
of triceps brachii (TRIlong), lateral head of triceps brachii 
(TRIlat), long head of biceps brachii (BIC) and 
brachioradialis (BRD) at 1925.93 Hz. The electrodes of each 
muscle were located and placed according to the SENIAM 
(surface electromyography for the non-invasive assessment 
of muscles) recommendations [7] and with respect to muscle 
fiber directions longitudinally. The specific locations are 
shown in Fig.1. The skin was cleaned by alcohol to reduce 
noise contamination before settling electrodes. Traditional 
manual muscle test techniques were applied to collect the 
isometric maximum voluntary contraction (MVC) trials [8]. 
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Fig. 1.  Locations of the electrodes during trials 

B. Preprocessing 

Raw EMG signals were high-pass filtered (30 Hz), full-
wave-rectified, and low-pass filtered (6 Hz) using a zero-lag 
fourth-order recursive Butterworth filter to calculate 
experimental muscle excitations. The excitations were then 
normalized using data from maximum voluntary contraction 
trials respectively. 

Joint angle was calculated by the integration of the 
angular rate using a gyroscope. The nine-axis motion data 
was preprocessed and then we used factor quaternion 
algorithm to estimate joint Euler angle of the shoulder and 
the elbow.   

           
Using the calculated joint angle data, muscle kinematics 

parameters could be acquired by an OpenSim model [9]. We 
introduced the upper limb model developed by Saul et al 
[10].  After scaling, we turned joint angle into joint moments, 
musculo-tendon lengths and moment arms through OpenSim 
Inverse Dynamics Tool and Analysis Tool in the subject’s 
scaled model. The parameters we got are necessary in 
individual muscle force prediction. 

C. Muscle Activation Dynamics 

Muscle activation dynamics was to transform muscle 
excitation we obtained before to neural activation, and then 
to muscle excitation. Muscle excitation could represent a 
relationship between EMG and muscle force considering of 
the time-delay and non-linearity. The muscle activation 
dynamics process uses a discrete form of critically damped 
linear second-order difference system to obtain neural 
excitation [11]:  
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where )(te  is the muscle excitation at time t , )(u t  is the 
neural activation, c is the muscle gain, 1C and 2C  are 
recursive coefficients, and d is the electromechanically 
delay. Then either a linear or non-linear EMG-force 
relationship was used to calculate the muscle activation [11]: 
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where )(a t is the muscle activation, )(u t is the neural 
activation, and A  is the non-linear shape factor. The values 

of these system parameters were set to match the subject-
specific physiological characteristics using a calibration 
process, which we will talk about later. In our experiment, 
we selected DELTA, DELTM, DELTP, PECM, LAT, 
BIClong, BICshort, TRIlong, TRImed, TRIlat, BRD and 
BRA as the twelve main action muscles of elbow and 
shoulder joints during the motions. As for the muscles 
BICshort, TRImed and BRA, sEMG of which we didn’t 
collect, we adopted a neural mapping method to get their 
activations [12].  

D. Muscle Contraction Dynamics 

Muscle activations were then transformed to muscle 
forces in muscle contraction dynamics. We used a Hill-type 
musculotendon model to complete the process: 
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where * +tF t ,m s  is the muscle force, mF0  is the maximum 
isometric muscle force, l  is the normalized muscle fiber 
length, v  is the normalized muscle fiber contraction 
velocity, )(a t  is the muscle activation,  is the pennation 
angle. * +lf A  is the active force-length relation that express 
the ability of muscle fibers to produce force at different 
lengths, * +vf  is the passive force-length relation that 
represents the force response of the fibers to strain, )(lfP

 
accounts for the force contribution of the fiber contraction 
velocity.  

E. Static Optimization 

     We adjusted sEMG signal through a comparison 
between the estimated joint moment and the experimental 
one that was calculated before by OpenSim. Joint moment 
estimation took the individual muscle strength and the 
individual muscle arm as input, according to the Newtonian 
mechanics, the joint torque was then calculated:  
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where v̂ is the estimated joint moment, MusclesN is the 
number of muscles, iMA is the moment arm of muscle and 

i
mF  is the force of muscle i . 
Static optimization was used to adjust system parameters 

in muscle activation dynamics and muscle contraction 
dynamics. This calibration process aimed at matching the 
subject’s specific EMG-force generating properties. A 
simulated annealing algorithm [13] was used to minimize 
the root mean square error between the experimental and 
estimated joint moment by varying parameters within pre-
defined boundaries.  

Following calibration, we employed a novel set of trail as 
input to drive the calibrated model. During the simulation 
process based on the model, static optimization unit takes 
the experimental joint torque and the estimated joint torque 
obtained by the simulation as input, and uses the 
optimization algorithm to adjust the parameters in the 
model within a reasonable preset range, so that the 
simulated joint torque is more consistent with the 
experimental joint torque. The objective functions and 
constraints are as follows [14]: 



 

Â
?

/?
N DOFs

i

iobjF

1
iˆmin vv

                          (5) 

muscles
j

jj
NjhT

e

ee
Œ$>

/ ˆ
tosubject

             (6) 
where v is the experimental joint moment, v̂ is the 
estimated joint moment, je is the experimental muscle 

excitation for muscle i , jê is the adjusted muscle 
excitation for muscle i , Th is the threshold constrained in 
the interval (0, 1). We set hT  = 0.8 in our experiment to 
acquire an accurate joint moment estimation [14]. 

F. Data analysis 

The coefficient of determination (R2) and the normalized 
root mean squared deviation (NRMSD) [15], were 
introduced to measure the similarity between the estimated 
and experimental results, and comparison results with 0.0 ≤ 
NRMSD ≤ 0.3 and 0.7 ≤ R2 ≤ 1.0 are thought to be 
acceptable for joint moment estimation.  

Independent sampled t-tests were taken to examine the 
differences between professional and amateur group. The 
coefficient of multiple correlation (CMC) was employed to 
evaluate the similarity of the curves of muscle forces to 
compare the differences between two groups. The 
calculation of CMC is as follows [16]:  
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where m is the number of curves, n is the number of data of 
each curve, ijY  is the jth data of the ith curve, 

jY  is the 

average of the jth data of all curve, Y is the mean of n data 
for all curves. The closer the CMC is to 1, the higher the 
similarity of the curve.  The result with 0.75 ≤ CMC ≤ 1.0 is 
thought to be high similarity.  

III. RESULTS 

A. Estimated Results Comparison 

The comparison between estimated and experimental joint 
moment is shown in Fig.2. It shows the shoulder and elbow 
joint moment of four consecutive strokes of subject 1. The 
calculated joint torque of multiple subjects shown in table 1 
illustrated that compared with traditional EMG-driven 
method, the method we used could calculate joint moment 
more accurately so that the muscle and joint dynamics 
would also fit the reality closely.  

 
Fig. 2. Joint moment comparison of subject 1 

Table 1. Comparison between experimental and estimated joint moment 
 EMG-driven Static Optimization 

NRMSD_shoulder 0.4238±0.0756 0.0585±0.0302 
NRMSD_elbow 0.3947±0.0687 0.0477±0.0226 

R2_shoulder 0.2073±0.1486 0.9109±0.0428 
R2_elbow 0.4645±0.2508 0.9533±0.0342 

 

B. Muscle Force Analysis 

Fig.3 and Fig.4 shows the individual muscle forces of the 
elbow and shoulder in the second stroke of the subject 1.      

 
Fig. 3. Individual muscle forces in elbow joint 

 
In the first half of hitting phase, the elbow is basically a 

process of elbow extension, and the shoulder joint is 
basically a process of flexion. The long head of the triceps 
is the main muscle of the elbow, showing an inverted U 
shape, meanwhile the anterior deltoid is the main muscle of 
the shoulder. In the second half of the reduction phase, the 
elbow and shoulder joints are exactly in an opposite 
situation, the long head of the biceps and latissimus dorsi 
are the main force muscles. Changes in other muscle forces 
are also in line with the reality. 

 
Fig. 4. Individual muscle forces in shoulder joint 

During the stroke, the peak force of each muscle reflects 
the contribution of the muscle throughout the process. Fig.5 
is an average of individual muscle peaks during the stroke 
of all subjects, which have been ranked from large to small.  
As seen from the figure, the red color shoulder muscles 
occupy a larger proportion of the whole movement, and the 
anterior deltoid exerts the greatest force throughout the 
movement. 

 
Fig. 5. Average individual muscle peak forces 



 

Table 2 compares the shoulder and elbow movement and 
muscle force between the professional group and the 
amateur group. From the results of the kinematic data, it can 
be concluded that the professional group and the amateur 
group have some differences in the angle of the shoulder 
and elbow joint, and the difference in angle indicates the 
difference in the way the two groups of subjects exert force 
on the shoulder and elbow movement: The maximum mean 
value of the elbow joint of the amateur group joint is 
significantly larger than that of the professional group. On 
the contrary, the professional group has a lager maximum 
shoulder angle. 

Table 2. Comparison of shoulder and elbow joint between the two groups 

 Experts Novices P-value 

Max  shoulder angle 71.92±9.15 52.80±8.53 <0.01 

Max  elbow  angle 131.09±16.68 152.96±22.86 <0.01 
Max DELT1/TRIlong 3.38±0.36 2.16±0.61 <0.01 

  
In terms of muscle force, many subjects in the amateur 

group have great difference in their strength, so that there is 
no significant difference while comparing their muscle 
force only, and it is difficult to scientifically distinguish the 
tendency of the force between the shoulder and elbow. 
Therefore, we take the ratio between the two muscles with 
the largest peak of the shoulder and elbow joint, the 
forehead of the deltoid and the long head of the triceps, to 
distinguish the difference between the two groups. In terms 
of overall power, the average peak of the amateur group is 
smaller than that of the professional group. The main 
difference is the force of the shoulder muscles. The 
professional group mainly use shoulder to hit the ball, while 
the amateur group use more force from the elbow, which is 
consistent with the conclusion of kinematics. 

We selected the main force muscle the forehead of the 
deltoid and long head of triceps for CMC analysis. Table 3 
compares the CMC values of the two groups of subjects. 
The individual CMC is the CMC value of the muscle force 
curves of the two main exerting muscles in ten strokes. The 
results show that both groups have high reproducibility, 
while the professional group’s movement repeatability is 
significantly higher than that of the amateur group. The 
group CMC is the CMC value of ten average muscle curves 
of each subject. The CMC value among the professional 
group players is much larger than the CMC value among 
the amateur groups, which indicates that after long-term 
training and competition, the professional group achieve a 
higher level of control and consistency in table tennis 
technology.  

Table 3. CMC difference between the two groups of subjects 

 Muscle Experts Novices P-value 

Individual CMC 
DELT1 0.97±0.02 0.90±0.03 <0.01 

TRIlong 0.95±0.02 0.88±0.05 <0.01 

Group CMC 
DELT1 0.85 0.68  
TRIlong 0.86 0.61  

C. Conclusion 

In conclusion, we can model the table tennis backhand 
block movement, calculate muscle force more accurately, 

and perform a certain statistical analysis on the muscle force. 
Besides, we conclude that difference exists between players 
at different level, in which the force distribution and stability 
show the most significant difference. The research results 
could also be applied in the study of other technical 
movements of table tennis. Our study lays basis for 
biomechanical analysis in table tennis sports and also throws 
lights on the individual training guidance for athletes.  
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