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Abstract

Background

It remains unclear when standard systematic reviews and meta-analyses that rely on pub-

lished aggregate data (AD) can provide robust clinical conclusions. We aimed to compare

the results from a large cohort of systematic reviews and meta-analyses based on individual

participant data (IPD) with meta-analyses of published AD, to establish when the latter are

most likely to be reliable and when the IPD approach might be required.

Methods and findings

We used 18 cancer systematic reviews that included IPDmeta-analyses: all of those com-

pleted and published by the Meta-analysis Group of the MRC Clinical Trials Unit from 1991

to 2010. We extracted or estimated hazard ratios (HRs) and standard errors (SEs) for sur-

vival from trial reports and compared these with IPD equivalents at both the trial and meta-

analysis level. We also extracted or estimated the number of events. We used paired t tests

to assess whether HRs and SEs from published AD differed on average from those from

IPD. We assessed agreement, and whether this was associated with trial or meta-analysis

characteristics, using the approach of Bland and Altman. The 18 systematic reviews com-

prised 238 unique trials or trial comparisons, including 37,082 participants. A HR and SE

could be generated for 127 trials, representing 53% of the trials and approximately 79% of

eligible participants. On average, trial HRs derived from published AD were slightly more in

favour of the research interventions than those from IPD (HRAD to HRIPD ratio = 0.95, p =

0.007), but the limits of agreement show that for individual trials, the HRs could deviate sub-

stantially. These limits narrowed with an increasing number of participants (p < 0.001) or a

greater number (p < 0.001) or proportion (p < 0.001) of events in the AD. On average, meta-

analysis HRs from published AD slightly tended to favour the research interventions whether

based on fixed-effect (HRAD to HRIPD ratio = 0.97, p = 0.088) or random-effects (HRAD to

HRIPD ratio = 0.96, p = 0.044) models, but the limits of agreement show that for individual

meta-analyses, agreement was much more variable. These limits tended to narrow with an

increasing number (p = 0.077) or proportion of events (p = 0.11) in the AD. However, even
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when the information size of the AD was large, individual meta-analysis HRs could still differ

from their IPD equivalents by a relative 10% in favour of the research intervention to 5% in

favour of control. We utilised the results to construct a decision tree for assessing whether

an ADmeta-analysis includes sufficient information, and when estimates of effects are most

likely to be reliable. A lack of power at the meta-analysis level may have prevented us identi-

fying additional factors associated with the reliability of AD meta-analyses, and we cannot

be sure that our results are generalisable to all outcomes and effect measures.

Conclusions

In this study we found that HRs from published AD were most likely to agree with those from

IPD when the information size was large. Based on these findings, we provide guidance for

determining systematically when standard ADmeta-analysis will likely generate robust clini-

cal conclusions, and when the IPD approach will add considerable value.

Author summary

Whywas this study done?

• Most standard systematic reviews and meta-analyses of the effects of interventions are

based on aggregate data (AD) extracted from trial publications.

• It is not clear when such ADmeta-analyses provide reliable estimates of intervention

effects.

• It is also not clear when the collection of more detailed individual participant data (IPD)

is needed.

What did the researchers do and find?

• Based on 18 cancer systematic reviews, we compared trial and meta-analysis results

based on IPD with those based on AD.

• Results from AD were most likely to agree with those from IPD when the number of

participants or events (absolute information size) and the proportion of participants or

events available from the AD relative to the IPD (relative information size) were large.

• Based on findings from this study, we provide guidance on assessing when ADmeta-

analysis will likely lead to robust clinical conclusions, and when the IPD approach

might add considerable value.

What do these findings mean?

• If the absolute information size is small, AD meta-analysis results will be unreliable, and

there will be little value in collecting IPD unless it will lead to a considerable increase in

information.

• If the absolute information size is sufficient, but the relative information size small, AD

meta-analysis results will be unreliable, and more AD and/or IPD will be needed.
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• If both the absolute and relative information size are large, ADmeta-analysis results will

most likely be reliable, and the collection of IPD only useful if more detailed analyses

are required.

• Our analyses may have lacked power to identify additional factors that might affect the

reliability of ADmeta-analyses, and we cannot be sure that our results are applicable to

all outcomes and effect measures.

Introduction

It remains unclear when standard systematic reviews and meta-analyses of published aggregate

data (AD) are reliable enough to form robust clinical conclusions, and consequently when the

‘gold standard’ individual participant data (IPD) approach might be required. Most standard

reviews continue to rely on published AD [1,2], and if some eligible trials are unpublished, or

reported trial analyses are based on a subset of participants or outcomes, then information

may be limited, and ADmeta-analyses will be at risk of reporting biases [3]. There are addi-

tional considerations for ADmeta-analyses evaluating the effects of interventions on time-to-

event outcomes, which are frequently based on hazard ratios (HRs), either derived directly

from trial publications, or estimated indirectly from published statistics or from data extracted

from Kaplan–Meier (KM) curves [4–6]. Inevitably, each of these methods requires stronger

and more assumptions, which, together with varying lengths of follow-up, could have reper-

cussions for the reliability of the results.

The collection of IPD can help circumvent publication and other reporting biases associ-

ated with AD, provided data on unpublished trials and all (or most) participants and outcomes

are obtained, and, if relevant, follow-up is extended beyond the time point of the trial publica-

tion [7–10]. Also, IPD enable more complex or detailed analyses, such as the investigation of

whether intervention effects vary by participant characteristics [11]. However, it remains

unclear whether the IPD approach is always needed for the reliable evaluation of the overall

effects, and because these projects can take many years to complete, results may not be suffi-

ciently timely. Moreover, the IPD approach may not be feasible, owing to the expertise and

resources required [7,8] or to difficulties obtaining the necessary data. Hence, patients, clini-

cians, and policy makers will continue to rely on standard ADmeta-analyses.

While some guidance is available to help reviewers gauge when ADmight suffice and when

IPD might add value [8,12], it is not backed by empirical evidence. A large systematic review

of published AD versus IPD meta-analyses found that conclusions were often similar, but the

comparisons could only be made on the basis of statistical significance [13]. For meta-analyses

of published time-to-event outcomes, individual case studies have shown that they can pro-

duce effects that are larger than, smaller than, or similar to their IPD equivalents [14–23]. Bria

et al. [24] compared effect estimates (HRs) from a cohort of ADmeta-analyses with IPD equiv-

alents and concluded that they gave very similar results. However, each ADmeta-analysis had

to include at least 90% of eligible participants and was compared to an IPD meta-analysis of

the same set of trials, which may have minimised differences and is perhaps an unrealistic

comparison of the 2 approaches. Moreover, both reviews [13,24] included multiple outcomes

from the same meta-analyses, marring interpretation. Here, for a single outcome, we compare

the results from a large cohort of cancer systematic reviews and meta-analyses based on IPD,

with the best meta-analyses of published AD possible at the time these were completed, to

Comparison of aggregate and individual participant data approaches to meta-analysis
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establish when the latter are most likely to be reliable, and when the IPD approach might be

required.

Methods

The study did not follow a protocol or pre-specified plan. We reported the study according to

the STROBE checklist.

Data collection

We used a cohort of 18 cancer systematic reviews that included IPD meta-analyses: all of those

completed and published by the Meta-analysis Group of the MRC Clinical Trials Unit at Uni-

versity College London over a 20-year period (1991 to 2010) [25–36], including updates where

relevant. Each IPD review included a comprehensive search for all eligible trials, irrespective of

publication status. Thus, at the time point each IPD meta-analysis was completed, we could

ascertain which trials were published and include them in the related ADmeta-analysis. This

ensured that we were comparing each IPD meta-analysis with a meta-analysis of the published

data available at that time. We used the corresponding publications for extraction of AD, and

if a trial was reported in multiple publications, we used the one with the most up-to-date or

complete information. Although a variety of research and control interventions were used,

overall survival was the primary outcome in all of the meta-analyses, and the HR was the effect

measure, so these are used as the basis for all our comparisons.

One author (JFT, SB, or DJF) independently extracted all data relevant to the derivation of

the HR for the effect of treatment on overall survival and the associated standard error (SE) of

its natural logarithm [4,6], and these data were crosschecked by another author. These data

included reported HRs and SEs, confidence intervals and p-values, numbers of participants

randomised and analysed, and numbers of events. If KM curves were available, we also

extracted survival probabilities across a series of time intervals and the related numbers at risk

[5,6], or the actual or estimated [4,6] minimum and maximum follow-up, to estimate HRs and

SEs [4–6]. One author (JFT) reviewed all KM curve estimates to ensure a consistent approach

to deciding the number and size of these intervals.

Estimating HRs from published AD

We estimated the HRs and SEs using all possible methods [4–6], but preferentially used esti-

mates calculated directly from the reported observed and expected events or the hazard rates

for the research intervention and control groups [4,6]. If this was not possible, we used HRs

and SEs estimated indirectly using a published log-rank, Mantel–Haenszel, or Cox p-value,

and either the associated confidence interval or the number of events, provided the confidence

intervals and p-values were given to at least 2 significant figures [4]. Finally, in the absence of

these statistics, we used HRs and SEs derived from KM curves [4,6]. This meant we used the

best possible estimate of each trial HR.

We matched each ADmeta-analysis to the relevant IPD meta-analysis in terms of both the

intervention comparisons and the analyses. Thus, if treatment effects were reported by partici-

pant subgroup, the subgroup HRs and SEs were combined using a fixed-effect inverse-variance

meta-analysis to provide an appropriate AD estimate for the whole trial or treatment compari-

son. For a small number of 3-arm trials, we combined very similar treatment arms to provide a

single estimate of treatment versus control. Whilst not best practice, we wanted to replicate the

original analyses. For multi-arm trials with treatment comparisons that were eligible for differ-

ent meta-analyses or a single treatment comparison that was eligible for more than 1 meta-

analysis, estimates for the individual comparisons were included as appropriate. However,

Comparison of aggregate and individual participant data approaches to meta-analysis
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trials or treatment comparisons were not used more than once in the trial-level comparisons

of HRs from AD and IPD.

Statistical methods for comparing HRs from AD and IPD

We compared HRs and SEs derived from AD and IPD both at the trial level and meta-analysis

level. At the trial level, we included all trials with both an AD and an IPD result. The meta-

analyses were based on all available published AD and all available IPD, thus representing the

best possible AD and IPD estimates available at the time the IPD meta-analysis was published.

The IPD meta-analysis estimates were derived from the original IPD projects using 2-stage

fixed-effect inverse-variance models, with trial-level HRs and SEs derived using Cox regres-

sion. We also performed sensitivity analyses using the DerSimonian and Laird random-effects

model [37–39].

All data included in these analyses were aggregate in nature, whether derived from trial

publications or from the original analyses of anonymised participant data, and therefore ethi-

cal approval was not required.

Estimates were compared on the log scale throughout, because the log HR is approximately

normally distributed. However, we present the differences between log HRs from AD and IPD

as back-transformed ratios of the AD HRs to the IPD HRs (i.e., the HRAD to HRIPD ratio). Dif-

ferences between log SEs were also ‘back-transformed’ so that they are always greater than 0

and interpretable as relative percentage changes [40].

We used paired t tests to assess whether (log) HRs and SEs from AD differed on average

from their IPD equivalents, recognising that the statistical significance of these tests relates to

the amount of data available. More pertinently, we assessed agreement between HR and SE

estimates from AD and IPD using the approach of Bland and Altman [40–42]. This involves

plotting the differences between the AD and IPD estimates against their average, along with

95% ‘limits of agreement’ (defined as mean ± 1.96 × standard deviation), which represent a

range within which most differences are expected to lie. Wide limits suggest poor agreement,

although note they are not 95% confidence intervals and do not test a statistical hypothesis. At

the trial level, we also used ANOVA to investigate whether the estimation method (direct, indi-

rect, or KM curve) influenced the extent of agreement.

The Bland–Altman method also allowed us to examine whether agreement was associated

with trial or meta-analysis characteristics. This involved plotting the differences between the

AD and IPD log HRs against each characteristic and testing for a non-zero regression slope for

the average agreement and for non-constant limits of agreement [40]. As described above, we

initially plotted these differences against their averages, thus testing whether agreement

improves or worsens with increasing size of the estimates [42]. We then went on to examine

whether agreement was associated with the number of trials, participants, and events in the

ADmeta-analysis, as well as the proportion of trials, participants, and events in the ADmeta-

analysis relative to the IPD analysis. Regression slopes were reported as standardised beta

coefficients.

Subsequently, we also used sensitivity analyses to assess whether agreement at the meta-

analysis level might be improved by excluding trials where the reported analyses were at poten-

tial risk of bias [43] from incomplete outcome data or had limited or imbalanced follow-up.

Pre-specified criteria were mutually agreed and applied independently by 2 authors (DJF and

SB, or DJF and JFT). We considered trials that excluded greater than 10% of participants over-

all or that had a greater than 10% imbalance in patient exclusion by arm to be at potential risk

of bias from incomplete outcome data [44]. Trials in which more than half of participants were

estimated to have been censored prior to what would be considered an appropriate follow-up

Comparison of aggregate and individual participant data approaches to meta-analysis
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time for the site and stage of cancer (Table 1) were considered to have insufficient follow-up.

We classified these based on the reported KM curves and extracted or estimated levels of cen-

soring. Note that only trials judged to be at low risk of bias in terms of randomisation sequence

generation and allocation concealment (based on information supplied by investigators and

checking of the IPD) were included in our IPD meta-analyses.

A decision tree for assessing the reliability of ADmeta-analyses

We utilised these results to construct a decision tree for assessing when ADmeta-analyses are

most likely to be reliable. As per reviewer comments, we have made this only as generalisable

as the data allow.

Results

Feasibility of estimating HRs and associated SEs from published AD

The 18 systematic reviews included 243 trials, 5 of which were eligible for inclusion in 2 sepa-

rate meta-analyses. Of the 238 unique trials, 33 (14%) were unpublished in any form, and 205

(86%) were published: 175 (74%) in peer-reviewed journals, 4 (2%) as book chapters, and 26

(11%) as abstracts in conference proceedings, with publication dates ranging from 1976 to

2005. HRs and SEs could be obtained or estimated from trial reports for 127 of the trials, repre-

senting 61% of published trials, 53% of all trials, and approximately 79% of eligible participants

(Table 1). Of the remaining 78 trial reports, 49 (63%) did not include overall survival results

(e.g., providing disease response or progression results instead) or presented survival results

that could not be used to estimate a HR reliably (e.g., median survival [45] or survival rates); 8

(10%) included a KM curve, but with insufficient information to estimate censoring; 15 (19%)

presented survival results, but not for the specific treatment comparison and/or data sample of

interest; and 6 (8%) reports could not be accessed.

We obtained HR and SE estimates from IPD for 196 (82%) of trials, representing 89% of

randomised participants (Table 1). As well as being able to include trials that had not been

published, and trials that had not been reported in sufficient detail, we were also able to obtain

additional participants that had been excluded from published analyses and additional events

arising from updated follow-up.

The best available method for estimating HRs from published AD was direct extraction or

calculation for 23 trials (18%), from a p-value for 31 trials (24%), and from a KM curve for 73

trials (57%; Table 1). For the SE, the best available method was direct extraction for 1 trial,

from a confidence interval for 17 trials (13%), from the number of events for 58 trials (46%),

and from a KM curve for 51 trials (40%). Where estimation from a KM curve was the best

available method, the associated numbers at risk were reported for only 4 trials, so the mini-

mum and maximum follow-up was used by default to estimate censoring [4].

Reliability of trial HRs and SEs estimated from published AD

Among the 114 trials with estimates available from both AD and IPD, trial HRs derived from

AD were on average slightly more in favour of the research intervention than those from IPD

(HRAD to HRIPD ratio = 0.95, 95% CI 0.92 to 0.99, paired t test p = 0.007). However, the wide

Bland–Altman limits of agreement (Fig 1) show that for any individual trial, HRs derived from

AD could deviate from those derived from IPD by around a relative 30% in favour of either

the research (HRAD to HRIPD ratio = 0.67) or control intervention (HRAD to HRIPD

ratio = 1.36).
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Table 1. Characteristics of IPD and ADmeta-analyses, and the methods used to obtain HRs for each (ordered by the degree of disagreement [Fig 5]).

Meta-analysis Total eligible Relative information size of
the IPD meta-analysis
(percent of total eligible)

Relative information size of
the ADmeta-analysis (percent
of total eligible)

Number of trials in
ADmeta-analysis
for which each
method of
estimating trial
HR was used

Desired
FU time
(months)†

Survival at
desired FU
time
(percent)‡

Name Setting Trials Participants� Trials Participants Events Trials Participants Events�� HR p-
Value

KM
curve

Sarcoma
[36]

High-risk,
early
sarcoma

17 1,605 14 1,568 709 10 1,120 306 1 2 7 60 60%

(82%) (98%) (59%) (70%) (43%)

Cervix 1
[32]

High-risk/
locally
advanced
cervical
cancer

21 2,242 18 2,074 1,084 11 1,969 815 1 2 8 48 48%

(86%) (93%) (52%) (88%) (75%)

Oesophagus
[29]

Locally
advanced
oesophageal
cancer

6 1,164 6 1,147 971 5 885 623 0 1 4 12 47%

(100%) (99%) (83%) (76%) (64%)

Cervix 2
[32]

High-risk/
locally
advanced
cervical
cancer

6 912 5 872 368 5 863 287 1 1 3 48 51%

(83%) (96%) (83%) (95%) (78%)

Lung PORT
[35]

Operable
NSCLC

12 2,418 11 2,343 1,511 7 1,274 789 3 1 3 24 58%

(92%) (97%) (58%) (53%) (52%)

Ovary 1 [27] Advanced
ovarian
cancer

25 3,654 19 3,146 2,822 11 2,696 1,593 1 1 9 24 25%

(76%) (86%) (44%) (74%) (56%)

Lung 3 [33] Locally
advanced
NSCLC

12 1,798 12 1,780 1,696 5 1,358 854 0 2 3 24 16%

(100%) (99%) (42%) (76%) (50%)

Bladder 1
[25]

Locally
advanced
bladder
cancer

11 2,976 10 2,759 1,691 8 2,832 1,249 4 4 0 48 46%

(91%) (93%) (73%) (95%) (74%)

Bladder 2
[26]

Locally
advanced
bladder
cancer

9 762 6 491 283 3 571 105 0 2 1 48 46%

(67%) (64%) (33%) (75%) (37%)

Ovary 5 [28] Advanced
ovarian
cancer

13 2,381 12 2,220 1,745 6 2,168 864 3 1 2 24 48%

(92%) (93%) (46%) (91%) (49%)

Glioma [31] High-grade
glioma

19 3,767 12 3,004 2,659 11 3,316 2,225 1 1 9 6 71%

(63%) (80%) (58%) (88%) (84%)

Lung 2 [33] Operable
NSCLC

7 749 6 668 546 4 584 467 0 3 1 24 38%

(86%) (89%) (57%) (78%) (85%)

Lung 1 [33] Operable
NSCLC

8 1,394 8 1,394 614 3 584 280 1 2 0 60 49%

(100%) (100%) (38%) (42%) (46%)

Ovary 2 [27] Advanced
ovarian
cancer

13 1,451 11 1,329 1,169 8 1,124 824 0 3 5 24 32%

(85%) (92%) (62%) (77%) (70%)

Ovary 4 [28] Advanced
ovarian
cancer

9 1,102 9 1,095 894 5 1,014 668 0 2 3 24 41%

(100%) (99%) (56%) (92%) (75%)

(Continued)
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There was no clear evidence that that agreement was associated with the size of effect (stan-

dardised β = +0.08, p = 0.39) or the estimation method (F statistic on 2 and 111 degrees of free-

dom = 0.26, p = 0.77; Fig 1). Also, there was no good evidence that agreement was related to

the number (standardised β = +0.13, p = 0.17) or proportion (standardised β = −0.09, p = 0.36)

of participants represented by the AD relative to IPD, but the limits of agreement did narrow

as the absolute number of participants increased (standardised β = −0.45, p< 0.001). More-

over, average agreement improved (standardised β = +0.30 and +0.25, p = 0.001 and p = 0.009,

respectively), and the limits of agreement narrowed (standardised β = −0.44 and −0.31, p<

0.001 and p< 0.001, respectively), as the absolute and relative number of events in the AD rel-

ative to the IPD increased (Fig 2).

Individual trial SEs based on AD were larger than those based on IPD (average percentage

change = +12%, 95% CI +8% to +16%, p< 0.001, Bland–Altman 95% limits of agreement =

−20% to +57%), which was more pronounced as the average SE increased (standardised β =
+0.44, p< 0.001). After adjusting for this, agreement was also associated with a greater propor-

tion of participants (standardised β = −0.15, p = 0.082) and number or proportion of events

(standardised β = −4.55 and −0.88, respectively, p< 0.001 for both) being included in the AD

analysis relative to the IPD analysis.

Reliability of meta-analyses of HRs and SEs estimated from published AD

IPD were typically available for a high proportion of eligible trials (65% to 100%) and partici-

pants (75% to 100%; Table 1), with most including in excess of 85% of those eligible. While the

Table 1. (Continued)

Meta-analysis Total eligible Relative information size of
the IPD meta-analysis
(percent of total eligible)

Relative information size of
the ADmeta-analysis (percent
of total eligible)

Number of trials in
ADmeta-analysis
for which each
method of
estimating trial
HR was used

Desired
FU time
(months)†

Survival at
desired FU
time
(percent)‡

Name Setting Trials Participants� Trials Participants Events Trials Participants Events�� HR p-
Value

KM
curve

Lung 4 [34] Advanced
NSCLC

18 3,349 15 2,714 2,533 12 3,219 2,212 4 3 5 12 19%

(83%) (81%) (67%) (96%) (87%)

Ovary 3 [28] Advanced
ovarian
cancer

9 1,754 9 1,704 1,428 5 1,399 808 0 3 2 24 34%

(100%) (97%) (56%) (80%) (57%)

Cervix 3
[30]

High-risk/
locally
advanced
cervical
cancer

28 4,507 18 3,396 1,110 11 3,167 641 3 1 7 48 63%

(64%) (75%) (39%) (70%) (58%)

Total¶ 238 37,082 196 32,829 23,833 127 29,478 15,609 23 33 71

(82%) (89%) (53%) (79%) (65%)

�Exact numbers of eligible participants were not available for some (mostly small) unpublished trials, so this is our best estimate.
��Exact values where known, otherwise estimated by use of Formula 13 in Tierney et al. [6]. Percentages are for AD relative to IPD, since the total eligible is unknown.
†Chosen a priori by the authors of the present study, on the basis of the research question addressed by the review, in order to assess whether individual trials had an

appropriate length of follow-up.
‡Estimated using all available IPD (i.e., from all trials) combined.
¶With duplicate trials removed.

AD, aggregate data; FU, follow-up; HR, hazard ratio; IPD, individual participant data; KM, Kaplan–Meier; NSCLC, non-small-cell lung cancer.

https://doi.org/10.1371/journal.pmed.1003019.t001
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ADmeta-analyses tended to include a smaller proportion of eligible trials (33% to 83%;

Table 1), often they still included a high proportion of eligible participants (42% to 96%;

Table 1) relative to the IPD meta-analyses, but not necessarily such a high proportion of events

(e.g., Sarcoma, Bladder 2, Ovary 5; Table 1).

Many HRs from AD and IPD meta-analyses were very similar (Fig 3), and, on average,

meta-analyses from published AD were only slightly more likely to favour research interven-

tions than those from IPD, irrespective of whether a fixed-effect (HRAD to HRIPD ratio = 0.97,

95% CI 0.94 to 1.00, paired t test p = 0.087) or random-effects (HRAD to HRIPD ratio = 0.96,

95% CI 0.93 to 0.99, paired t test p = 0.043; Fig 4) model was used. However, the Bland–Alt-

man 95% limits of agreement suggest that an individual (fixed-effect) AD meta-analysis could

deviate by up to around a relative 15% in favour of the research intervention (HRAD to HRIPD

ratio = 0.86) to 10% (HRAD to HRIPD ratio = 1.10) in favour of control (Fig 4A). Findings were

very similar with the random-effects model (Bland–Altman 95% limits of agreement for HRAD

to HRIPD ratio = 0.84 to 1.11; Fig 4B).

Based on the fixed-effect model, there was no clear evidence that average agreement was

associated with the average size of the HRs (standardised β = +0.06, p = 0.82; Fig 5A), the num-

ber (standardised β = −0.40, p = 0.099) or proportion (standardised β = −0.21, p = 0.40) of eli-

gible trials (Fig 5A and 5B), or the number (standardised β = −0.23, p = 0.35) or proportion

Fig 1. Comparison of trial HRs from AD versus IPD. Bland–Altman plot showing how the ratio of the HR from AD
to the HR from IPD varies with the average HR (i.e., the geometric mean of the 2 HR estimates). The red horizontal
line represents no difference (i.e., a ratio of 1). The shaded area represents the 95% Bland–Altman limits of agreement.
Dashed and dotted lines represent statistical precision around the average ratio and the limits of agreement,
respectively. Individual data points are distinguished by whether the AD estimate was derived directly from a reported
HR, indirectly from a reported p-value and associated information, or indirectly from a Kaplan–Meier curve [6]. AD,
aggregate data; HR, hazard ratio; IPD, individual participant data; KMC, Kaplan–Meier curve.

https://doi.org/10.1371/journal.pmed.1003019.g001
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(standardised β = −0.29, p = 0.24) of eligible participants (Fig 5C and 5D). We also found no

evidence that the limits of agreement narrowed when trials with published analyses at potential

risk of bias from incomplete outcome data or that had limited or imbalanced follow-up were

excluded (Table 2). There was some evidence that the limits of agreement became narrower as

the total number of events (standardised β = −0.42, p = 0.079; Fig 5E), and, less clearly, the pro-

portion of events (standardised β = −0.39, p = 0.11; Fig 5F), in the AD relative to IPD

increased. However, even at the maximum proportion of events observed in this dataset (87%

AD to IPD events), an ADmeta-analysis might still differ from its IPD equivalent by around a

relative 10% in favour of the research intervention (HRAD to HRIPD ratio = 0.90) to 5% in

favour of control (HRAD to HRIPD ratio = 1.05). Statistical evidence for these associations was

less clear under a random-effects model.

Meta-analysis SEs were consistently larger with AD compared to IPD by an average of

around 30% (e.g., fixed-effect 95% CI 18% to 35%; fixed-effect and random-effects p< 0.001),

with wide Bland–Altman limits of agreement (e.g., fixed-effect 95% limits of agreement −3%

to +63%). Not surprisingly, agreement improved when a greater proportion of trials

Fig 2. Potential predictors of the extent of agreement between trial HRs from AD and IPD. Bland–Altman plots showing how the ratio of
the HR from AD to the HR from IPD varies according to the number of participants (A) and events (C) available from AD, and the
proportion of participants (B) and events (D) available from AD relative to IPD. The red horizontal lines represent no difference (i.e., a ratio
of 1). The shaded areas represent the 95% Bland–Altman limits of agreement, with fitted linear dependence upon the value of the covariate.
Dashed and dotted lines represent statistical precision around the average ratios and the limits of agreement, respectively. AD, aggregate
data; HR, hazard ratio; IPD, individual participant data.

https://doi.org/10.1371/journal.pmed.1003019.g002
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(standardised β = −0.63, p = 0.005), participants (standardised β = −0.89, p< 0.001), and

events (standardised β = −0.99, p< 0.001) were included in the AD meta-analysis. These asso-

ciations all remained significant under a random-effects model.

A decision tree for assessing the reliability of ADmeta-analyses of HRs

Taking results at the trial and meta-analysis level together, HRs derived from published AD

were most likely to concur with those from IPD when the overall number of participants or

Fig 3. Forest plot of meta-analysis HRs and 95% confidence intervals from AD and IPD. Each filled diamond denotes the HR for AD
or IPD based on fixed-effect and random-effects meta-analyses, with the horizontal lines showing the 95% CIs. Comparisons are ordered
by the degree of disagreement, i.e., the HRAD to HRIPD ratio, irrespective of direction. AD, aggregate data; HR, hazard ratio; IPD,
individual participant data; MA, meta-analysis.

https://doi.org/10.1371/journal.pmed.1003019.g003
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events (‘absolute information size’) was high, and also when the proportion of events included

in the AD relative to the IPD (‘relative information size’) was high. Hence, ascertaining the

absolute and relative information size of the available AD is a critical part of determining

whether a meta-analysis of published HRs is sufficient for robust syntheses, and when IPD

might be needed (Fig 6). Intuitively, establishing information size should also be a goal for AD

meta-analyses of other outcomes and effect measures. For time-to-event outcomes and binary

outcomes, information size will mostly relate to the number of participants and events, and for

continuous outcomes, to the number of participants.

Fig 4. Comparison of meta-analysis HRs from AD versus IPD. Bland–Altman plots showing how the ratio of the
HR from AD to the HR from IPD, as estimated by fixed-effect (A) and random-effects models (B), respectively, varies
with the average HR (i.e., the geometric mean of the 2 HR estimates). The red horizontal line represents no difference
(i.e., a ratio of 1). The shaded area represents the 95% Bland–Altman limits of agreement. Dashed and dotted lines
represent statistical precision around the average ratio and the limits of agreement, respectively. AD, aggregate data;
HR, hazard ratio; IPD, individual participant data.

https://doi.org/10.1371/journal.pmed.1003019.g004

Fig 5. Potential predictors of the extent of agreement between (fixed-effect) meta-analysis HRs from AD and IPD.
Bland–Altman plots showing how the ratio of the HR from AD to the HR from IPD varies according to the number of
trials (A), participants (C), and events (E) available from AD, and the proportion of trials (B), patients (D), and events
(F) available from AD relative to IPD. The red horizontal lines represent no difference (i.e., a ratio of 1). The shaded
areas represent the 95% Bland–Altman limits of agreement, with fitted linear dependence upon the value of the
covariate. Dashed and dotted lines represent statistical precision around the average ratios and the limits of agreement,
respectively. AD, aggregate data; HR, hazard ratio; IPD, individual participant data.

https://doi.org/10.1371/journal.pmed.1003019.g005
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Table 2. Sensitivity analyses of the extent of agreement between meta-analysis HRs from AD versus IPD.

Sample Fixed Random

Average ratio HRAD

to HRIPD

95% limits of
agreement�

p-
Value��

Average ratio HRAD

to HRIPD

95% limits of
agreement�

p-
Value��

All trials in AD meta-analyses 0.97 0.86, 1.10 p = 0.088 0.96 0.84, 1.11 p = 0.044

Excluding trials at potential risk of bias from
incomplete outcome data

0.95 0.86, 1.04 p = 0.23 0.96 0.84, 1.10 p = 0.023

Excluding trials with insufficient follow-up 0.97 0.86, 1.09 p = 0.056 0.91 0.62, 1.34 p = 0.069

�Calculated on the log scale using the method of Bland and Altman.
��From t tests of AD versus IPD log HRs.

AD, aggregate data; HR, hazard ratio; IPD, individual participant data.

https://doi.org/10.1371/journal.pmed.1003019.t002

Fig 6. Decision tree for assessing when ADmeta-analysis HRs are likely reliable and when the IPD approach might be required. AD, aggregate data; HR, hazard ratio;
IPD, individual participant data.

https://doi.org/10.1371/journal.pmed.1003019.g006
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The starting point for assessing the absolute information size is to establish the total number

of eligible participants and, if relevant/possible, the number of events. For accuracy, this assess-

ment needs to be based on all trials whether published, unpublished, or ongoing, and the

actual or projected accrual figures for each. If the absolute information size is small, an AD

meta-analysis will lack power and be unreliable. Also, the collection of IPD will add little value

unless it can bring about an increase in the number of participants or events (Fig 6).

If the absolute information size is deemed sufficient, but AD are only available for a small

proportion of the eligible participants or the number of events is low, it follows that the relative

information size will be small, and any AD estimate is likely to be unreliable. If further AD are

not available, the collection of IPD could be very valuable in increasing the number of partici-

pants or events (Fig 6).

If the absolute information size is adequate, and AD are available for a large proportion of

the eligible participants, and/or most events have already happened, the relative information

size is likely to be large, and an ADmeta-analysis is expected to be reliable. In this scenario,

the collection of IPD would only be useful if an intervention effect has been detected and more

detailed analyses are required.

Our results also suggest that there may still be uncertainty in the size and direction of effect,

which could influence any decision to collect IPD. In particular, for time-to-event outcomes,

we found that even if both the absolute and relative information size of an ADmeta-analysis

are large, an AD meta-analysis HR can still differ unpredictably from its IPD equivalent, by an

approximate relative 10% in favour of the research interventions (HRAD to HRIPD ratio = 0.90)

to 5% in favour of control (HRAD to HRIPD ratio = 1.05). By applying these limits to a plausible

range of ADmeta-analysis HRs (i.e., dividing them by 0.90 and 1.05), we can see how estimates

might change when IPD are collected and what these would mean in absolute terms. This

helps to gauge which observed HRs are most likely to be reliable (Table 3). For example, an

observed HR� 0.75 would translate mostly to sizeable potential IPD absolute benefits, and

therefore a benefit is likely confirmed without the need for IPD (Table 3; Fig 6). For an

observed ADmeta-analysis HR of around 0.80 to 0.90, the potential IPD absolute effects

would not necessarily be clinically worthwhile (Table 3). Hence, IPD might be needed to pro-

vide a greater degree of certainty about whether an effect exists, and its size and precision (Fig

6). Finally, with an observed ADmeta-analysis HR� 0.95, a lack of benefit is probably con-

firmed, and the collection of IPD would be difficult to justify (Table 3; Fig 6). Note that our

example HR ranges purposefully leave gaps, reflecting regions where the reliability of AD and

need for IPD may be context-specific and harder to judge (Table 3).

Discussion

Findings

We compared trial and meta-analysis HRs from published AD with those from IPD, and

found they were most likely to agree when both the absolute and relative information size

(number and proportion of events or participants) of the AD were large. However, the AD

meta-analysis results could still differ from their IPD equivalents by up to a relative 10% in

favour of the research interventions to 5% in favour of control. There was no clear evidence

that agreement between meta-analysis HRs from AD and IPD was associated with the number

or proportion of eligible trials or the number participants included in the AD analyses, or the

method of estimating the HR. Furthermore, agreement was not improved by excluding trials

with reported analyses that were potentially at risk of bias from incomplete outcome data or

that had insufficient follow-up. These results have been used to construct a decision tree for
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determining when an ADmeta-analysis might be sufficiently reliable and when the IPD

approach might be required (Fig 6).

Context

Our results support the assertion that in order for a meta-analysis to be reliable, the informa-

tion size should be at least as large as an adequately powered trial [46]. Although there is

greater interest now in estimating the (absolute) information size of meta-analyses [47–52],

surprisingly little attention has been paid to explicitly quantifying the relative information size

of an ADmeta-analysis [48–51]. A comprehensive systematic review of published compari-

sons of AD and IPD meta-analyses did not find that agreement was associated with the infor-

mation they contained (the number of trials or participants) [53], but without access to the

primary studies, the authors could not investigate this more thoroughly, and, as stated previ-

ously, multiple outcomes from the same meta-analyses were included. However, the authors

Table 3. Application of the Bland–Altman limits of agreement to a plausible range of ADmeta-analysis HRs.

Observed ADmeta-
analysis HR

Potential IPD meta-analysis HR (after dividing by
the limits of agreement: 0.90 and 1.05)

Observed control group
survival band

Potential IPD meta-analysis absolute survival effects at
a representative control group value

0.70 0.67 to 0.78 <10% 5% to 8%

10%–19% 8% to 13%

20%–49% 9% to 14%

50%–69% 7% to 11%

�70% 5% to 7%

0.75 0.71 to 0.83 <10% 3% to 7%

10%–19% 6% to 10%

20%–49% 7% to 11%

50%–69% 5% to 9%

�70% 3% to 6%

0.80 0.76 to 0.89 <10% 2% to 5%

10%–19% 4% to 8%

20%–49% 4% to 10%

50%–69% 4% to 8%

�70% 2% to 5%

0.85 0.81 to 0.94 <10% 1% to 4%

10%–19% 2% to 6%

20%–49% 2% to 7%

50%–69% 2% to 6%

�70% 1% to 4%

0.90 0.86 to 1.00 <10% 0% to 2%

10%–19% 0% to 4%

20%–49% 0% to 5%

50%–69% 0% to 4%

�70% 0% to 3%

0.95 0.90 to 1.05 <10% −1% to 1%

10%–19% −2% to 3%

20%–49% −2% to 3%

50%–69 −2% to 3%

�70% −1% to 2%

AD, aggregate data; HR, hazard ratio; IPD, individual participant data.

https://doi.org/10.1371/journal.pmed.1003019.t003
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recommend that systematic reviewers conduct an ADmeta-analysis first and carefully con-

sider the potential benefits of an IPD meta-analysis [13], and our decision tree provides the

means to do this.

Unlike previous studies [4], there was no strong indication that HRs estimated indirectly

from KM curves were systematically biased, at either the trial or meta-analysis level. In fact,

some ADmeta-analyses that relied heavily on HRs estimated from KM curves were very simi-

lar to their IPD equivalents. Thus, if other survival statistics cannot be obtained, we encourage

reviewers to include HRs estimated carefully from KM curves [6]. Although alternative weight-

ing approaches [54] and digital methods to extract data from KM curves [55] have emerged,

they do not necessarily improve HR estimates [55]. However, a HR may not always be the

most appropriate effect measure, for example, if there are non-proportional hazards within 1

or more trials in a meta-analysis. Non-proportionality of hazards can be readily checked with

IPD and alternative effect measures used if desired (e.g., Wei et al. [56]), but such checks are

also possible with AD [57], if ‘IPD’ can be reconstructed from published KM curves [55].

Strengths

To our knowledge, our study represents the largest systematic comparison of trial and meta-

analysis HRs from AD and IPD, and is the first to reveal characteristics associated with the reli-

ability of results based on published AD. Our findings are based on all cancer systematic

reviews and meta-analyses of IPD conducted by the MRC Clinical Trials Unit at University

College London over a 20-year period. By utilising a cohort of 18 reviews and 238 unique trials,

we avoid the potential publication bias that might be associated with reviewing published com-

parisons of AD and IPD meta-analyses [13]. The sample is diverse in terms of the cancer and

intervention types, number of trials and participants, availability of data, and mix of methods

used to estimate the AD HRs (Table 1), which increases generalisability. From recent data [1],

we estimate that approximately 1,200 oncology intervention reviews are published each year,

which may be of variable quality, so we expect our findings to be of widespread use. IPD were

collected for over 80% of eligible trials and nearly 90% of eligible participants, and often

included updated follow-up. Thus, the included IPD meta-analyses provide a true ‘gold stan-

dard’ with which to compare the HRs derived from AD.

Limitations

Our analyses may lack power at the meta-analysis level, which could have prevented us identi-

fying additional factors associated with the reliability of AD meta-analyses based on HRs. Also,

we cannot be sure that results from a cohort of cancer systematic reviews are entirely generali-

sable to other healthcare areas and outcomes, although they do emphasise that information

size should be considered alongside the direction, precision, and consistency of effects, when

appraising an ADmeta-analysis. Only about half of the eligible trials were included in the AD

meta-analyses, but these trials represented around 80% of participants, minimising the impact

of selective outcome reporting bias [58] on our findings. However, we could only estimate a

HR and SE for 61% of published eligible trials in our time window of 1991–2010, a situation

that has likely improved since the publication of the CONSORT statement [59,60]. Thus, we

would strongly encourage other custodians of multiple IPD meta-analyses to do similar com-

parisons and add to this body of evidence, particularly for other conditions, outcomes, and

effect measures. In the meantime, it is worthwhile factoring a degree of uncertainty into the

interpretation of any ADmeta-analysis.
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Implications

Once the absolute and relative information size of an ADmeta-analysis have been ascertained,

our decision tree can be used to systematically assess whether it will likely suffice or if IPD

might be required (Fig 6). If the absolute information size indicates that a meta-analysis will be

clearly underpowered to assess the primary research question, we do not recommend the col-

lection of IPD unless it would lead to a considerable increase in information, for example, as a

result of further follow-up of the included trials or reinstatement of participants that were

excluded from the published analyses. If an AD meta-analysis likely has power but the relative

information size is small, the meta-analysis results are more likely to be biased or otherwise

unreliable, and the collection of further AD should be prioritised, for example, from trials that

are unpublished or published in insufficient detail. If this is not feasible, but the collection of

IPD could bring about a substantial increase in the amount of information, this is where the

approach could add considerable value. If the absolute and relative information size of the AD

are both large, the results of an ADmeta-analysis are most likely reliable, so if there is no evi-

dence of an effect, there is little justification for going to the trouble of collecting IPD.

Whereas, if an effect has been detected based on AD, there may be motivation to collect IPD in

order to conduct subgroup or other detailed analyses and provide more nuanced results. The

absolute and relative information size are also useful for anticipating when accumulating evi-

dence from trials might be sufficient for reliable ADmeta-analysis, using a prospective frame-

work for adaptive meta-analysis (FAME) [48–51].

Conclusions

In this study, we show how to determine systematically when standard ADmeta-analysis will

likely generate robust clinical conclusions, and when the IPD approach will add considerable

value.
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