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Abstract. Automatic synthesis from linear temporal logic (LTL) spec-
ifications is widely used in robotic motion planning and control of au-
tonomous systems. A common specification pattern in such applications
consists of an LTL formula describing the requirements on the behaviour
of the system, together with a set of additional desirable properties. We
study the synthesis problem in settings where the overall specification is
unrealizable, more precisely, when some of the desirable properties have
to be (temporarily) violated in order to satisfy the system’s objective.
We provide a quantitative semantics of sets of safety specifications, and
use it to formalize the “best-effort” satisfaction of such soft specifications
while satisfying the hard LTL specification. We propose an algorithm for
synthesizing implementations that are optimal with respect to this quan-
titative semantics. Our method builds upon the idea of bounded synthe-
sis, and we develop a MaxSAT encoding which allows for maximizing
the quantitative satisfaction of the soft specifications. We evaluate our
algorithm on scenarios from robotics and power distribution networks.

1 Introduction

Automatic synthesis from temporal logic specifications is increasingly becoming
a viable alternative for system design in a number of domains such as control and
robotics. The main advantage of synthesis is that it allows the system designer to
focus on what the system should do, rather than on how it should do it. Thus, the
main challenge becomes providing the right specification of the system’s required
behaviour. While significantly easier than developing a system at a lower level,
specification design is on its own a difficult and error-prone task. For example,
in the case of systems operating in a complex adversarial environment, such as
robots, the specification might be over-constrained, and as a result unrealizable,
due to failure to account for some of the behaviours of the environment. In other
cases, the designer might have several alternative specifications in mind, possibly
with some preferences, and wants to know what the best realizable combination
of requirements is. For instance, a temporary violation of a safety requirement
might be acceptable, if it is necessary to achieve an important goal. In such
cases it is desirable that, when the specification is unrealizable, the synthesis
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procedure provides a “best-effort” implementation either according to some user-
given criteria, or according to the semantics of the specification language.

The challenges of specification design motivate the need to develop synthesis
methods for the maximum realizability problem, where the input to the synthesis
tool consists of a hard specification which must be satisfied by the system, and
soft specifications which describe other desired, possibly prioritized properties.

A key ingredient of the formulation of the maximum realizability problem is
a quantitative semantics of the soft requirements. We focus on soft specifications
of the form ϕ1, . . . , ϕn, where each ϕi is a safety LTL formula, and consider
a quantitative semantics typically used in the context of robustness. The quan-
titative semantics accounts for how often each ϕi is satisfied. In particular, we
consider truth values corresponding to ϕi being satisfied at every point of an exe-
cution, being violated only finitely many times, being both violated and satisfied
infinitely often, or being continuously violated from some point on. Based on this
semantics, we define the numerical value of a conjunction ϕ1∧ . . .∧ ϕn of soft
specifications in a given implementation. We propose a method for synthesizing
an implementation that maximizes this value.

Our approach to maximum realizability is based on the bounded synthesis
technique. Bounded synthesis is able to synthesize implementations by leverag-
ing the power of SAT (or QBF, or SMT) solvers. Since maximum realizability
is an optimization problem, we reduce its bounded version to maximum satisfia-
bility (MaxSAT). More precisely, we encode the bounded maximum realizability
problem with hard and soft specifications as a partial weighted MaxSAT prob-
lem, where hard specifications are captured by hard clauses in the MaxSAT
formulation, and the weights of soft clauses encode the quantitative semantics of
soft specifications. By adjusting these weights our approach can easily capture
different quantitative semantics. Although the formulation encodes the bounded
maximum realizability problem (where the maximum size of the implementation
is fixed), by providing a bound on the size of the optimal implementation, we
establish the completeness of our synthesis method. The existence of such com-
pleteness bound is guaranteed by considering quantitative semantics in which
the values of soft specifications can be themselves encoded by LTL formulas.

We have applied the proposed synthesis method to examples from two do-
mains where considering combinations of hard and soft specifications is natural
and often unavoidable. For example, such a combination of specifications arises
in power networks where generators of limited capacity have to power a set of
vital and non-vital loads, whose total demand may exceed the capacity of the
generators. Another example is robotic navigation, where due to the adversarial
nature of the environment in which robots operate, safety requirements might
prevent a system from achieving its goal, or a large number of tasks of different
nature might not necessarily be consistent when posed together.

Related work. Maximum realizability and several closely related problems have
attracted significant attention in recent years. Planning over a finite horizon with
prioritized safety requirements was studied in [20], where the goal is to synthesize
a least-violating control strategy. A similar problem for infinite-horizon temporal



logic planning was studied in [12], which seeks to revise an inconsistent specifica-
tion, minimizing the cost of revision with respect to costs for atomic propositions
provided by the specifier. [14] describes a method for computing optimal plans for
co-safe LTL specifications, where optimality is again with respect to the cost of
violating each atomic proposition, which is provided by the designer. All of these
approaches are developed for the planning setting, where there is no adversarial
environment, and thus they are able to reduce the problem to the computation
of an optimal path in a graph. The case of probabilistic environments was con-
sidered in [15]. In contrast, in our work we seek to maximize the satisfaction of
the given specification against the worst-case behaviour of the environment.

The problem setting that is the closest to ours is that of [19]. The authors
of [19] study a maximum realizability problem in which the specification is a con-
junction of a must (or hard, in our terms) LTL specification, and a number of
weighted desirable (or soft, in our terms) specifications of the form ϕ, where ϕ
is an arbitrary LTL formula. When ϕ is not a safety property it is first strength-
ened to a safety formula before applying the synthesis procedure, which then
weakens the result to a mean-payoff term. Thus, while [19] considers a broader
class of soft specifications than we do, when ϕ is not a safety property there is no
clear relationship between ϕ and the resulting mean-payoff term. When applied
to multiple soft specifications, the method from [19] combines the corresponding
mean-payoff terms in a weighted sum, and synthesizes an implementation opti-
mizing the value of this sum. Thus, it is not possible to determine to what extent
the individual desirable specifications are satisfied without inspecting the syn-
thesized implementation. In contrast, in our maximum realizability procedure
each satisfaction value is characterized as an LTL formula, which is useful for
explainability and providing feedback to the designer.

To the best of our knowledge, our work is the first to employ MaxSAT in
the context of reactive synthesis. MaxSAT has been used in [11] for preference-
based planning. However, since maximum realizability is concerned with reactive
systems, it requires a fundamentally different approach than planning.

Two other main research directions related to maximum realizability are
quantitative synthesis and specification debugging. There are two predominant
flavours of quantitative synthesis problems studied in the literature. In the first
one (cf. [4]), the goal is to generate an implementation that maximizes the value
of a mean-payoff objective, while possibly satisfying some ω-regular specifica-
tion. In the second setting (cf. [1, 18]), the system requirements are formalized
in a multi-valued temporal logic. The synthesis methods in these works, how-
ever, do not solve directly the corresponding optimization problem, but instead
check for the existence of an implementation whose value is in a given set. The
optimization problem can then be reduced to a sequence of such queries.

An optimal synthesis problem for an ordered sequence of prioritized ω-regular
properties was studied in [2], where the classical fixpoint-based game-solving al-
gorithms are extended to a quantitative setting. The main difference in our work
is that we allow for incomparable soft specifications each with a number of priori-
tized relaxations, for which the equivalent set of preference-ordered combinations



would be of size exponential in the number of soft specifications. Our MaxSAT
formulation avoids considering explicitly these combinations.

In specification debugging there is a lot of research dedicated to finding
good explanations for the unsatisfiability or unrealizability of temporal speci-
fications [6], and more generally to the analysis of specifications [5, 9]. Our ap-
proach to maximum realizability can prove useful for specification analysis, since
instead of simply providing an optimal value, it computes an optimal relaxation
of the given specification in the form of another LTL formula.

2 Maximum Realizability Problem

We first give an overview of linear-time temporal logic (LTL) and the corre-
sponding synthesis problem, which asks to synthesize an implementation, in the
form of a transition system, that satisfies an LTL formula given as input.

Then, we proceed by providing a quantitative semantics for a class of LTL
formulas, and the definition of the corresponding maximum realizability problem.

2.1 Specifications, Transition Systems, and the Synthesis Problem

Linear-time temporal logic (LTL) is a standard specification language for for-
malizing requirements on the behaviour of reactive systems. Given a finite set
P of atomic propositions, the set of LTL formulas is generated by the grammar
ϕ := p | true | false | ¬ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ϕ | ϕ1 U ϕ2 | ϕ1 Rϕ2, where p ∈ P
is an atomic proposition, is the next operator, U is the until operator, and R
is the release operator. As usual, we define the derived operators finally : ϕ =
true U ϕ and globally : ϕ = falseRϕ. Every LTL formula can be converted to
an equivalent one in negation normal form (NNF), where negations appear only
in front of atomic propositions. Thus, we consider only formulas in NNF.

Let Σ = 2P be the finite alphabet consisting of the valuations of the propo-
sitions P. A letter σ ∈ Σ is interpreted as the valuation that assigns value true

to all p ∈ σ and false to all p ∈ P \ σ. LTL formulas are interpreted over in-
finite words w ∈ Σω. If a word w ∈ Σω satisfies an LTL formula ϕ, we write
w |= ϕ. The definition of the semantics of LTL can be found for instance in [3].
We denote with |ϕ| the length of ϕ, and with subf(ϕ) the set of its subformulas.

A safety LTL formula ϕ is an LTL formula such that for each w ∈ Σω with
w 6|= ϕ there exists u ∈ Σ∗ such that for all v ∈ Σω it holds that u · v 6|= ϕ

(u is called a bad prefix for ϕ). A class of safety LTL formulas is the class of
syntactically safe LTL formulas, which contain no occurrences of U in their NNF.

In the rest of the paper we assume that the set P of atomic propositions is
partitioned into disjoint sets of input propositions I and output propositions O.

A transition system over a set of input propositions I and a set of output
propositions O is a tuple T = (S, s0, τ), where S is a set of states, s0 is the
initial state, and the transition function τ : S × 2I → S × 2O maps a state s
and a valuation σI ∈ 2I of the input propositions to a successor state s′ and a



valuation σO ∈ 2O to the output propositions. Let P = I ∪ O be the set of all
propositions. For σ ∈ Σ = 2P we denote σ ∩ I by σI , and σ ∩ O by σO.

If the set S is finite, then T is a finite-state transition system. In this case
we define the size |T | of T to be the number of its states, i.e., |T | def

= |S|.
An execution of T is an infinite sequence s0, (σI0∪σO0), s1, (σI1∪σO1), s2 . . .

such that s0 is the initial state, and (si+1, σOi) = τ(si, σI i) for every i ≥ 0. The
corresponding sequence (σI0 ∪ σO0), (σI1 ∪ σO1), . . . ∈ Σω is called a trace. We
denote with Traces(T ) the set of all traces of a transition system T .

We say that a transition system T satisfies an LTL formula ϕ over atomic
propositions P = I ∪ O, denoted T |= ϕ, if w |= ϕ for every w ∈ Traces(T ).

The realizability problem for LTL is to determine whether for a given LTL
formula ϕ there exists a transition system T that satisfies ϕ. The LTL synthesis
problem asks to construct such a transition system if one exists.

Often, the specification is a combination of multiple requirements, which
might not be realizable in conjunction. In such a case, in addition to reporting
the unrealizability to the system designer, we would like the synthesis proce-
dure to construct an implementation that satisfies the specification “as much as
possible”. Such implementation is particularly useful in the case where some of
the requirements describe desirable but not necessarily essential properties of the
system. To determine what “as much as possible” formally means, a quantitative
semantics of the specification language is necessary. In the next subsection we
provide such semantics for a fragment of LTL. The quantitative interpretation
is based on the standard semantics of LTL formulas of the form ϕ.

2.2 Quantitative Semantics of Soft Safety Specifications

Let ϕ1, . . . , ϕn be LTL specifications, where each ϕi is a safety LTL formula.
In order to formalize the maximal satisfaction of ϕ1 ∧ . . . ∧ ϕn, we first give
a quantitative semantics of formulas of the form ϕ.

Quantitative semantics of safety specifications. For an LTL formula of the form
ϕ and a transition system T , we define the value val(T , ϕ) of ϕ in T as

val(T , ϕ) def

=





(1, 1, 1) if T |= ϕ,

(1, 1, 0) if T 6|= ϕ and T |= ϕ,

(1, 0, 0) if T 6|= ϕ and T 6|= ϕ, and T |= ϕ,

(0, 0, 0) if T 6|= ϕ, and T 6|= ϕ, and T 6|= ϕ.

Thus, the value of ϕ in a transition system T is a vector (v1, v2, v3) ∈
{0, 1}3, where the value (1, 1, 1) corresponds to the true value in the classical
semantics of LTL. When T 6|= ϕ, the values (1, 1, 0), (1, 0, 0) and (0, 0, 0)
capture the extent to which ϕ holds or not along the traces of T . For example, if
val(T , ϕ) = (1, 0, 0), then ϕ holds infinitely often on each trace of T , but there
exists a trace of T on which ϕ is violated infinitely often. When val(T , ϕ) =
(0, 0, 0), then on some trace of T , ϕ holds for at most finitely many positions.

Note that by the definition of val , if val(T , ϕ) = (v1, v2, v3), then (1) v1 = 1
iff T |= ϕ, (2) v2 = 1 iff T |= ϕ, and (3) v3 = 1 iff T |= ϕ. Thus,



the lexicographic ordering on {0, 1}3 captures the preference of one transition
system over another with respect to the quantitative satisfaction of ϕ.

Example 1. Suppose that we want to synthesize a transition system representing
a navigation strategy for a robot working at a restaurant. We require that the
robot must serve the VIP area infinitely often, formalized in LTL as vip area.
We also desire that the robot never enters the staff’s office, formalized as ¬office.
Now, suppose that initially the key to the VIP area is in the office. Thus, in order
to satisfy vip area, the robot must violate ¬office. A strategy in which the
office is entered only once, and satisfies ¬office, is preferable to one which
enters the office over and over again, and only satisfies ¬office. Thus, we
want to synthesize a strategy T maximizing val(T , ¬office).

In order to compare implementations with respect to their satisfaction of a
conjunction ϕ1 ∧ . . . ∧ ϕn of several safety specifications, we will extend the
above definition. We consider the case when the specifier has not expressed any
preference for the individual conjuncts. Consider the following example.

Example 2. We consider again the restaurant robot, now with two soft speci-
fications. The soft specification (req1 → table1 ) requires that each request
by table 1 is served immediately at the next time instance. Similarly, (req2 →
table2 ), requires the same for table number 2. Since the robot cannot be at both

tables simultaneously, formalized as the hard specification (¬table1 ∨¬table2 ),
the conjunction of these requirements is unrealizable. Unless the two tables have
priorities, it is preferable to satisfy each of req1 → table1 and req2 → table2
infinitely often, rather than serve one and the same table all the time.

Quantitative semantics of conjunctions. To capture the idea illustrated in Ex-
ample 2, we define a value function, which, intuitively, gives higher values to
transition systems in which a fewer number of soft specifications have low val-
ues. Formally, let the value of ϕ1 ∧ . . . ∧ ϕn in T be

val(T , ϕ1 ∧ . . . ∧ ϕn)
def

=
( n∑

i=1

vi,1,

n∑

i=1

vi,2,

n∑

i=1

vi,3
)
,

where val(T , ϕi) = (vi,1, vi,2, vi,3) for i ∈ {1, . . . , n}. To compare transition
systems according to these values, we use lexicographic ordering on {0, . . . , n}3.

Example 3. For the specifications in Example 2, the above value function assigns
value (2, 0, 0) to a system satisfying (req1 → table1 ) and (req2 →
table2 ), but neither of (req1 → table1 ) and (req2 → table2 ). It

assigns the smaller value (1, 1, 1) to an implementation that gives priority to
table 1 and satisfies (req1 → table1 ) but not (req2 → table2 ).

According to the above definition, a transition system that satisfies all soft re-
quirements to some extent is considered better in the lexicographic ordering than
a transition system that satisfies one of them and violates all the others. We could
instead inverse the order of the sums in the triple, thus giving preference to satis-
fying some soft specification, over having some lower level of satisfaction over all
of them. The next example illustrates the differences between the two variations.



Example 4. For the two soft specifications from Example 2, reversing the order
of the sums in the definition of val(T , ϕ1 ∧ . . . ∧ ϕn) results in giving the
higher value (1, 1, 1) to a transition system that satisfies (req1 → table1 )
but not (req2 → table2 ), and the lower value (0, 0, 2) to the one that
guarantees only (req1 → table1 ) and (req2 → table2 ). The most
suitable ordering usually depends on the specific application.

In [7] we discuss generalizations of the framework, where the user provides
a set of relaxations for each of the soft specifications, and possibly a priority
ordering among the soft specifications, or numerical weights.

2.3 Maximum realizability

Using the definition of quantitative satisfaction of soft safety specifications, we
now define the maximum realizability problem, which asks to synthesize a tran-
sition system that satisfies a given hard LTL specification, and is optimal with
respect to the satisfaction of a conjunction of soft safety specifications.

Maximum realizability problem: Given an LTL formula ϕ and formulas
ϕ1, . . . , ϕn, where each ϕi is a safety LTL formula, the maximum realizability

problem asks to determine if there exists a transition system T such that T |= ϕ,
and if the answer is positive, to synthesize a transition system T such that
T |= ϕ, and such that for every transition system T ′ with T ′ |= ϕ it holds that
val(T , ϕ1 ∧ . . . ∧ ϕn) ≥ val(T ′, ϕ1 ∧ . . . ∧ ϕn).

Bounded maximum realizability problem: Given an LTL formula ϕ and
formulas ϕ1, . . . , ϕn, where each ϕi is a safety LTL formula, and a bound
b ∈ N>0, the bounded maximum realizability problem asks to determine if there
exists a transition system T with |T | ≤ b such that T |= ϕ, and if the answer
is positive, to synthesize a transition system T such that T |= ϕ, |T | ≤ b and
such that for every transition system T ′ with T ′ |= ϕ and |T ′| ≤ b, it holds that
val(T , ϕ1 ∧ . . . ∧ ϕn) ≥ val(T ′, ϕ1 ∧ . . . ∧ ϕn).

3 Preliminaries

In this section we recall bounded synthesis, introduced in [17], and in particular
the approach based on reduction to SAT. We begin with the necessary prelimi-
naries from automata theory, and the notion of annotated transition systems.

3.1 Bounded Synthesis

A Büchi automaton over a finite alphabet Σ is a tuple A = (Q, q0, δ, F ), where
Q is a finite set of states, q0 is the initial state, δ ⊆ Q×Σ ×Q is the transition
relation, and F ⊆ Q is a subset of the set of states. A run of A on an infinite
word w = σ0σ1 . . . ∈ Σω is an infinite sequence q0, q1, . . . of states, where q0 is
the initial state and for every i ≥ 0 it holds that (qi, σi, qi+1) ∈ δ.

A run of a Büchi automaton is accepting if it contains infinitely many oc-
currences of states in F . A co-Büchi automaton A = (Q, q0, δ, F ) differs from
a Büchi automaton in the accepting condition: a run of a co-Büchi automaton



is accepting if it contains only finitely many occurrences of states in F . For a
Büchi automaton the states in F are called accepting states, while for a co-Büchi
automaton they are called rejecting states. A nondeterministic automaton A ac-
cepts a word w ∈ Σω if some run of A on w is accepting. A universal automaton
A accepts a word w ∈ Σω if every run of A on w is accepting.

The run graph of a universal automaton A = (Q, q0, δ, F ) on a transition
system T = (S, s0, τ) is the unique graph G = (V,E) with set of nodes V = S×Q
and set of labelled edges E ⊆ V × Σ × V such that ((s, q), σ, (s′, q′)) ∈ E iff
(q, σ, q′) ∈ δ and τ(s, σ ∩I) = (s′, σ ∩O). That is, G is the product of A and T .

A run graph of a universal Büchi (resp. co-Büchi) automaton is accepting
if every infinite path (s0, q0), (s1, q1), . . . contains infinitely (resp. finitely) many
occurrences of states qi in F . A transition system T is accepted by a universal
automaton A if the unique run graph of A on T is accepting. We denote with
L(A) the set of transition systems accepted by A.

The bounded synthesis approach is based on the fact that for every LTL
formula ϕ one can construct a universal co-Büchi automaton Aϕ with at most
2O(|ϕ|) states such that T ∈ L(Aϕ) iff T |= ϕ for every transition system T [13].

An annotation of a transition system T = (S, s0, τ) with respect to a univer-
sal co-Büchi automaton A = (Q, q0, δ, F ) is a function λ : S×Q→ N∪{⊥} that
maps nodes of the run graph of A on T to the set N ∪ {⊥}. Intuitively, such an
annotation is valid if every node (s, q) that is reachable from the node (s0, q0)
is annotated with a natural number, which is an upper bound on the number of
rejecting states visited on any path from (s0, q0) to (s, q).

Formally, an annotation λ : S ×Q→ N ∪ {⊥} is valid if

– λ(s0, q0) 6= ⊥, i.e., the pair of initial states is labelled with a number, and
– whenever λ(s, q) 6= ⊥, then for every edge ((s, q), σ, (s′, q′)) in the run graph

of A on T we have that (s′, q′) is annotated with a number (i.e., λ(s′, q′) 6=
⊥), such that λ(s′, q′) ≥ λ(s, q), and if q′ ∈ F , then λ(s′, q′) > λ(s, q).

Valid annotations of finite-state systems correspond to accepting run graphs.
An annotation λ is c-bounded if λ(s, q) ∈ {0, . . . , c}∪{⊥} for all s ∈ S and q ∈ Q.

The synthesis method proposed in [17, 10] employs the following result in
order to reduce the bounded synthesis problem to checking the satisfiability of
propositional formulas: A transition system T is accepted by a universal co-Büchi
automaton A = (Q, q0, δ, F ) iff there exists a (|T |·|F |)-bounded valid annotation
for T and A. One can estimate a bound on the size of the transition system,
which allows to reduce the synthesis problem to its bounded version. Namely,
if there exists a transition system that satisfies an LTL formula ϕ, then there
exists a transition system satisfying ϕ with at most

(
2(|subf(ϕ)|+log |ϕ|)

)
!2 states.

Let A = (Q, q0, δ, F ) be a universal co-Büchi automaton for the LTL formula
ϕ. Given a bound b on the size of the sought transition system T , the bounded
synthesis problem can be encoded as a satisfiability problem with the following
sets of propositional variables and constraints.

Variables: The variables represent the sought transition system T , and the
sought valid annotation λ of the run graph of A on T . A transition system with
b states S = {1, . . . , b} is represented by Boolean variables τs,σI ,s′ and os,σI

for



every s, s′ ∈ S, σI ∈ 2I , and output proposition o ∈ O. The variable τs,σI ,s′

encodes the existence of transition from s to s′ on input σI , and the variable
os,σI

encodes o being true in the output from state s on input σI .
The annotation λ is represented by the following variables. For each s ∈ S

and q ∈ Q, there is a Boolean variable λBs,q and a vector λNs,q of log(b · |F |)

Boolean variables: the variable λBs,q encodes the reachability of (s, q) from the
initial node (s0, q0) in the corresponding run graph, and the vector of variables
λNs,q represents the bound for the node (s, q). The constraints are as follows.

Constraints for input-enabled T : Cτ
def

=
∧
s∈S

∧
σI∈2I

∨
s′∈S τs,σI ,s′ .

Constraints for valid annotation:
Cλ

def

= λBs0,q0∧∧
q,q′∈Q

∧
s,s′∈S

∧
σI∈2I

((
λBs,q ∧ δs,q,σI ,q′ ∧ τs,σI ,s′

)
→ succλ(s, q, s

′, q′)
)
,

where δs,q,σI ,q′ is a formula over the variables os,σI
that characterizes the tran-

sitions in A between q and q′ on labels consistent with σI , and succλ(s, q, s
′, q′)

is a formula over the annotation variables such that succλ(s, q, s
′, q′) def

= (λBs′,q′ ∧

(λNs′,q′ > λNs,q)) if q
′ ∈ F , and succλ(s, q, s

′, q′) def

= (λBs′,q′∧(λ
N

s′,q′ ≥ λNs,q)) if q
′ 6∈ F .

3.2 Maximum Satisfiability (MaxSAT)

While the bounded synthesis problem can be encoded into SAT, for the synthesis
of a transition system that satisfies a set of soft specifications ”as much as
possible”, we need to solve an optimization problem. To this end, we reduce the
bounded maximum realizability problem to a partial weighted MaxSAT problem.

MaxSAT is a Boolean optimization problem. A MaxSAT instance is a con-
junction of clauses, each of which is a disjunction of literals, where a literal is
a Boolean variable or its negation. The objective in MaxSAT is to compute a
variable assignment that maximizes the number of satisfied clauses. In weighted
MaxSAT, each clause is associated with a positive numerical weight and the
objective is now to maximize the sum of the weights of the satisfied clauses. In
partial weighted MaxSAT, there are two types of clauses, namely hard and soft
clauses, where only the soft clauses have weights. A solution to a partial weighted
MaxSAT formula is a variable assignment satisfying all the hard clauses. An op-
timal solution additionally maximizes the sum of the weights of the soft clauses.

In the encoding in the next section we use hard clauses for the hard specifi-
cation, and soft clauses to capture the soft specifications in the maximum real-
izability problem. The weights for the soft clauses will encode the lexicographic
ordering on values of conjunctions of soft specifications.

4 From Maximum Realizability to MaxSAT

We now describe the proposed MaxSAT-based approach to maximum realizabil-
ity. First, we establish an upper bound on the minimal size of an implementation
that satisfies a given LTL specification ϕ and maximizes the satisfaction of a con-
junction of the soft specifications ϕ1, . . . , ϕn according to the value function
defined in Section 2.2. This bound can be used to reduce the maximum realiz-
ability problem to its bounded version, which we encode as a MaxSAT problem.



Convert ϕ to UCBA A

Construct UBA
Relax ( ϕ

i
) for

each ϕi and ϕi

Construct UCBA
Ai for each ϕi

Set implementation size

Encode in
MaxSAT

Exceeded value threshold/
time limit/implementation bound?

Extract implementation

Increase the implementation bound

set of soft
specifications

ϕ1, . . . , ϕn

hard specification

ϕ

initial implemen-
tation bound

yes

no

Fig. 1: Schematic overview of the maximum realizability procedure.

4.1 Bounded Maximum Realizability

To establish an upper bound on the minimal (in terms of size) optimal imple-
mentation, we make use of an important property of the function val defined
in Section 2.2. Namely, the property that for each of the possible values of
ϕ1 ∧ . . . ∧ ϕn there is a corresponding LTL formula that encodes this value

in the classical LTL semantics, as we formally state in the next lemma.

Lemma 1. For every transition system T and soft safety specifications ϕ1, . . . ,

ϕn, if val(T , ϕ1∧ . . .∧ ϕn) = v, then there exists an LTL formula ψv where
(1) ψv = ϕ′

1 ∧ . . . ∧ ϕ
′
n, where ϕ

′
i ∈ { ϕi, ϕi, ϕi, true} for i = 1, . . . , n,

(2) T |= ψv, and for every T ′, if T ′ |= ψv, then val(T ′, ϕ1 ∧ . . . ∧ ϕn) ≥ v.

The following theorem is a consequence of Lemma 1.

Theorem 1. Given an LTL specification ϕ and soft safety specifications ϕ1, . . . ,

ϕn, if there exists a transition system T |= ϕ, then there exists T ∗ such that
(1) val(T ∗, ϕ1 ∧ . . .∧ ϕn) ≥ val(T , ϕ1 ∧ . . .∧ ϕn) for all T with T |= ϕ,

(2) T ∗ |= ϕ and |T ∗| ≤
(
(2(b+log b))!

)2
,

where b = max{|subf(ϕ ∧ ϕ′
1 ∧ . . . ∧ ϕ

′
n)| | ∀i : ϕ

′
i ∈ { ϕi, ϕi, ϕi}}.

Lemma 1 immediately provides a naive synthesis procedure, which searches
for an optimal implementation by enumerating possible ψv formulas and solving
the corresponding realizability questions. The total number of these formulas
is 4n, where n is the number of soft specifications. The approach that we pro-
pose avoids this rapid growth, by reducing the optimization problem to a single
MaxSAT instance, making use of the power of state-of-the-art MaxSAT solvers.

Figure 1 gives an overview of our maximum realizability procedure and the
automata constructions it involves. As in the bounded synthesis approach, we
construct a universal co-Büchi automaton A for the hard specification ϕ. For
each soft specification ϕi we construct a pair of automata corresponding to
the relaxations of ϕi, as shown in Figure 1. The relaxation ϕi is treated as
in bounded synthesis. For ϕi and ϕi we construct a single universal Büchi
automaton and define a corresponding annotation function as described next.



4.2 Automata and Annotations for Soft Safety Specifications

We present here the reduction to MaxSAT for the case when each soft specifi-
cation is of the form ψ where ψ is a syntactically safe LTL formula. In this
case, we construct a single automaton for both ψ and its relaxation ψ, and
encode the existence of a single annotation function in the MaxSAT problem.
The size of this automaton is at most exponential in the length of ψ.

In the general case, we can treat ψ and ψ separately, in the same way
that we treat the relaxation ψ of ψ in the presented encoding. That would
require in total three instead of two annotation functions per soft specification.

We now describe the construction of a universal Büchi automaton B ψ for the
safety specification ψ and show how we can modify it to obtain an automaton
Relax ( ψ) that incorporates the relaxation of ψ to ψ.

We first construct a universal Büchi automaton B ψ = (Q ψ, q
ψ

0 , δ ψ, F ψ)
for ψ such that L(B ψ) = {T | T |= ψ} and B ψ has a unique non-accepting
sink state. That is, there exists a unique state rejψ ∈ Q ψ such that F ψ =
Q ψ \ {rejψ}, and {q ∈ Q ψ | (rejψ, σ, q) ∈ δ ψ} = {rejψ} for all σ ∈ Σ.

From B ψ, we obtain a universal Büchi automaton Relax ( ψ) constructed

by redirecting all the transitions leading to rejψ to the initial state q ψ
0 . Formally,

Relax ( ψ) = (Q, q0, δ, F ), where Q = Q ψ \ {rejψ}, q0 = q
ψ

0 , F = F ψ and

δ =
(
δ ψ \ {(q, σ, q′) ∈ δ ψ | q′ = rejψ}

)
∪ {(q, σ, q0) | (q, σ, rejψ) ∈ δ ψ}.

Let Rej (Relax ( ψ)) = {(q, σ, q0) ∈ δ | (q, σ, rejψ) ∈ δψ} be the set of transi-
tions in Relax ( ψ) that correspond to transitions in B ψ leading to rejψ.

The automaton Relax ( ψ) has the property that its run graph on a tran-
sition system T does not contain a reachable edge corresponding to a transition
in Rej (Relax ( ψ)) iff T is accepted by the automaton B ψ, (i.e., T |= ψ).
Otherwise, if the run graph of Relax ( ψ) on T contains a reachable edge that
belongs to Rej (Relax ( ψ)), then T 6|= ψ. However, if each infinite path in
the run graph contains only a finite number of occurrences of such edges, then
T |= ψ. Based on these observations, we define an annotation function that
annotates each node in the run graph with an upper bound on the number of
edges in Rej (Relax ( ψ)) visited on any path reaching the node.

A function π : S ×Q → N ∪ {⊥} is a –valid annotation for a transition
system T = (S, s0, τ) and the automaton Relax ( ψ) = (Q, q0, δ, F ) if
(1) π(s0, q0) 6= ⊥, i.e., the pair of initial states is labelled with a number, and
(2) if π(s, q) 6= ⊥, then for every edge ((s, q), σ, (s′, q′)) in the run graph of

Relax ( ψ) on T we have that π(s′, q′) 6= ⊥, and
• if (q, σ, q′) ∈ Rej (Relax ( ψ)), then π(s′, q′) > π(s, q), and
• if (q, σ, q′) 6∈ Rej (Relax ( ψ)), then π(s′, q′) ≥ π(s, q).

This guarantees that T |= ψ iff there exists a –valid |T |-bounded an-
notation π for T and Relax ( ψ). Moreover, if π is |T |-bounded and π(s0, q0) =
|T |, then T |= ψ, as this means that no edge in Rej (Relax ( ψ)) is reached.

4.3 MaxSAT Encoding of Bounded Maximum Realizability

Let A = (Q, q0, δ, F ) be a universal co-Büchi automaton for the LTL formula ϕ.



For each formula ϕj , j ∈ {1, . . . , n}, we consider two universal automata:

the universal Büchi automaton Bj = Relax ( ϕj) = (Qj , q
j
0, δj , Fj), con-

structed as described in Section 4.2, and a universal co-Büchi automaton Aj =

(Q̂j , q̂
j
0, δ̂j , F̂j) for the formula ϕj . Given a bound b on the size of the sought

transition system, we encode the bounded maximum realizability problem as a
MaxSAT problem with the following sets of variables and constraints.

Variables: The MaxSAT formulation includes the variables from the SAT
formulation of the bounded synthesis problem, which represent the sought tran-
sition system T and the sought valid annotation of the run graph of A on T .
Additionally, it includes variables for representing the annotations πj and λj for
Bj and Aj respectively, similarly to λ in the SAT encoding. More precisely, the
annotations for πj and λj are represented respectively by variables πB,j

s,q and πN,j
s,q

where s ∈ S and q ∈ Qj , and variables λB,js,q and λN,js,q where s ∈ S and q ∈ Q̂j .

The set of constraints includes Cτ and Cλ from the SAT formulation as hard
constraints, as well as the following constraints for the new annotations.

Hard constraints for valid annotations: For each j = 1, . . . , n, let

Cjπ
def

=
∧

q,q′∈Qj

∧

s,s′∈S

∧

σI∈2I

((
πB,j
s,q ∧ δjs,q,σI ,q′

∧ τs,σI ,s′
)
→ succjπ(s, q, s

′, q′, σI)
)
,

C
j
λ

def

=
∧

q,q′∈Q̂j

∧

s,s′∈S

∧

σI∈2I

((
λB,js,q ∧ δ̂

j
s,q,σI ,q′

∧ τs,σI ,s′
)
→ succ

j
λ(s, q, s

′, q′, σI)
)
,

where succjπ(s, q, s
′, q′, σI)

def

= π
B,j
s′,q′∧

(
rejj(s, q, q′, σI) → π

N,j
s′,q′ > πN,j

s,q

)
∧

(
¬rejj(s, q, q′, σI) → π

N,j
s′,q′ ≥ πN,j

s,q

)
,

and rejj(s, q, q′, σI) is a formula over os,σI
obtained from Rej (Bj). The formula

succ
j
λ(s, q̂, s

′, q̂′, σI) is analogous to succλ(s, q, s
′, q′, σI) defined in Section 3.1.

Soft constraints for valid annotations: Let b ∈ N>0 be the bound on
the size of the transition system. For each j = 1, . . . , n we define

Softj def

= πB,j
s0,q0

∧ (πN,j
s0,q0

= b) with weight 1,

Softj def

= πB,j
s0,q0

with weight n, and

Softj def

= πB,j
s0,q0

∨ λB,js0,q̂0 with weight n2.

The definition of the soft constraints guarantees that T |= ϕj if and only if
there exist corresponding annotations that satisfy all three of the soft constraints
for ϕj . Similarly, if T |= ϕj , then Softj and Softj can be satisfied.

The definition of the weights of the soft clauses reflects the ordering of transi-
tion systems with respect to their satisfaction of ϕ1∧. . .∧ ϕn. This guarantees
that a transition system extracted from an optimal satisfying assignment for the
MaxSAT problem is optimal with respect to the value of ϕ1 ∧ . . . ∧ ϕn, as
stated in the following theorem that establishes the correctness of the encoding.



Theorem 2. Let A be a given co-Büchi automaton for ϕ, and for each j ∈
{1, . . . , n}, let Bj = Relax ( ϕj) be the universal automaton for ϕj con-
structed as in Section 4.2, and let Aj be a universal co-Büchi automaton for

ϕj. The constraint system for bound b ∈ N>0 is satisfiable if and only if there
exists an implementation T with |T | ≤ b such that T |= ϕ. Furthermore, from
the optimal satisfying assignment to the variables τs,σI ,s′ and os,σI

, one can ex-
tract a transition system T ∗ such that for every transition system T with |T | ≤ b

and T |= ϕ it holds that val(T ∗, ϕ1 ∧ . . . ∧ ϕn) ≥ val(T , ϕ1 ∧ . . . ∧ ϕn).
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¬r1 ∧ ¬r2

r1
∧
¬
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r2

¬
r1

∧
¬
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r1 ∧ ¬r2

r2

¬r1

r1

Fig. 2: An optimal imple-
mentation for Example 2.

Figure 2 shows a transition system extracted
from an optimal satisfying assignment for Example 2
with bound 3 on the implementation size. The tran-
sitions depicted in the figure are defined by the val-
ues of the variables τs,σI ,s′ . The outputs of the imple-
mentation (omitted from the figure) are defined by
the values of os,σI

. The output in state s1 when r1 is
true is table1∧¬table2 , and the output in s2 when r2
is true is ¬table1 ∧ table2 . For all other combinations
of state and input the output is ¬table1 ∧ ¬table2 .

5 Experimental Evaluation

We implemented the proposed approach to maximum realizability1 in Python
2.7. For the LTL to automata translation we use Spot [8] version 2.2.4. MaxSAT
instances are solved by Open-WBO [16] version 2.0. We evaluated our method on
instances of two examples. Each experiment was run on machine with a 2.3 GHz
Intel Xeon E5-2686 v4 processor and 16 GiB of memory. While the processor is
quad-core, only a single core was used. We set a time-out of 1 hour.

Robotic Navigation. We applied our method to the strategy synthesis for a
robotic museum guide. The robot has to give a tour of the exhibitions in a specific
order, which constitutes the hard specification. Preferably, it also avoids certain
locations, such as the staff’s office, the library, or the passage when it is occu-
pied. These preferences are encoded in the soft specifications. There is one input
variable designating the occupancy of the passage, and eight output variables
defining the position of the robot. The formal specifications are given in [7].

Table 1 summarizes the results. With implementation bound of 8, the hard
specification is realizable, achieving partial satisfaction of soft specifications.
This strategy always selects the passage to transition from Exhibition 1 to Ex-
hibition 2 and hence, always avoids the library. It also temporarily violates the
requirement of not entering the staff’s office, to acquire access to Exhibition 2.
Strategies with higher values exists, but they require larger implementation size.
However, for implementation bound 10 the solver reaches a time-out.

1 The code is available at https://github.com/MahsaGhasemi/max-realizability



Table 1: Results of applying the method to the robotic navigation example, with
different bounds on implementation size |T |. We report the number of variables
and clauses in the encoding, the satisfiability of hard constraints, the value (and
bound) of the MaxSAT objective function, the running times of Spot and Open-
WBO, and the time of the solver plus the time for generating the encoding.

Encoding Solution Time (s)
|T | # vars # clauses sat. Σweights Spot Open-WBO enc.+solve

2 4051 25366 UNSAT 0 (39) 0.93 0.011 0.12
4 19965 125224 UNSAT 0 (39) 0.93 0.079 0.57
6 45897 289798 UNSAT 0 (39) 0.93 1.75 2.9
8 95617 596430 SAT 31 (39) 0.93 956 959
10 152949 954532 SAT - (39) 0.93 time-out time-out

Power Distribution Network. We consider the problem of dynamic recon-
figuration of power distribution networks. A power network consists of a set P
of power supplies (generators) and a set L of loads (consumers). The network is
a bipartite graph with edges between supplies and loads, where each supply is
connected to multiple loads and each load is connected to multiple supplies. Each
power supply has an associated capacity, which determines how many loads it can
power at a given time. It is possible that not all loads can be powered all the time.
Some loads are critical and must be powered continuously, while others are not
and should be powered when possible. Some loads can be initializing, meaning
they must be powered only initially for several steps. Power supplies can become
faulty during operation, which necessitates dynamic network reconfiguration.

We apply our method to the problem of synthesizing a relay-switching strat-
egy from LTL specifications. The input propositions I determine which, if any, of
the supplies are faulty at each step. We are given an upper bound on the number
of supplies that can be simultaneously faulty. The set O of output propositions
contains one proposition sl→p for each load l ∈ L and each supply p ∈ P that
are connected. The meaning of sl→p is that l is powered by p.

The hard specification asserts that the critical loads must always be powered,
the initializing loads should be powered initially, a load is powered by at most
one supply, the capacity of supplies is not exceeded, and when a supply is faulty
it is not in use. The soft specifications state that non-critical loads are always
powered, and that a powered load should remain powered unless its supply fails.

The specifications are given in [7]. Table 2 describes the instances to which
we applied our synthesis method. Power supplies have the same capacity E+

(number of loads they can power) and at most one can be faulty. We consider
three categories of instances, depending on the network connectivity (full or
sparse), and whether we restrict frequent switching of supplies. In Figure 3, we
show the results for the instances defined in Table 2 (detailed results in [7]). In
the first set of instances, the specifications have large number of variables (due
to full connectivity), and the bottleneck is the translation to automata. In the



Table 2: Power distribution network instances. An instance is determined by the
number supplies |P |, the number of loads |L|, the capacity of supplies E+, the
number of critical, non-critical and initializing loads. We also show the number
of input |I| and output |O| propositions and the number of soft specifications.

Network Load characterization Specifications
Instance

#
|P | |L| E+ crit. non-crit. init. |I| |O|

# Soft
spec.

fully 1 3 3 1 1 2 0 2 9 2
connected, 2 3 6 2 2 4 0 2 18 4
switching 3 3 3 1 0 2 1 2 9 2
allowed 4 3 6 2 1 4 1 2 18 4

sparse, 5 4 2 1 1 1 0 3 4 1
switching 6 4 4 1 1 3 0 3 8 3
allowed 7 4 6 1 1 5 0 3 12 5

8 4 8 1 1 7 0 3 16 7

sparse, 9 4 2 1 1 1 0 3 4 5
switching 10 4 4 1 1 3 0 3 8 11
restricted 11 4 6 1 1 5 0 3 12 17

12 4 8 1 1 7 0 3 16 23

third set of instances, the limiting factor is the number of soft specifications,
leading to large weights and number of variables in the MaxSAT formulation.
We observe that the number of soft specifications is an important factor affecting
the scalability of the proposed method. Instance 12, on which the MaxSAT solver
reaches time-out for implementation size bound 6, contains 23 soft specifications.
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Fig. 3: Results of applying the method to the instances in Table 2, with different
bounds on implementation size |T |. (a) shows the size of the MaxSAT encoding
as the number of variables (solid lines) and the number of clauses (dashed lines).
(b) shows the running time of the MaxSAT solver plus the time for the encoding.
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