
This is a repository copy of Synthesizing approximate implementations for unrealizable
specifications.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156423/

Version: Accepted Version

Proceedings Paper:
Dimitrova, R., Finkbeiner, B. and Torfah, H. (2019) Synthesizing approximate
implementations for unrealizable specifications. In: Dillig, I. and Tasiran, S., (eds.)
Computer Aided Verification - 31st International Conference, CAV 2019. Computer Aided
Verification, 15-18 Jul 2019, New York City, NY, USA. Lecture Notes in Computer Science,
1 (11561). Springer , pp. 241-258. ISBN 9783030255398

https://doi.org/10.1007/978-3-030-25540-4_13

© 2019 The Author(s). This is an Open Access paper distributed under the terms of the
Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Synthesizing Approximate Implementations for

Unrealizable Specifications�

Rayna Dimitrova1, Bernd Finkbeiner2 and Hazem Torfah2

1 University of Leicester
2 Saarland University

Abstract. The unrealizability of a specification is often due to the as-
sumption that the behavior of the environment is unrestricted. In this
paper, we present algorithms for synthesis in bounded environments,
where the environment can only generate input sequences that are ul-
timately periodic words (lassos) with finite representations of bounded
size. We provide automata-theoretic and symbolic approaches for solv-
ing this synthesis problem, and also study the synthesis of approximative
implementations from unrealizable specifications. Such implementations
may violate the specification in general, but are guaranteed to satisfy the
specification on at least a specified portion of the bounded-size lassos.
We evaluate the algorithms on different arbiter specifications.

1 Introduction

The objective of reactive synthesis is to automatically construct an implementa-
tion of a reactive system from a high-level specification of its desired behaviour.
While this idea holds a great promise, applying synthesis in practice often faces
significant challenges. One of the main hurdles is that the system designer has to
provide the right formal specification, which is often a difficult task [12]. In par-
ticular, since the system being synthesized is required to satisfy its requirements
against all possible environments allowed by the specification, accurately cap-
turing the designer’s knowledge about the environment in which the system will
execute is crucial for being able to successfully synthesize an implementation.

Traditionally, environment assumptions are included in the specification, usu-
ally given as a temporal logic formula. There are, however less explored ways of
incorporating information about the environment, one of which is to consider a
bound on the size of the environment, that is, a bound on the size of the state
space of a transition system that describes the possible environment behaviours.
Restricting the space of possible environments can render an unrealizable specifi-
cation into a realizable one. The temporal synthesis under such bounded environ-
ments was first studied in [6], where the authors extensively study the problem,
in several versions, from the complexity-theoretic point of view.

� This work was partially supported by the German Research Foundation (DFG) as
part of the Collaborative Research Center “Foundations of Perspicuous Software
Systems” (TRR 248, 389792660), and by the European Research Council (ERC)
Grant OSARES (No. 683300).

2 Rayna Dimitrova, Bernd Finkbeiner and Hazem Torfah

In this paper, we follow a similar avenue of providing environment assump-
tions. However, instead of bounding the size of the state space of the environ-
ment, we associate a bound with the sequences of values of input signals produced
by the environment. The infinite input sequences produced by a finite-state en-
vironment which interacts with a finite state system are ultimately periodic, and
thus, each such infinite sequence σ ∈ Σω

I , over the input alphabet ΣI , can be
represented as a lasso, which is a pair (u, v) of finite words u ∈ Σ∗

I and v ∈ Σ+
I ,

such that σ = u · vω. It is the length of such sequences that we consider a bound
on. More precisely, given a bound k ∈ N, we consider the language of all infi-
nite sequences sequences of inputs that can be represented by a lasso (u, v) with
|u · v| = k. The goal of the synthesis of lasso precise implementations is then to
synthesize a system for which each execution resulting from a sequence of envi-
ronment inputs in that language, satisfies a given linear temporal specification.

As an example, consider an arbiter serving two client processes. Each client
issues a request when it wants to access a shared resource, and keeps the request
signal up until it is done using the resource. The goal of the arbiter is to ensure
the classical mutual exclusion property, by not granting access to the two clients
simultaneously. The arbiter has to also ensure that each client request is even-
tually granted. This, however, is difficult since, first, a client might gain access
to the resource and never lower the request signal, and second, the arbiter is not
allowed to take away a grant unless the request has been set to false, or the client
never sets the request to false in the future (the client has become unresponsive).
The last two requirements together make the specification unrealizable, as the
arbiter has no way of determining if a client has become unresponsive, or will
lower the request signal in the future. If, however, the length of the lassos of the
input sequences is bounded, then, after a sufficient number of steps, the arbiter
can assume that if the request has not been set to false, then it will not be low-
ered in the future either, as the sequence of inputs must already have run at least
once through it’s period that will be ultimately repeated from that point on.

Formally, we can express the requirements on the arbiter in Linear Temporal
Logic (LTL) as follows. There is one input variable ri (for request) and one
output variable gi (for grant) associated with each client. The specification is
then given as the conjunction ϕ=ϕmutex ∧ ϕresp ∧ ϕrel where we use the LTL
operators Next , Globally and Eventually to define the requirements

ϕmutex = ¬(g1 ∧ g2),

ϕresp =
�2

i=1(ri → gi),

ϕrel =
�2

i=1(gi ∧ ri ∧ (¬ri) → gi).

Due to the requirement to not revoke grants stated in ϕrel , the specification ϕ

is unrealizable (that is, there exists no implementation for the arbiter process).
For any bound k on the length of the input lassos, however, ϕ is realizable. More
precisely, there exists an implementation in which once client i has not lowered
the request signal for k consecutive steps, the variable gi is set to false.

Synthesizing Approximate Implementations 3

This example shows that when the system designer has knowledge about the
resources available to the environment processes, taking this knowledge into ac-
count can enable us to synthesize a system that is correct under this assumption.

In this paper we formally define the synthesis problem for lasso-precise imple-
mentations, that is, implementations that are correct for input lassos of bounded
size, and describe an automata-theoretic approach to this synthesis problem. We
also consider the synthesis of lasso-precise implementations of bounded size, and
provide a symbolic synthesis algorithm based on quantified Boolean satisfiability.

Bounding the size of the input lassos can render some unrealizable specifica-
tions realizable, but, similarly to bounding the size of the environment, comes
at the price of higher computational complexity. To alleviate this problem, we
further study the synthesis of approximate implementations, where we relax the
synthesis problem further, and only require that for a given � > 0 the ratio of
input lassos of a given size for which the specification is satisfied, to the to-
tal number of input lassos of that size is at least 1 − �. We then propose an
approximate synthesis method based on maximum model counting for Boolean
formulas [5]. The benefits of the approximate approach are two-fold. Firstly, it
can often deliver high-quality approximate solutions more efficiently than the
lasso-precise synthesis method, and secondly, even when the specification is still
unrealizable for a given lasso bound, we might be able to synthesize an imple-
mentation that is correct for a given fraction of the possible input lassos.

The rest of the paper is organized as follows. In Section 2 we discuss related
work on environment assumptions in synthesis. In Section 3 we provide pre-
liminaries on linear temporal properties and omega-automata. In Section 4 we
define the synthesis problem for lasso-precise implementations, and describe an
automata-theoretic synthesis algorithm. In Section 5 we study the synthesis of
lasso-precise implementations of bounded size, and provide a reduction to quan-
tified Boolean satisfiability. In Section 6 we define the approximate version of
the problem, and give a synthesis procedure based on maximum model counting.
Finally, in Section 7 we present experimental results, and conclude in Section 8.

2 Related Work

Providing good-quality environment specifications (typically in the form of as-
sumptions on the allowed behaviours of the environment) is crucial for the syn-
thesis of implementations from high-level specifications. Formal specifications,
and thus also environment assumptions, are often hard to get right, and have
been identified as one of the bottlenecks in formal methods and autonomy [12].
It is therefore not surprising, that there is a plethora of approaches addressing
the problem of how to revise inadequate environment assumptions in the cases
when these are the cause of unrealizability of the system requirements.

Most approaches in this direction build upon the idea of analyzing the cause
of unrealizability of the specification and extracting assumptions that help elim-
inate this cause. The method proposed in [2] uses the game graph that is used
to answer the realizability question in order to construct a Büchi automaton

4 Rayna Dimitrova, Bernd Finkbeiner and Hazem Torfah

representing a minimal assumption that makes the specification realizable. The
authors of [8] provide an alternative approach where the environment assump-
tions are gradually strengthened based on counterstrategies for the environment.
The key ingredient for this approach is using a library of specification templates
and user scenarios for the mining of assumptions, in order to generate good-
quality assumptions. A similar approach is used in [1], where, however, assump-
tion patterns are synthesized directly from the counterstrategy without the need
for the user to provide patterns. A different line of work focuses on giving feed-
back to the user or specification designer about the reason for unrealizability, so
that they can, if possible, revise the specification accordingly. The key challenge
adressed there lies in providing easy-to-understand feedback to users, which re-
lies on finding a minimal cause for why the requirements are not achievable and
generating a natural language explanation of this cause [11].

In the above mentioned approaches, assumptions are provided or constructed
in the form of a temporal logic formula or an omega-automaton. Thus, it is on the
one hand often difficult for specification designers to specify the right assump-
tions, and on the other hand special care has to be taken by the assumption
generation procedures to ensure that the constructed assumptions are simple
enough for the user to understand and evaluate. The work [6] takes a differ-
ent route, by making assumptions about the size of the environment. That is,
including as an additional parameter to the synthesis problem a bound on the
state space of the environment. Similarly to temporal logic assumptions, this
relaxation of the synthesis problem can render unrealizable specifications into
realizable ones. From the system designer point of view, however, it might be sig-
nificantly easier to estimate the size of environments that are feasible in practice
than to express the implications of this additional information in a temporal logic
formula. In this paper we take a similar route to [6], and consider a bound on the
cyclic structures in the environment’s behaviour. Thus, the closest to our work is
the temporal synthesis for bounded environments studied in [6]. In fact, we show
that the synthesis problem for lasso-precise implementations and the synthesis
problem under bounded environments can be reduced to each other. However,
while the focus in [6] is on the computational complexity of the bounded syn-
thesis problems, here we provide both automata-theoretic, as well as symbolic
approaches for solving the synthesis problem for environments with bounded
lassos. We further consider an approximate version of this synthesis problem.
The benefits of using approximation are two-fold. Firstly, as shown in [6], while
bounding the environment can make some specifications realizable, this comes
at a high computational complexity price. In this case, approximation might
be able to provide solutions of sufficient quality more efficiently. Furthermore,
even after bounding the environment’s input behaviours, the specification might
still remain unrealizable, in which case we would like to satisfy the requirements
for as many input lassos as possible. In that sense, we get closer to synthesis
methods for probabilistic temporal properties in probabilistic environments [7].
However, we consider non-probabilistic environments (i.e., all possible inputs are
equally likely), and provide probabilistic guarantees with desired confidence by

Synthesizing Approximate Implementations 5

employing maximum model counting techniques. Maximum model counting has
previously been used for the synthesis of approximate non-reactive programs [5].
Here, on the other hand we are concerned with the synthesis of reactive systems
from temporal specifications.

Bounding the size of the synthesized system implementation is a complemen-
tary restriction of the synthesis problem, which has attracted a lot of attention
in recent years [4]. The computational complexity of the synthesis problem when
both the system’s and the environment’s size is bounded has been studied in [6].
In this paper we provide a symbolic synthesis procedure for bounded synthesis
of lasso-precise implementations based on quantified Boolean satisfiability.

3 Preliminaries

We now recall definitions and notation from formal languages and automata,
and notions from reactive synthesis such as implementation and environment.

Linear-time Properties and Lassos. A linear-time property ϕ over an alphabet Σ
is a set of infinite words ϕ ⊆ Σω. Elements of ϕ are called models of ϕ. A lasso
of length k over an alphabet Σ is a pair (u, v) of finite words u ∈ Σ∗ and v ∈ Σ+

with |u · v| = k that induces the ultimately periodic word u · vω. We call u · v
the base of the lasso or ultimately periodic word, and k the length of the lasso.

If a word w ∈ Σ∗ is a prefix of a word σ ∈ Σ∗ ∪Σω, we write w < σ. For a
language L ⊆ Σ∗ ∪Σω, we define Prefix (L) = {w ∈ Σ∗ | ∃σ ∈ L : w < σ} is the
set of all finite words that are prefixes of words in L.

Implementations. We represent implementations as labeled transition systems.
Let I and O be finite sets of input and output atomic propositions respectively. A
2O-labeled 2I -transition system is a tuple T = (T, t0, τ, o), consisting of a finite
set of states T , an initial state t0 ∈ T , a transition function τ : T × 2I → T , and
a labeling function o : T → 2O. We denote by |T | the size of an implementation
T , defined as |T | = |T |. A path in T is a sequence π : N → T × 2I of states and
inputs that follows the transition function, i.e., for all i ∈ N if π(i) = (ti, ei) and
π(i + 1) = (ti+1, ei+1), then ti+1 = τ(ti, ei). We call a path initial if it starts
with the initial state: π(0) = (t0, e) for some e ∈ 2I . For an initial path π, we
call the sequence σπ : i �→ (o(ti) ∪ ei) ∈ (2I∪O)ω the trace of π. We call the set
of traces of a transition system T the language of T , denoted L(T).

Finite-state environments can be represented as labelled transition systems
in a similar way, with the difference that the inputs are the outputs of the
implementation, and the states of the environment are labelled with inputs for
the implementation. More precisely, a finite-state environment is a 2I -labeled
2O-transition system E = (E, s0, ρ, ι). The composition of an implementation T
and an environment E results in a set of traces of T , which we denote LE(T),
where σ = σ0σ1 . . . ∈ LE(T) if and only if σ ∈ L(T) and there exists an initial
path s0s1 . . . in E such that for all i ∈ N, si+1 = ρ(si,σi+1∩O) and σi∩I = ι(si).

6 Rayna Dimitrova, Bernd Finkbeiner and Hazem Torfah

Linear-time Temporal Logic. We specify properties of reactive systems (imple-
mentations) as formulas in Linear-time Temporal Logic (LTL) [9]. We consider
the usual temporal operators Next , Until U , and the derived operators Release
R, which is the dual operator of U , Eventually and Globally . LTL formulas
are defined over a set of atomic propositions AP. We denote the satisfaction of
an LTL formula ϕ by an infinite sequence σ ∈ (2AP)ω of valuations of the atomic
propositions by σ |= ϕ and call σ a model of ϕ. For an LTL formula ϕ we define
the language L(ϕ) of ϕ to be the set {σ ∈ (2AP)ω | σ |= ϕ}.

For a set of atomic propositions AP = O ∪ I, we say that a 2O-labeled 2I -
transition system T satisfies an LTL formula ϕ, if and only if L(T) ⊆ L(ϕ), i.e.,
every trace of T satisfies ϕ. In this case we call T a model of ϕ, denoted T |= ϕ.
If T satisfies ϕ for an environment E , i.e. LE(T) ⊆ L(ϕ), we write T |=E ϕ.

For I ⊆ AP and σ ∈ (2AP)∗ ∪ (2AP)ω, we denote with σ|I the projection of
σ on I, obtained by the sequence of valuations of the propositions from I in σ.

Automata Over Infinite Words. The automata-theoretic approach to reactive
synthesis relies on the fact that an LTL specification can be translated to an
automaton over infinite words, or, alternatively, that the specification can be
provided directly as such an automaton. An alternating parity automaton over
an alphabet Σ is a tuple A = (Q, q0, δ, µ), where Q denotes a finite set of states,
Q0 ⊆ Q denotes a set of initial states, δ denotes a transition function, and
µ : Q → C ⊂ N is a coloring function. The transition function δ : Q×Σ → B

+(Q)
maps a state and an input letter to a positive Boolean combination of states [14].

A tree T over a set of directions D is a prefix-closed subset of D∗. The empty
sequence � is called the root. The children of a node n ∈ T are the nodes {n ·d ∈
T | d ∈ D}. A Σ-labeled tree is a pair (T, l), where l : T → Σ is the labeling
function. A run of A = (Q, q0, δ, µ) on an infinite word σ = α0α1 · · · ∈ Σω is a
Q-labeled tree (T, l) that satisfies the following constraints: (1) l(�) = q0, and
(2) for all n ∈ T , if l(n) = q, then {l(n′) | n′ is a child of n} satisfies δ(q,α|n|).

A run tree is accepting if every branch either hits a true transition or is an
infinite branch n0n1n2 · · · ∈ T , and the sequence l(n0)l(n1)l(n2) . . . satisfies the
parity condition, which requires that the highest color occurring infinitely often
in the sequence µ(l(n0))µ(l(n1))µ(l(n2)) · · · ∈ N

ω is even. An infinite word σ is
accepted by an automaton A if there exists an accepting run of A on σ. The set
of infinite words accepted by A is called its language, denoted L(A).

A nondeterministic automaton is a special alternating automaton, where for
all states q and input letters α, δ(q,α) is a disjunction. An alternating automaton
is called universal if, for all states q and input letters α, δ(q,α) is a conjunction.
A universal and nondeterministic automaton is called deterministic.

A parity automaton is called a Büchi automaton if and only if the image of
µ is contained in {1, 2}, a co-Büchi automaton if and only if the image of α is
contained in {0, 1}. Büchi and co-Büchi automata are denoted by (Q,Q0, δ, F),
where F ⊆ Q denotes the states with the higher color. A run graph of a Büchi
automaton is thus accepting if, on every infinite path, there are infinitely many
visits to states in F ; a run graph of a co-Büchi automaton is accepting if, on
every path, there are only finitely many visits to states in F .

Synthesizing Approximate Implementations 7

The next theorem states the relation between LTL and alternating Büchi
automata, namely that every LTL formula ϕ can be translated to an alternating
Büchi automaton with the same language and size linear in the length of ϕ.

Theorem 1. [13] For every LTL formula ϕ there is an alternating Büchi au-
tomaton A of size O(|ϕ|) with L(A) = L(ϕ), where |ϕ| is the length of ϕ.

Automata Over Finite Words. We also use automata over finite words as ac-
ceptors for languages consisting of prefixes of traces. A nondeterministic finite
automaton over an alphabet Σ is a tuple A = (Q,Q0, δ, F), where Q and Q0 ⊆ Q

are again the states and initial states respectively, δ : Q × Σ → 2Q is the tran-
sition function and F is the set of accepting states. A run on a word a1 . . . an is
a sequence of states q0q1 . . . qn, where q0 ∈ Q0 and qi+1 ∈ δ(qi, ai). The run is
accepting if qn ∈ F . Deterministic finite automata are defined similarly with the
difference that there is a single initial state q0, and that the transition function
is of the form δ : Q×Σ → Q. As usual, we denote the set of words accepted by
a nondeterministic or deterministic finite automaton A by L(A).

4 Synthesis of Lasso-precise Implementations

In this section we first define the synthesis problem for environments producing
input sequences representable as lassos of length bounded by a given number.
We then provide an automata-theoretic algorithm for this synthesis problem.

4.1 Lasso-precise implementations

We begin by formally defining the language of sequences of input values repre-
sentable by lassos of a given length k. For the rest of the section, we consider
linear-time properties defined over a set of atomic propositions AP. The subset
I ⊆ AP consists of the input atomic propositions controlled by the environment.

Definition 1 (Bounded Model Languages). Let ϕ be a linear-time property
over a set of atomic propositions AP, let Σ = 2AP, and let I ⊆ AP.

We say that an infinite word σ ∈ Σω is an I-k-model of ϕ, for a bound k ∈ N,
if and only if there are words u ∈ (2I)∗ and v ∈ (2I)+ such that |u · v| = k and
σ|I = u · vω. The language of I-k-models of the property ϕ is defined by the set
LI
k(ϕ) = {σ ∈ Σω | σ is a I-k-model of ϕ}.

Note that a model of ϕ might be induced by lassos of different length and by
more than one lasso of the same length, e.g, aω is induced by (a, a) and (�, aa).
The next lemma establishes that if a model of ϕ can be represented by a lasso
of length k then it can also be represented by a lasso of any larger length.

Lemma 1. For a linear-time property ϕ over Σ = 2AP, subset I ⊆ AP of
atomic propositions, and bound k ∈ N, we have LI

k(ϕ) ⊆ LI
k′(ϕ) for all k′ > k.

8 Rayna Dimitrova, Bernd Finkbeiner and Hazem Torfah

Proof. Let σ ∈ LI
k(ϕ). Then, σ |= ϕ and there exists (u, v) ∈ (2I)∗ × (2I)+ such

that |u · v| = k and σ|I = u · vω. Let v = v1 . . . vk. Since u · v1(v2 . . . vkv1)
ω =

u · (v1 . . . vk)
ω = σ|I , we have σ ∈ LI

k+1(ϕ). The claim follows by induction. ⊓⊔

Using the definition of I-k-models, the language of infinite sequences of envi-
ronment inputs representable by lassos of length k can be expressed as LI

k(Σ
ω).

Definition 2 (k-lasso-precise Implementations). For a linear-time prop-
erty ϕ over Σ = 2AP, subset I ⊆ AP of atomic propositions, and bound k ∈ N,
we say that a transition system T is a k-lasso-precise implementation of ϕ, de-
noted T |=k,I ϕ, if it holds that LI

k(L(T)) ⊆ ϕ.

That is, in a k-lasso-precise implementation T all the traces of T that belong
to the language LI

k(Σ
ω) are I-k-models of the specification ϕ.

Problem definition: Synthesis of lasso-precise implementations.
Given a linear-time property ϕ over atomic propositions AP with input atomic
propositions I, and given a bound k ∈ N, construct an implementation T such
that T |=k,I ϕ, or determine that such an implementation does not exist.

Another way to bound the behaviour of the environment is to consider a
bound on the size of its state space. The synthesis problem for bounded environ-
ments asks for a given linear temporal property ϕ and a bound k ∈ N to synthe-
size a transition system T such that for every possible environment E of size at
most k, the transition system T satisfies ϕ under environment E , i.e., T |=E ϕ.

We now establish the relationship between the synthesis of lasso-precise im-
plementations and synthesis under bounded environments. Intuitively, the two
synthesis problems can be reduced to each other since an environment of a given
size, interacting with a given implementation, can only produce ultimately pe-
riodic sequences of inputs representable by lassos of length determined by the
sizes of the environment and the implementation. This intuition is formalized in
the following proposition, stating the connection between the two problems.

Proposition 1. Given a specification ϕ over a set of atomic propositions AP
with subset I ⊆ AP of atomic propositions controlled by the environment, and a
bound k ∈ N, for every transition system T the following statements hold:

(1) If T |=E ϕ for all environments E of size at most k, then T |=k,I ϕ.
(2) If T |=k·|T |,I ϕ, then T |=E ϕ for all environments E of size at most k.

Proof. For (1), let T be a transition system such that T |=E ϕ for all environ-
ments E of size at most k. Assume, for the sake of contradiction, that T ∕|=k,I ϕ.
Thus, that there exists a word σ ∈ L(T), such that σ ∈ LI

k(Σ
ω) and σ ∕|= ϕ.

Since σ ∈ LI
k(Σ

ω), we can construct an environment E of size at most k that
produces the sequence of inputs σ|I . Since E is of size at most k, we have that
T |=E ϕ. Thus, since σ ∈ LE(T), we have σ |= ϕ, which is a contradiction.

For (2), let T be a transition system such that T |=k·|T |,I ϕ. Assume, for
the sake of contradiction that there exists an environment E of size at most k

such that T ∕|=E ϕ. Since T ∕|=E ϕ, there exists σ ∈ LE(T) such that σ ∕|= ϕ. As

Synthesizing Approximate Implementations 9

the number of states of E is at most k, the input sequences it generates can be
represented as lassos of size k · |T |. Thus, σ ∈ LI

k·|T |(Σ
ω). This is a contradiction

with the choice of T , according to which T |=k·|T |,I ϕ. ⊓⊔

4.2 Automata-theoretic synthesis of lasso-precise implementations

We now provide an automata-theoretic algorithm for the synthesis of lasso-
precise implementations. The underlying idea of this approach is to first con-
struct an automaton over finite traces that accepts all finite prefixes of traces in
LI
k(Σ

ω). Then, combining this automaton and an automaton representing the
property ϕ we can construct an automaton whose language is non-empty if and
only if there exists an k-lasso-precise implementation of ϕ.

The next theorem presents the construction of a deterministic finite automa-
ton for the language Prefix (LI

k(Σ
ω)).

Theorem 2. For any set AP of atomic propositions, subset I ⊆ AP, and bound
k ∈ N there is a deterministic finite automaton Ak over alphabet Σ = 2AP, with
size (2|I| + 1)k · (k + 1)k, such that L(Ak) = {w ∈ Σ∗ | ∃σ ∈ LI

k(Σ
ω). w < σ}.

Idea & Construction. For given k ∈ N we first define an automaton �Ak =
(Q, q0, δ, F) over �Σ = 2I , such that L(�Ak) = { �w ∈ �Σ∗ | ∃�σ ∈ LI

k(
�Σω). �w < �σ}.

That, is L(�Ak) is the set of all finite prefixes of infinite words over �Σ that can
be represented by a lasso of length k. We can then define the automaton Ak as
the automaton that for each w ∈ Σ∗ simulates �Ak on the projection w|I of w.

We define the automaton �Ak = (Q, q0, δ, F) such that

– Q = (�Σ ∪ {#})k × {−, 1, . . . , k}k,
– q0 = (#k, (1, 2, . . . , k)),

– δ(q,α) =

�
����������������
����������������

(w · α ·#m−1, t) if q = (w ·#m, t) where 1 ≤ m ≤ k,

w ∈ �Σ(k−m), t ∈ {−, 1, . . . , k}k

(w, (i′1, . . . , i
′
k)) if q = (w, (i1, . . . , ik)) where w ∈ �Σk, and

i′j =

�
�������
�������

− ij ≤ k ∧ w(ij) ∕= α or ij = −

ij + 1 ij < k ∧ w(ij) = α

j ij = k ∧ w(ij) = α

– F = Q \ {(w, (−, . . . ,−)) | w ∈ �Σk}.

Proof. States of the form (w · α · #m, t) with m ≥ 1 store the portion of the
input word read so far, for input words of length smaller than k. In states of this
form we have t = (1, 2, . . . , k), which implies that all such states are accepting.
In turn, this means that Ak accepts all words of length smaller or equal to k.
This is justified by the fact that, each word of length smaller or equal to k is a

10 Rayna Dimitrova, Bernd Finkbeiner and Hazem Torfah

prefix of an infinite word in LI
k(

�Σω), obtained by repeating the prefix infinitely
often. Now, let us consider words of length greater than k.

In states of the form (u, (i1, . . . , ik)), with u ∈ �Σ∗, the word u stores the
first k letters of the input word. Intuitively, the tuple (i1, . . . , ik) stores the
information about the loops that are still possible, given the portion of the
input word that is read thus far. To see this, let us consider a word w ∈ �Σ∗

such that |w| = l > k, and let q0q1 . . . ql be the run of Ak on w. The state ql
is of the form ql = (w(1) . . . w(k), (il1, . . . , i

l
k)). It can be shown by induction

on l that for each j we have ilj ∕= − if and only if w is of the form w = w′ ·

w′′ · w′′′ where w′ = w(1) . . . w(j − 1), w′′ = (w(j) . . . w(k))k for some k ≥ 0,
and w′′′ = (w(j) . . . w(ilj − 1)). Thus, if ilj ∕= −, then it is possible to have a

loop starting at position j, and ilj is such that (w(j) . . . w(ilj − 1)) is the prefix
of w(j) . . . w(k) appearing after the (possibly empty) sequence of repetitions of
w(j) . . . w(k). This means, that if ilj ∕= −, then w is a prefix of the infinite word

w′ · (w′′)ω ∈ LI
k(

�Σω). Therefore, if the run of Ak on a word w with |w| > k is

accepting, then there exists σ ∈ LI
k(

�Σω) such that w < σ.
For the other direction, suppose that for each j, we have ilj = −. Take any

j, and consider the first position m in the run q0q1 . . . ql where imj = −. By

the definition of δ we have that w(m) ∕= w(im−1
j). This means that the prefix

w(1) . . . w(m) cannot be extended to the word w(1) . . . w(j− 1)(w(j) . . . w(k))ω.
Since for every j ∈ {1, . . . , k} we can find such a position m, it holds that there

does not exist σ ∈ LI
k(

�Σω) such that w < σ. This concludes the proof. ⊓⊔

The automaton constructed in the previous theorem has size which is ex-
ponential in the length of the lassos. In the next theorem we show that this
exponential blow-up is unavoidable. That is, we show that every nondetermin-
istic finite automaton for the language Prefix (LI

k(Σ
ω)) is of size at least 2Ω(k).

Theorem 3. For any bound k ∈ N and sets of atomic propositions AP and ∅ ∕=
I ⊆ AP, every nondeterministic finite automaton N over the alphabet Σ = 2AP

that recognizes L = {w ∈ Σ∗ | ∃σ ∈ LI
k(Σ

ω). w < σ} is of size at least 2Ω(k).

Proof. Let N = (Q,Q0, δ, F) be a nondeterministic finite automaton for L. For
each w ∈ Σk, we have that w · w ∈ L. Therefore, for each w ∈ Σk there exists
at least one accepting run ρ = q0q1 . . . qf of N on w ·w. We denote with q(ρ,m)
the state qm that appears at the position indexed m of a run ρ.

Let a ∈ 2I be a letter in 2I , and letΣ′ = Σ\{a′ ∈ Σ | a′|I = a}. Let L′ ⊆ L be
the language L′ = {w ∈ Σk | ∃w′ ∈ (Σ′)k−1, a′ ∈ Σ : w = w′ · a′ and a′|I = a}.
That is, L′ consists of the words of length k in which letters a′ with a′|I = a

appear in the last position and only in the last position.
Let us define the set of states

Qk = {q(ρ, k) | ∃w ∈ L′ : ρ is an accepting run of N on w · w}.

That is, Qk consists of the states that appear at position k on some accepting
run on some word w · w, where w is from L′. We will show that |Qk| ≥ 2k−1.

Synthesizing Approximate Implementations 11

Assume that this does not hold, i.e., |Qk| < 2k−1. Since |L′| ≥ 2k−1, this im-
plies that there exist w1, w2 ∈ L′, such that w1|I ∕= w2|I and there exists accept-
ing runs ρ1 and ρ2 of N on w1 ·w1 and w2 ·w2 respectively, such that q(ρ1, k) =
q(ρ2, k). That is, there must be two words in L′ with w1|I ∕= w2|I , which have
accepting runs on w1 · w1 and w2 · w2 visiting the same state at position k.

We now construct a run ρ1,2 on the word w1 ·w2 that follows ρ1 for the first
k steps on w1, ending in state q(ρ1, k), and from there on follows ρ2 on w2. It is
easy to see that ρ1,2 is a run on the word w1 ·w2. The run is accepting, since ρ2 is
accepting. This means that w1·w2 ∈ L, which we will show leads to contradiction.

To see this, recall that w1 = w′
1 · a

′ and w2 = w′
2 · a

′′, and w1|I ∕= w2|I , and
a′|I = a′′|I = a. Since w1 · w2 ∈ L, we have that w′

1 · a
′ · w′

2 · a
′′ < σ for some

σ ∈ LI
k(Σ

ω). That is, there exists a lasso for some word σ, and w′
1 · a

′ ·w′
2 · a

′′ is
a prefix of this word. Since a does not appear in w′

2|I , this means that the loop
in this lasso is the whole word w1|I , which is not possible, since w1|I ∕= w2|I .

This is a contradiction, which shows that |Q| ≥ |Qk| ≥ 2k−1. Since N was an
arbitrary nondeterministic finite automaton for L, this implies that the minimal
automaton for L has at least 2Ω(k) states, which concludes the proof. ⊓⊔

Using the automaton from Theorem 2, we can transform every property
automaton A into an automaton that accepts words representable by lassos of
length less than or equal to k if and only if they are in L(A), and accepts all
words that are not representable by lassos of length less than or equal to k.

Theorem 4. Let AP be a set of atomic propositions, and let I ⊆ AP. For every
(deterministic, nondeterministic or alternating) parity automaton A over Σ =
2AP, and k ∈ N, there is a (deterministic, nondeterministic or alternating) parity
automaton A′ of size 2O(k) · |A|, s.t., L(A′) = (LI

k(Σ
ω)∩L(A))∪ (Σω \LI

k(Σ
ω)).

Proof. The theorem is a consequence of Theorem 2 established as follows. Let
A = (Q,Q0, δ, µ) be a parity automaton, and let D = (�Q, �q0, �δ, F) be the deter-
ministic finite automaton for bound k defined as in Theorem 2. We define the
parity automaton A = (Q′, Q′

0, δ
′, µ′) with the following components:

– Q′ = (Q× �Q);
– Q′

0 = {(q0, �q0) | q0 ∈ Q0} (when A is deterministic Q′
0 is a singleton set);

– δ′((q, �q),α) = δ(q,α)[q′/(q′,�δ(�q,α))], where δ(q,α)[q′/(q′,�q′)] is the Boolean ex-

pression obtained from δ(q,α) by replacing every state q′ by the state (q′, �q′);

– µ′((q, �q)) =
�
µ(q) if �q ∈ F,

0 if �q ∕∈ F.

Intuitively, the automaton A′ is constructed as the product of A and D, where
runs entering a state in D that is not accepting in D are accepting in A′. To
see this, recall from the construction in Theorem 2 that once D enters a state in
�Q \ �F it remains in such a state forever. Thus, by setting the color of all states
(q, �q) where �q ∕∈ F to 0, we ensure that words containing a prefix rejected by D
have only runs in which the highest color appearing infinitely often is 0. Thus,
we ensure that all words that are not representable by lassos of length less than

12 Rayna Dimitrova, Bernd Finkbeiner and Hazem Torfah

or equal to k are accepted by A′, while words representable by lassos of length
less than or equal to k are accepted if and only if they are in L(A). ⊓⊔

The following theorem is a consequence of the one above, and provides us with
an automata-theoretic approach to solving the lasso-precise synthesis problem.

Theorem 5 (Synthesis). Let AP be a set of atomic propositions, and I ⊆
AP be a subset of AP consisting of the atomic propositions controlled by the
environment. For a specification, given as a deterministic parity automaton P
over the alphabet Σ = 2AP, and a bound k ∈ N, finding an implementation T ,
such that, T |=k,I P can be done in time polynomial in the size of the automaton
P and exponential in the bound k.

5 Bounded Synthesis of Lasso-precise Implementations

For a specification ϕ given as an LTL formula, a bound n on the size of the
synthesized implementation and a bound k on the lassos of input sequences,
bounded synthesis of lasso-precise implementations searches for an implementa-
tion T of size n, such that T |=k,I ϕ. Using the automata constructions in the
previous section we can construct a universal co-Büchi automaton for the lan-
guage LI

k(ϕ) ∪ (Σω \ LI
k(Σ

ω)) and construct the constraint system as presented
in [4]. This constraint system is exponential in both |ϕ| and k. In the following
we show how the problem can be encoded as a quantified Boolean formula of
size polynomial in |ϕ| and k.

Theorem 6. For a specification given as an LTL formula ϕ, and bounds k ∈ N

and n ∈ N, there exists a quantified Boolean formula φ, such that, φ is satisfiable
if and only if there is a transition system T = (T, t0, τ, o) of size n with T |=k,I ϕ.
The size of φ is in O(|ϕ| + n2 + k2). The number of variables of φ is equal to
n · (n · 2|I| + |O|) + k · (|I|+ 1) + n · k(|O|+ n+ 1).

Construction. We encode the bounded synthesis problem in the following quan-
tified Boolean formula:

∃{τt,i,t′ | t, t
′ ∈ T, i ∈ 2I}. ∃{ot | t ∈ T, o ∈ O}. (1)

∀{ij | i ∈ I, 0 ≤ j < k}. ∀{lj | 0 ≤ j < k}. (2)

∀{oj | o ∈ O, 0 ≤ j < n · k}. (3)

∀{tj | t ∈ T, 0 ≤ j < n · k}. (4)

∀{l′j | 0 ≤ j < n · k}. (5)

ϕdet ∧ (ϕlasso ∧ ϕ
n,k
∈T → �ϕ�k,n·k0) (6)

which we read as: there is a transition system (1), such that, for all input se-
quences representable by lassos of length k (2) the corresponding sequence of
outputs of the system (3) satisfies ϕ. The variables introduced in lines (4) and
(5) are necessary to encode the corresponding output for the chosen input lasso.

Synthesizing Approximate Implementations 13

An assignment to the variables satisfies the formula in line (6), if it represents
a deterministic transition system (ϕdet) in which lassos of length n·k (ϕlasso∧ϕ

n,k

∈T

)

satisfy the property ϕ (�ϕ�
(k,n·k)
0)). These constraints are defined as follows.

ϕdet: A transition system is deterministic if for each state t and input i there
is exactly one transition τt,i,t′ to some state t′:

�
t∈T

�
i∈2I

�
t′∈T

(τt,i,t′ ∧
�

t′ ∕=t′′
τt,i,t′′).

ϕ
n,k
∈T : for a certain input lasso of size k we can match a lasso in the system of

size at most n · k. A lasso of this size in the transition system matches the input
lasso if the following constraints are satisfied.

�

0≤j<n·k

�

t∈T

(tj →
�

o∈O

(oj ↔ otj)) (7)

∧ t00 (8)

∧
�

0≤j<n·k−1

�

i∈2I

�

t,t′∈T

((
�

0≤j′<k

lj′ → i∆(j,k,j′)) ∧ tj → (τt,i,t′ ↔ t′j+1)) (9)

∧
�

i∈2I ,t,t′∈T

((
�

0≤j′<k

lj′ → i∆(n·k−1,k,j′)) ∧ tn·k−1 → (τt,i,t′ ↔ (
�

0≤j<n·k

l′j ∧ t′j)))

(10)

Lines (9) and (10) make sure that the chosen lasso follows the guessed transition
relation τ . Line (10) handles the loop transition of the lasso, and makes sure
that the loop of the lasso follows τ . Line (7) is a necessary requirement in order
to match the output produced on the lasso with ϕ. If the output variables oj

satisfy the constraint �ϕ�
(k,n·k)
0 , then the lasso satisfies ϕ. As the input lasso is

smaller than its matching lasso in the system we need to make sure that the
indices of the input variables are correct with respect to the chosen loop. This
is computed using the function ∆ which is given by:

∆(j, k, j′) =

�
j if j < k,

((j − k) mod (k − j′)) + j′ otherwise.

ϕlasso: The formula encodes the additional constraint that exactly one of the
loop variables can be true for a given variable valuation.

�ϕ�k,m0 : This constraint encodes the satisfaction of ϕ on lassos of size m.
The encoding is similar to the encoding of bounded model checking [3], with the
distinction of encoding the satisfaction relation of the atomic propositions, given
below. As the inputs run with different indices than the outputs, we again, as in
the lines (9) and (10), need to compute the correct indices using the function ∆.

h < m h = m

�i�k,mh

�

0≤j′<k

(lj′ → i∆(h,k,j′))
�m−1

j=0 (l′j ∧
�

0≤j′<k

(lj′ → i∆(j,k,j′)))

�¬i�k,mh

�

0≤j′<k

(lj′ → ¬i∆(h,k,j′))
�m−1

j=0 (l′j ∧
�

0≤j′<k

(lj′ → ¬i∆(j,k,j′)))

�o�k,mh oh
�m−1

j=0 (l′j ∧ oj)

�¬o�k,mh ¬oh
�m−1

j=0 (l′j ∧ ¬oj)

14 Rayna Dimitrova, Bernd Finkbeiner and Hazem Torfah

6 Synthesis of Approximate Implementations

In some cases, specifications remain unrealizable even when considered under
bounded environments. Nevertheless, one might still be able to construct im-
plementations that satisfy the specification in almost all input sequences of the
environment. Consider for example the following simplified arbiter specification:

(w → g) ∧ (r → g)

The specification defines an arbiter that should give grants g upon requests
r, but is not allowed to provide these grants unless a signal w is true. The
specification is unrealizable, because a sequence of inputs where the signal w
is always false prevents the arbiter from answering any request. Bounding the
environment does not help in this case as a lasso of size 1 already suffices to
violate the specification (the one where w is always false). Nevertheless, one can
still find reasonable implementations that satisfy the specification for a large
fraction of input sequences. In particular, the fraction of input sequences where
w remains false forever is less probable.

Definition 3 (�-k-Approximation). For a specification ϕ, a bound k, and an
error rate �, we say that a transition system T approximately satisfies ϕ with an
error rate � for lassos of length at most k, denoted by T |=�

k,I ϕ, if and only if,
|{σ|σ∈LI

k(L(T)),σ|=ϕ}|

|LI
k
((2I)ω)|

≥ 1− �. We call T an �-k-approximation of ϕ.

Theorem 7. For a specification given as a deterministic parity automaton P , a
bound k and a error rate 0 ≤ � ≤ 1, checking whether there is an implementation
T , such that, T |=�

k,I P can be done in time polynomial in |P | and exponential
in k.

Proof. For a given � and k, we construct a nondeterministic parity tree au-
tomaton N that accepts all �-k-approximations with respect to L(P). For �, we
can compute the minimal number m of lassos from LI

k((2
I)ω) for which an �-k-

approximation has to satisfy the specification. In its initial state, the automaton
N guesses m many lassos and accepts a transition system if it does not violate
the specification on any of these lassos. The latter check is done by following
the structure of the automaton constructed for P using Theorem 4. In order to
check whether there is an �-k-approximation for P , we solve the emptiness game
of N . The size of N is (2k)m+1 · |P |. ⊓⊔

6.1 Symbolic Approach

In the following, we present a symbolic approach for finding �-k-approximations
based on maximum model counting. We show that we can build a constraint
system and apply a maximum model counting algorithm to compute a transition
system that satisfies a specification for a maximum number of input sequences.

Synthesizing Approximate Implementations 15

Definition 4 (Maximum Model Counting [5]). Let X,Y and Z be sets
of propositional variables and φ be a formula over X,Y and Z. Let x denote
an assignment to X, y an assignment to Y , and z an assignment to Z. The
maximum model counting problem for φ over X and Y is computing a solution
for max

x
#y.∃z.φ(x, y, z).

For a specification ϕ, bounds k and n on the length of the lassos and size of
the system, respectively, we can compute an �-k-approximation for ϕ by applying
a maximum model counting algorithm to the constraint system given below. It
encodes transition systems of size n that have an input lasso of length k that
satisfies ϕ.

∃{τt,i,t′ | t, t
′ ∈ T, i ∈ 2I}. ∃{ot | t ∈ T, o ∈ O}. (11)

∃{ij | i ∈ I, 0 ≤ j < k}. ∃{lj | 0 ≤ j < k}. (12)

∃{xi
j | x ∈ I, 0 ≤ i, j < k} (13)

∃{oj | o ∈ O, 0 ≤ j < n · k}. (14)

∃{tj | t ∈ T, 0 ≤ j < n · k}. (15)

∃{l′j | 0 ≤ j < n · k}. (16)

ϕdet ∧ ϕlasso ∧ ϕ
n,k
∈T ∧ �ϕ�k,n·k0 ∧ �k�0 (17)

To check the existence of a �-k-approximation, we maximize over the set of
assignment to variables that define the transition system (line 11) and count
over variables that define input sequences of the environment given by lassos of
length k. As two input lassos of the same length may induce the same infinite
input sequence, we count over auxiliary variables that represent unrollings of the
lassos instead of counting over the input propositions themselves (line 13).

The formulas ϕdet, ϕlasso, ϕ
n,k
∈T and �ϕ�k,n·k0 are defined as in the previous

section. The formula �k�0 is defined over that variables in line (13) and makes
sure that input lasso that represent the same infinite sequence are not counted
twice by unrolling the lasso to size 2k.

Theorem 8. For a specification given as an LTL formula ϕ, and bounds k and
n, and an error rate �, the propositional formula φ defined above is of size O(|ϕ|+
n2 + k2). The number of variables of φ is equal to n · (n · 2|I| + |O|)+ k · (k · |I|+
|I|+ 1) + n · k(|O|+ n+ 1).

7 Experimental Results

We implemented the symbolic encodings for the exact and approximate synthesis
methods, and evaluated our approach on a bounded version of the greedy ar-
biter specification given in Section 1, and another specification of a round-robin
arbiter. The round-robin arbiter is defined by the specification:

w → g1 ∧ g2 ∧ (¬w → (¬g1 ∧ ¬g2)) ∧ (¬g1 ∨ ¬g2)

16 Rayna Dimitrova, Bernd Finkbeiner and Hazem Torfah

instance QBF MaxCount

Spec. Proc. #States Bound Result #Gates ∀ ∃ time #Max #Count rate time

Round-
Robin
Arbiter

2 2 4 Unreal. 15556 48 12 9.91s 12 8 0.5 26s
2 3 2 Unreal. 5338 40 24 2.45s 24 4 0.88 161s
2 4 2 Real. 13414 60 12 12.15s 40 4 0.88 283s

1 2 2 Real. 1597 20 10 0.41s 10 4 1.0 0.79s
1 2 3 Unreal. 4749 30 10 1.95s 10 6 0.88 3.86s
1 3 3 Unreal. 16861 48 21 17.26s 21 6 0.88 20.83s

Greedy 1 4 3 Real. 43692 78 36 3m7.44s 36 6 1.0 2m43s
Arbiter 1 4 4 - 169829 104 36 TO 36 8 - TO

2 4 2 Real. 24688 62 72 1m.24s 72 6 - TO
2 4 3 Unreal. 103433 93 72 27m15.2 72 12 - TO
3 2 2 Unreal. 3985 93 72 1.39s 38 8 0.65 4.18s

Table 1. Experimental results for the symbolic approaches. The rate in the
approximate approach is the rate of input lassos on which the specification is satisfied.

This specification is realizable, with transition systems of size at least 4. We used
our implementation to check whether we can find approximative solutions with
smaller sizes. We used the tool CAQE [10] for solving the QBF instances and
the tool MaxCount [5] for solving the approximate synthesis instances.

The results are presented in Table 1. As usual in synthesis, the size of the
instances grows quickly as the size bound and number of processes increase. In-
specting the encoding constraints shows that the constraint for the specification
is responsible for more than 80% of the number of gates in the encoding. The
results show that, using the approach we proposed, we can synthesize implemen-
tations for unrealizable specifications by bounding the environment. The results
for the approximate synthesis method further demonstrate that for the unreal-
izable cases one can still obtain approximative implementations that satisfy the
specification on a large number of input sequences.

8 Conclusion

In many cases, the unrealizability of a specification is due to the assumption
that the environment has unlimited power in producing inputs to the system.
In this paper, we have investigated the problem of synthesizing implementations
under bounded environment behaviors. We have presented algorithms for solv-
ing the synthesis problem for bounded lassos and the synthesis of approximate
implementations that satisfy the specification up to a certain rate.

We have also provided polynomial encodings of the problems into quantified
Boolean formulas and maximum model counting instances. Our experiments
demonstrate the principal feasibility of the approach. Our experiments also show
that the instances can quickly become large. While this is a common phenomenon
for synthesis, there clearly is a lot of room for optimization and experimentation
with both the solvers for quantified Boolean expressions and for maximum model
counting.

Synthesizing Approximate Implementations 17

References

1. Rajeev Alur, Salar Moarref, and Ufuk Topcu. Counter-strategy guided refinement
of GR(1) temporal logic specifications. In Formal Methods in Computer-Aided
Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pages 26–33.
IEEE, 2013.

2. Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. Environ-
ment assumptions for synthesis. In Franck van Breugel and Marsha Chechik, edi-
tors, CONCUR 2008 - Concurrency Theory, 19th International Conference, CON-
CUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings, volume 5201 of
Lecture Notes in Computer Science, pages 147–161. Springer, 2008.

3. Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model
checking using satisfiability solving. Form. Methods Syst. Des., 19(1):7–34, July
2001.

4. Bernd Finkbeiner and Sven Schewe. Bounded synthesis. International Journal on
Software Tools for Technology Transfer, 15(5-6):519–539, 2013.

5. Daniel J. Fremont, Markus N. Rabe, and Sanjit A. Seshia. Maximum model count-
ing. Technical Report UCB/EECS-2016-169, EECS Department, University of
California, Berkeley, Nov 2016. This is the extended version of a paper to appear
at AAAI 2017.

6. Orna Kupferman, Yoad Lustig, Moshe Y. Vardi, and Mihalis Yannakakis. Tempo-
ral synthesis for bounded systems and environments. In Thomas Schwentick and
Christoph Dürr, editors, 28th International Symposium on Theoretical Aspects of
Computer Science, STACS 2011, March 10-12, 2011, Dortmund, Germany, vol-
ume 9 of LIPIcs, pages 615–626. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2011.

7. Marta Z. Kwiatkowska and David Parker. Automated verification and strategy
synthesis for probabilistic systems. In Dang Van Hung and Mizuhito Ogawa, edi-
tors, Automated Technology for Verification and Analysis - 11th International Sym-
posium, ATVA 2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings, volume
8172 of Lecture Notes in Computer Science, pages 5–22. Springer, 2013.

8. Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. Mining assumptions for synthesis.
In Satnam Singh, Barbara Jobstmann, Michael Kishinevsky, and Jens Brandt,
editors, 9th IEEE/ACM International Conference on Formal Methods and Models
for Codesign, MEMOCODE 2011, Cambridge, UK, 11-13 July, 2011, pages 43–50.
IEEE, 2011.

9. Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th An-
nual Symposium on Foundations of Computer Science, SFCS ’77, Washington,
DC, USA, 1977. IEEE Computer Society.

10. Markus N. Rabe and Leander Tentrup. Caqe: A certifying qbf solver. In Pro-
ceedings of the 15th Conference on Formal Methods in Computer-aided Design
(FMCAD’15), pages 136–143, September 2015.

11. Vasumathi Raman, Constantine Lignos, Cameron Finucane, Kenton C. T. Lee,
Mitchell P. Marcus, and Hadas Kress-Gazit. Sorry dave, i’m afraid I can’t do that:
Explaining unachievable robot tasks using natural language. In Paul Newman,
Dieter Fox, and David Hsu, editors, Robotics: Science and Systems IX, Technische
Universität Berlin, Berlin, Germany, June 24 - June 28, 2013, 2013.

12. Kristin Yvonne Rozier. Specification: The biggest bottleneck in formal methods
and autonomy. In Sandrine Blazy and Marsha Chechik, editors, Verified Software.
Theories, Tools, and Experiments - 8th International Conference, VSTTE 2016,

18 Rayna Dimitrova, Bernd Finkbeiner and Hazem Torfah

Toronto, ON, Canada, July 17-18, 2016, Revised Selected Papers, volume 9971 of
Lecture Notes in Computer Science, pages 8–26, 2016.

13. Moshe Y. Vardi. Nontraditional applications of automata theory. In Proceedings of
the International Conference on Theoretical Aspects of Computer Software, TACS
’94, pages 575–597, London, UK, UK, 1994. Springer-Verlag.

14. Moshe Y. Vardi. Alternating automata and program verification. In Jan van
Leeuwen, editor, Computer Science Today: Recent Trends and Developments, vol-
ume 1000 of Lecture Notes in Computer Science, pages 471–485. Springer, 1995.

