
This is a repository copy of Synthesis of minimum-cost shields for multi-agent systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156420/

Version: Accepted Version

Proceedings Paper:
Bharadwaj, S., Bloem, R., Dimitrova, R. et al. (2 more authors) (2019) Synthesis of
minimum-cost shields for multi-agent systems. In: 2019 American Control Conference
(ACC). 2019 American Control Conference (ACC), 10-12 Jul 2019, Philadelphia, PA, USA.
IEEE , pp. 1048-1055. ISBN 9781538679012

10.23919/acc.2019.8815233

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Synthesis of Minimum-Cost Shields for Multi-agent Systems

Suda Bharadwaj1, Roderik Bloem2, Rayna Dimitrova3, Bettina Könighofer2, and Ufuk Topcu1

Abstract— In this paper, we propose a general approach
to derive runtime enforcement implementations for multi-
agent systems, called shields, from temporal logical specifi-
cations. Each agent of the multi-agent system is monitored,
and if needed corrected, by the shield, such that a global
specification is always satisfied. The different ways of how
a shield can interfere with each agent in the system in case
of an error introduces the need for quantitative objectives.
This work is the first to discuss the shield synthesis
problem with quantitative objectives. We provide several
cost functions that are utilized in the multi-agent setting
and provide methods for the synthesis of cost-optimal
shields and fair shields, under the given assumptions on
the multi-agent system. We demonstrate the applicability
of our approach via a detailed case study on UAV mis-
sion planning for warehouse logistics and simulating the
shielded multi-agent system on ROS/Gazebo.

I. Motivation and challenges

The use of multi-agent systems such as teams
of unmanned aerial vehicles (UAVs) has been
predicted to grow significantly in many areas of
our life. The military has highlighted the need for
coordinating teams of UAVs for use in surveillance and
reconnaissance operations in urban environments [26],
[29]. In the private sector, drones are being used
in applications from package delivery to inventory
management in warehouses [22].

Since multi-agent systems exhibit complex interac-
tions with their environment and between the individ-
ual agents, they are often difficult to understand, and
are notoriously hard to design correctly [1]. Individual
agents have to not only fulfill their local objectives and
meet their local requirements, but also abide by system-
wide or global safety requirements such as avoiding col-
lision with other agents. Distributed reactive synthe-
sis is able to automatically transform a given correc-
ness specification and a given architecture describing
the individual agents’ interaction into a correct-by-
construction implementation. Unfortunately, except for
a few restricted classes of architectures, the distributed
synthesis problem is undecidable. Even the decidable
versions of the problem lack practical solutions due to
their nonelementary complexity [27].

To address this problem, there has been a large body
of work in designing algorithms to perform agent co-
ordination and task assignment for a wide array of ap-

1Suda Bharadwaj and Ufuk Topcu are with the University of Texas
at Austin, USA

2 Roderik Bloem and Bettina Könighofer are with the Graz Uni-
versity of Technology, AT

3 Rayna Dimitrova is with the University of Leicester, UK

plications [5], [30]. For example, software frameworks
such as UxAS [25] provide mission-level autonomy for
multi-agent systems and include capabilities from high-
level task assignment to path planning for unmanned
systems. Such frameworks often allow for dynamic
task reallocation as missions change, but in doing so,
cannot necessarily account for potential violations of
global safety specifications. This necessitates shielding
the agents at runtime from a possible task assignment
that can cause a violation of a global safety specifica-
tion.

One approach in this direction is to perform runtime
verification [4] that allows checking whether a run of a
system satisfies a given specification. An extension of
this idea is to perform runtime enforcement [9], [28] of
the specified property, by not only detecting property
violations, but also altering the behaviour of the system
in a way that maintains the desired property.

Shield synthesis [17] is a general method to automat-
ically derive runtime enforcement implementations,
called shields, from temporal logical specifications. A
shield is attached to a reactive system, monitors the
behaviour of the system (i.e., its inputs and outputs),
and corrects erroneous outputs instantaneously, but
only if necessary and as infrequently as possible.

In this paper, we introduce shield synthesis for multi-
agent systems. A shield monitors, and if needed cor-
rects the output of one or more agents in the system,
such that a given global safety specification is always
satisfied. The distributed nature of the problem gives
rise to a number of considerations to be made during
the shield synthesis procedure. In order to explore
the design space of possible shields for multi-agent
systems, we categorize shields based on three criteria
according to: (1) the interference of the shield processes
with the individual agents, (2) the assumptions on the
behaviour of the agents the shield can rely on, and (3)
the fairness of the shield w.r.t. the individual agents.

1. Quantifying interference. By construction, a shield is
guaranteed to enforce correct operation of the shielded
system. However, we might prefer one shield over
another, based on how much the shield interferes with
the system as a whole, or how it interferes with the
individual agents in case of an error. In this paper,
we introduce the notion of interference cost in order to
quantify the quality of a shield and synthesize cost-
optimal shields that minimize the interference cost for
the worst-case behavior of the multi-agent system. We
discuss different cost functions and provide algorithms

to synthesize cost-optimal shields.
2. Assumptions on the multi-agent system. The shield

synthesis procedure does not rely on the particular
implementation of the system or specifications of each
of the agents, which is the key to the practicability of
the approach. Instead, a shield has to guarantee safety
for any possible implementation. However, it is often
realistic to make assumptions on the worst-case behav-
ior of the system and synthesize optimal shields w.r.t.
the chosen interference cost under these assumptions.
A natural assumption is that wrong outputs occur
rarely, i.e., the length of all sequences of wrong outputs
is bounded. When such knowledge is available, we
compute a cost-optimal shield considering the worst-
case behavior of any system satisfying the assumptions.

3. Fair shielding. In the multi-agent setting, in which
each individual agent might have to fulfill some indi-
vidual goals, it is often important that a shield treats
all agents fairly: in case of an error, a fair shield does
not always interfere with the same agent repeatedly. In
this paper, we define a fairness notion for shields, and
discuss the corresponding synthesis procedure.

Contributions. We summarise our contributions as
follows. To the best of our knowledge, this work is the
first (1) to consider the automatic construction of run-
time reinforcement modules (we call them shields) for
multi-agent systems, (2) to discuss synthesis of shields
for multi-agent systems with quantitative objectives,
and (3) to construct shields under different assumptions
on the behavior of the system. We show the universality
and potential of our approach on several examples.

Outline. The remainder of this paper is organized as
follows. We discuss related work in Section II, present
a motivating case study in Section III and establish
notation in Section IV. We formalize the shield syn-
thesis problem for multi-agent systems in Section V,
and discuss the synthesis procedure for the different
interference constraints in Section VI. We present our
experimental results in Section VII and, finally, give our
conclusions in Section VIII.

II. RelatedWork

Monitoring distributed systems is an active area of
research (see [13] for a survey). Significant effort has
focused on providing efficient monitoring solutions
by exploiting distribution [3], [7], [11], [14]. While our
work is not comparable to monitoring, exploring sim-
ilar ideas for shielding is one avenue for future work.

In the context of enforcement, in case of an error the
proposed solutions either stop system execution [28],
or suppress, insert, or delay actions [10], [18]. The
approach in [19] generates monitors that detect and
prevent violations by one-step lookahead. Due to the
limitation of one-step lookahead, this method can cause
deadlocks. An alternative approach [23] circumvents
this problem by using model checking to determine
for each event whether it should be blocked, which

Fig. 1: Warehouse simulation environment in ROS.

is done online. In contrast, shields are synthesized
offline, accounting for the effect of the shield on the
future execution. None of these mentioned, nor pre-
vious works on shield synthesis [6], [17], considers
quantitative specifications about how violations should
be mitigated. In contrast, we synthesize shields with
minimal interference cost, building on techniques for
quantitative synthesis [15].

III. Case Study

We present a case study which will serve as a mo-
tivating example in the paper. Figure 1 is a snapshot
of a warehouse environment where packages need to
be moved from shelves to a loading area to be sent
for delivery. UAVs also need to periodically visit a
charging station.

A command to move package(s) from shelf to load-
ing dock is sent as input to the system and is used to
generate a task assignment for the UAVs. To prevent
congestion and collisions, global requirements for the
multi-UAV system include not allowing more than one
UAV in a given row at the same time, not allowing the
UAVs to fly too close to each other, and not allowing
UAVs to charge or drop of packages at the same time.
The task assignment for the UAVs can be sent either by
a human operator who can command a particular UAV
to perform a certain task, or by an automated system
such as those in [16], [21].

The focus of this paper is to design a shield that
protects critical global safety properties and is agnostic
to the nature of the system being protected. The shield
takes the task assignment as an input regardless of the
source and overwrites it with a new task assignment
if necessary. This is then sent to a trajectory generator
which generates a minimum snap trajectory for each
UAV to accomplish its task. In the following sections,
we present the formalization of the multi-agent shield-
ing problem, motivated in this example.

The safety specifications and results of the shield syn-
thesis for this case study are described and discussed
in more detail in Section VII-B.

IV. Preliminaries

1) Basic notations: We consider reactive systems with
a finite set I (O) of Boolean inputs (outputs). The input
alphabet is ΣI = 2I, the output alphabet is ΣO = 2O, and

Σ = ΣI ×ΣO. The set of finite (infinite) words over Σ is
denoted by Σ∗ (Σω), and we define Σ∞ = Σ∗ ∪ Σω. We
will also refer to words as (execution) traces. We write
|σ| for the length of a trace σ ∈ Σ∗. For an infinite trace
σ ∈ Σω we define |σ| = ∞. For σI = x0x1 . . . ∈ Σ

∞
I

and σO = y0y1 . . . ∈ Σ
∞
O

, we write σI ‖ σO for the
composition (x0, y0)(x1, y1) . . . ∈ Σ∞. For i ∈ N and a
word σ = σ0σ1 . . . ∈ Σ

∞, we define σ[i] = σi, and
we define σ[i, j) = σiσi+1 . . . σ j−1 if j ∈ N and σ[i, j) =
σiσi+1 . . . if j = ∞. A language is a set L ⊆ Σ∞ of words.

2) Reactive systems: Each agent in the multi-agent
system, as well as the shield, is a reactive system which
is defined by a 6-tuple P = (Q, q0,ΣI,ΣO, δ, λ), where
Q is a finite set of states, q0 ∈ Q is the initial state,
ΣI is the input alphabet, ΣO is the output alphabet,
δ : Q ×ΣI → Q is the complete transition function, and
λ : Q×ΣI → ΣO is the output function. Given an input
trace σI = x0x1 . . . ∈ Σ

∞
I

, a reactive system P produces an
output trace σO = P(σI) = λ(q0, x0)λ(q1, x1) . . . ∈ Σ∞

O
with

qi+1 = δ(qi, xi) for all i ≥ 0. The set of words produced
by P is denoted L(P) = {σI ‖ σO ∈ Σ

∞ | P(σI) = σO}.
3) Multi-agent reactive systems: A multi-agent reactive

systemD is a tuple (P,ΣI,ΣO), where P = {P1, . . . ,Pn} is
a set of agents, where each Pi = (Qi, q0,i,ΣI,i,ΣO,i, δi, λi)
is a reactive system. While multiple agents may be able
to read the same input variables to indicate broadcast
from the environment, the sets of outputs are pairwise
disjoint: for i , j, we have Oi ∩ O j = ∅. Furthermore,
agents cannot directly read each others outputs, that
is, for all i and j, we have Oi ∩ I j = ∅. The outputs
of the multiagent system D are O =

⋃n
i=1 Oi, and its

inputs are I =
⋃n

i=1 Ii. The joint behaviour of the multi-
agent system is a reactive systemD = (Q, q0,ΣI,ΣO, δ, λ)
defined as follows: the set Q =

⊗

i
Qi of states is formed

by the product of the states of all agents Pi ∈ P. The
initial state q0 is formed by the initial states q0,i of all
Pi ∈ P. The transition function δ updates, for each
agent Pi ∈ P, the Qi part of the state in accordance with
the transition function δi, using the projection σ(Ip) as
input. The output function λ labels each state with the
union of the outputs of all Pi ∈ P according to λi.

4) Specifications: A specification ϕ defines a set L(ϕ) ⊆
Σ∞ of allowed traces. A reactive system D realizes ϕ,
denoted by D |= ϕ, iff L(D) ⊆ L(ϕ). Given a set of
propositions AP, a formula in linear temporal logic (LTL)
describes a language in (2AP)ω. LTL extends Boolean
logic by the introduction of temporal operators such
as (next time), (globally), (eventually), and U
(until) [24]. ϕ is called a safety specification if every trace
σ that is not in L(ϕ) has a prefix τ such that all words
starting with τ are also not in the language L(ϕ). We
represent a safety specification ϕ by a safety automaton
ϕ = (Q, q0,Σ, δ,F), where F ⊆ Q is a set of safe states.

5) Games: A game is a tuple G = (G, g0,Σ, δ,Acc,Val),
where G is a finite set of states, g0 ∈ G is the initial
state, δ : G × Σ → G is a complete transition function,
Acc : (G × Σ × G)ω → B is a winning condition

and defines the qualitative objective of the game, and
Val : (G × Σ × G)ω → R ∪ {−∞,∞} is a value function
defining the quantitative objective of the game. A game
can have a winning condition, a value function, or both.
The game is played by two players: the system and the
environment. In every state g ∈ G (starting with g0), the
environment chooses an input σI ∈ ΣI, and then the sys-
tem chooses some output σO ∈ ΣO. These choices define
the next state g′ = δ(g, (σI, σO)), and so on. The resulting
(infinite) sequence π = (g0, σI, σO, g1)(g1, σI, σO, g2) . . . is
called a play. A deterministic strategy for the environ-
ment is a function ρe : G∗ → ΣI. A nondeterministic
strategy for the system is a relation ρs : G∗ × ΣI → 2ΣO

and a deterministic strategy for the system is a function
ρs : G∗ × ΣI → ΣO.

A play π is won by the system iff Acc(π) = ⊤. A
strategy is winning for the system if all plays π that
can be constructed when defining the outputs using
the strategy result in Acc(π) = ⊤. The winning region
Win is the set of states from which a winning strategy
exists. A permissive winning strategy ρs : G∗ ×ΣI → 2ΣO

is a strategy that is not only winning for the system,
but also contains all deterministic winning strategies.

A safety game defines Acc via a set F ⊆ G of safe states:
Acc(π) = ⊤ iff gi ∈ F for all i ≥ 0, i.e., if only safe states
are visited in the play π. Otherwise, Acc(π) = ⊥. The
Büchi winning condition is Acc(π) = ⊤ iff inf(π)∩F , ∅,
where F ⊆ Q is the set of accepting states and inf(π)
is the set of states that occur infinitely often in π. We
abbreviate the Büchi condition as B(F). A Generalized
Reactivity 1 (GR(1)) acceptance condition is a predicate
∧m

i=1B(Ei) →
∧n

i=1B(Fi), with Ei ⊆ Q and Fi ⊆ Q. A
Streett acceptance condition is

∧k
i=1B(Ei)→ B(Fi).

The quantitative objective of the system is to mini-
mize Val(π), while the environment tries to maximize it.

6) Properties of traces: A finite trace σ ∈ Σ∗ is wrong
w.r.t. a specification ϕ, if the corresponding play cannot
be won, i.e., if there is no way for the system to
guarantee that any extension of σ satisfies ϕ. An output
σO is called wrong for a trace σ and input σI, if it makes
the trace wrong, i.e. when σ is not wrong, but σ ·(σI, σO)
is. Given a sequence (σI ‖ σO ‖ σ

′
O) ∈ (ΣI × ΣO × ΣO)∞,

we denote with WIdx(σI ‖ σO ‖ σ
′
O) the positions

of occurrences of wrong outputs in σO. Formally, i ∈
WIdx(σI ‖ σO ‖ σ

′
O) iff σO[i] is wrong for the trace

(σI[0, i) ‖ σ
′
O[0, i)) and the input σI[i].

We denote with Agts = {1, . . . ,n} the set of agent ids
of a multi-agent system D. For a set Π ⊆ Agts, we
define OΠ =

⋃

p∈ΠOp and ΣOΠ = 2OΠ . For σO ∈ ΣO and
p ∈ Agts, we denote with σO(Op) the projection of σO

on Op. For Π ⊆ Agts, we define σO(OΠ) similarly.
For σO, σ

′
O
∈ ΣO, the set Diff (σO, σ

′
O

) = {p ∈ Agts |
σO(Op) , σ′

O
(Op)} gives the set of agents whose outputs

in σO differ from those in σ′
O

. Let (σO ‖ σ
′
O) ∈ (ΣO×ΣO)∞

be a sequence of output pairs. We call (σO ‖ σ
′
O) a

deviation period if (1) σO[i] , σ′O[i] for every i < |σO|

and (2) if |σO| < ∞, then σO[|σO|] = σ
′
O[|σO|]. Thus, a

deviation period is either a finite sequence (σO ‖ σ
′
O)

consisting of differing outputs followed by a last letter
where the two outputs agree, or an infinite sequence
(σO ‖ σ

′
O) where the outputs always differ.

V. Shields forMulti-Agent Systems

In this section, we first describe how to attach a
shield to a multi-agent system. Then, we define shields
formally, and discuss different interference require-
ments on shields for multi-agent systems.

A. Attaching the Shield

A shield S = (Q, q0,ΣI × ΣO,ΣO, δ, λ) is a reactive
system that is attached to a multi-agent system D =

({P1, . . . ,Pn},ΣI,ΣO). Since S has to enforce a global
specification that can refer to all inputs and outputs of
D, S is attached to the whole multi-agent systemD: the
shield S monitors the outputs of all the agents and cor-
rects them if necessary. Thus, S is attached to D using
serial composition, by feeding all inputs and outputs of
the multi-agent system to the shield, which, in response
produces a possibly corrected output for the system.
Formally, given a multi-agent reactive system D =

({P1, . . . ,Pn},ΣI,ΣO), with Pi = (Qi, q0,i,ΣI,i,ΣO,i, δi, λi),
the serial composition ofD and S is a reactive systemD◦
S = (Q̂, q̂0,ΣI,ΣO, δ̂, λ̂), with states Q̂ =

⊗

i
Qi ×Q, q̂0 =

(q0,1, . . . , q0,n, q0), transition function δ̂((q1, . . . , qn, q), σI) =
(δ1(q1, σI1), . . . , δn(qn, σIn), δ(q, (σI, σO)), where σO is the
output of all agents σO = (λ1(q1, σI1), . . . , λn(qn, σIn)), and
output function λ̂((q1, . . . , qn, q), σI) = λ(q, (σI, σO)).

B. Shield Definition

Now we define the basic requirements that a shield
must satisfy: namely it should enforce correctness with-
out deviating from the system’s output unnecessarily.

1) Correctness: We say that a reactive system S =

(Q, q0,ΣI × ΣO,ΣO, δ, λ) ensures correctness with respect
to a safety specification ϕ if for any multi-agent system
D = ({P1, . . . ,Pn},ΣI,ΣO) it holds that (D ◦ S) |= ϕ.

2) No unnecessary interference: A shield is only al-
lowed to interfere when the output of the multi-agent
system is wrong. Formally, given a safety specification
ϕ, a reactive system S = (Q, q0,ΣI×ΣO,ΣO, δ, λ) does not
interfere unnecessarily if for any multi-agent system D =
({P1, . . . ,Pn},ΣI,ΣO) and any trace (σI ‖ σO) ∈ (ΣI×ΣO)∞

of D that is not wrong, we have that S(σI ‖ σO) = σO.
Definition 1: A shield for a given safety specification ϕ

is a reactive system S = (Q, q0,ΣI×ΣO,ΣO, δ, λ) such that
for any multi-agent system D = ({P1, . . . ,Pn},ΣI,ΣO) it
holds that (D◦S) |= ϕ and S does not deviate from D
unnecessarily.

C. Interference Costs and Shield Optimality

In Section V-B we defined the qualitative require-
ments that a shield must meet. In many applications,
there are additional quantitative properties a shield

should optimize, expressing in what way it should inter-
fere with the system. Now we define several different
interference cost functions and optimization objective.

1) Interference cost functions: We formalize quantita-
tive requirements on shields by introducing the notion
of an interference cost function, which quantifies the de-
viation of the shield’s output from the system’s output.

Definition 2: An interference cost function c : ΣO×ΣO →

N assigns a cost c(σO, σ
′
O

) to each pair of system output
σO ∈ ΣO and shield output σ′

O
∈ ΣO, such that

c(σO, σ
′
O) =

0 if σO = σ
′
O

f (σO, σ
′
O

) > 0 if σO , σ
′
O
,

where f is a function chosen by the system designer.
The higher the cost, the more undesirable is the cor-
responding way of interference by the shield. Thus,
the designer can assign different costs to interference
with different agents, expressing preference of one over
another. We propose two concrete cost functions.

The boolean cost function cB : ΣO ×ΣO → {0, 1} consid-
ers the multi-agent system as a monolithic system:

cB(σO, σ
′
O) =

0 if σO = σ
′
O

1 if σO , σ
′
O
.

Thus, the cost for any interference is 1, no matter with
how many or with which agents the shield interferes.

The counting cost function c# : ΣO × ΣO → N, on the
other hand, takes the number of agents whose output
is modified into account:

c#(σO, σ
′
O) = |{p ∈ Agts | σO(Op) , σ′O(Op)}|.

Intuitively, the smaller the number of agents whose
output is altered by the shield, the better.

Definition 3: Let c : ΣO × ΣO →N be a cost function.
We define the accumulated interference cost function cacc :
Σ∞

O
× Σ∞

O
→N based on the given cost function c by

cacc(σO, σ
′
O) =

|σO |
∑

i=0

c(σO[i], σ′O[i]).

2) Shield optimization objective: In this work we con-
sider the cost-optimization objective for infinite traces
that requires minimizing the cost per deviation period.

In this objective, the task of the shield is to minimize
the worst-case accumulated cost for ending the devia-
tion period. To formalize this, we first define the set of
maximal deviation periods resulting from the execution
of a shield S under all possible behaviours of multi-
agent system and the environment.

Definition 4: Let S be a shield for a safety specifi-
cation ϕ, and let σ ∈ Σ∗ be a finite trace. We define
Dev(σ,S) to be the set of all deviation periods that
extend the trace (σ ‖ S(σ)), and result from outputs
of S. Formally, if (σO ‖ σ

′
O) ∈ (ΣO × ΣO)∞, then (σO ‖

σ
′
O) ∈ Dev(σ,S) iff it satisfies the following conditions:

• (σO ‖ σ
′
O) is a deviation period, and

• there exists σI ∈ Σ
∞
I

such that σ′O = S(σI ‖ σO) and
the trace (σ ‖ S(σ)) is a prefix of (σI ‖ σO ‖ σ

′
O).

The set Dev(σ,S) consists of all finite or infinite devi-
ation periods resulting from possible future behaviours
of the multi-agent system and the environment. Our
goal is to synthesize a shield with minimal worst-case
accumulated cost over the traces in the corresponding
Dev- sets, as formalized in the next definition.

Definition 5: Let c : ΣO × ΣO →N be a cost function.
A shield S is locally optimal w.r.t. c, if for every shield
S′ and every trace σ = (σI ‖ σO) ∈ Σ∗ it holds that

sup
(σO‖σ

′
O)∈Dev(σ,S)

cacc(σO, σ
′
O) ≤ sup

(σO‖σ
′
O)∈Dev(σ,S′)

cacc(σO, σ
′
O).

With this objective, a shield plans optimally in the short
term, without considering the possibility of further
wrong outputs once the deviation period ends. There-
fore, this optimality criterion is useful when wrong
outputs of the system are expected to be rare.

D. Assumptions on the Occurrences of Faults

A shield has to enforce the global safety specification
for any possible implementation of the multi-agent sys-
tem. However, often we have some knowledge about
the the system which can be used to make assump-
tions about its worst-case behavior and synthesize cost-
optimal shields under these assumptions.

Pervious work on shield synthesis [6], [17] assumed
that the system D is correct, but that through external
faults an arbitrary number of correct outputs are re-
placed by wrong ones. To make use of this optimistic
assumption, Bloem et al. [6] used a subset construction:
when D emits a wrong output, the shield begins to
track all possible correct behaviours of D under the
current input, with the rationale that D meant to give
a correct output, but which one is unknown.

In this paper, we take a new view, in which the
system is supposed to have a real safety bug, man-
ifested by the interaction between the agents. This
case is especially important in the multi-agent setting.
When developing multi-agent systems, the individual
agents are often implemented separately, with individ-
ual goals in mind, and then combined to obtain the
final system. Since each agent has to satisfy its own ob-
jective, the design of a single agent often neglects some
global safety requirements. However, it is often realistic
to assume that the length of all sequences of wrong
outputs is bounded. This assumption can be made e.g.,
if the agents interact only rarely, and when they do,
they interact only for a bounded period of time.

We define an assumption Assumption ⊆ (Σ×ΣO)∞ on
the occurrences of system faults to be a set of allowed
finite traces, represented as a finite automaton.

In particular, we define Assumption(b) to be the set
of traces in which the length of each sequence of wrong
outputs does not exceed a given bound b.

Definition 6: Let b ∈N. The set Assumption(b) ⊆ (Σ×
ΣO)∞ consists of all traces σ for which all sub-traces

σ
′
= σ[i, j] it holds that if |σ′| > b, then there exists an

index k with i ≤ k ≤ j, such that k <WIdx(σ).
We incorporate assumptions on the system in the

definition of cost-optimal shields. We modify Defini-
tion 5 (locally-optimal shields) by restricting the sets
of deviation periods to those corresponding to traces
in Assumption ⊆ (Σ × ΣO)∞. More precisely, in the
supremum for S we replace Dev(σ,S) by Dev(σ,S) ∩
{(σO ‖ σ

′
O) | ∃ σI : (σI ‖ σO ‖ σ

′
O) ∈ Assumption} and

analogously for S′.

E. Fair Shielding

Now we define one more constraint on the shield’s
interference: we require that a shield is fair with respect
to the different agents. The definition of fair shields
uses the notion of minimal correcting sets: a minimal
correcting set for a wrong trace is the minimal set of
agents such that modifying some of the outputs of these
agents results in correct output.

Let σ = (σI ‖ σO)·(σI, σO) ∈ (ΣI×ΣO)∗ be a wrong trace.
A set Π ⊆ Agts of agents is a minimal correcting set for
σ if and only if the following conditions are satisfied:

• there exists σ′
O
∈ ΣO such that Diff (σO, σ

′
O

) = Π and
the trace (σI ‖ σO) · (σI, σ

′
O

) is not wrong,
• for all σ′

O
∈ ΣO such that Diff (σO, σ

′
O

) (Π, it holds
that the trace (σI ‖ σO) · (σI, σ

′
O

) is wrong.

Mcs(σ) is the set of all minimal correcting sets for σ.
In order to be fair, a shield should guarantee that

each agent is treated fairly when choosing agents
whose outputs should be modified. More precisely, it
should not choose the same agent all the time when it
is possible to alternatively choose a different agent.

First, given a trace σ = (σI ‖ σO ‖ σ
′
O) ∈ (ΣI ×

ΣO ×ΣO)∞ and an agent p, we define Alt(σ, p) to be the
set of positions in σ where there exist both a minimal
correcting set containing p and a minimal correcting set
that does not contain p. Formally, i ∈ Alt(σ, p) if and only
if i ∈WIdx(σ) and there exist two minimally correcting
sets Π,Π ∈Mcs((σI[0, i− 1] ‖ σ′O[0, i− 1]) · (σI[i], σO[i])) at
position i such that p ∈ Π and p < Π. Now, using the
sets Alt(σ, p) we formally define fair shields as follows.

Definition 7: A shield S is fair if for every agent
p ∈ Agts and trace σ = (σI ‖ σO ‖ σ

′
O) ∈ L(S) it holds that,

if the set Alt(σ, p) is infinite, then there exist infinitely
many indices i ∈ Alt(σ, p) in which p < Diff (σO[i], σ′O[i])
(i.e., the output of p is not altered by S in step i).

VI. Synthesis of Shields forMulti-Agent Systems

In this section, we study the synthesis of shields for
multi-agent systems with respect to the interference
requirements defined in Section V. First, we discuss
how the knowledge that all sequences of wrong out-
puts are bounded can be incorporated in the synthesis
approach. Then, we propose a synthesis approach to
construct locally-optimal shields. The synthesis proce-
dure consist of the following three steps:

1) We construct a safety game Gs and compute its per-
missive winning strategy ρs, such that any shield S
that implements ρs ensures correctness (D◦S |= ϕ)
and S does not interfere with D unnecessarily. This
construction is similar to the one in [17].

2) We augment the game graph with the assumptions
on the occurrence of system errors.

3) We compute deterministic strategy that imple-
ments ρs and satisfies the interference constraints.

We also present a synthesis algorithm for fair shields.
The first step above is common for both algorithms,
the other two depend on the interference requirements.

A. Constructing and Solving the Safety Game

Let ϕ be a safety specification represented as a safety
automaton ϕ = (Q, q0,Σ, δ,F). Let W ⊆ F be the winning
region of ϕ when considered as a safety game.

We construct a safety game Gs such that its most
permissive strategy subsumes all possible shields that
are correct w.r.t. ϕ and that do not interfere unnecessar-
ily. The state space of Gs is constructed by augmenting
the states Q of ϕ with two Boolean variables: (1) the
variable u is a flag that indicates wrong outputs by the
system, and (2) the variable t tracks deviations between
the outputs of the system and the shield.

We construct a safety game Gs = (Gs, gs
0
,Σ,ΣO, δ

s,Fs)
such that Gs = {(g,u, t) | g ∈ Q,u, t ∈ {⊤,⊥}} is the state
space, gs

0
= (g0,⊥,⊥) is the initial state, δs is the next-

state function, and Fs is the set of safe states, such that
δs((g,u, t), (σI, σO), σ′

O
) = (δ(g, σI, σ

′
O

),u′, t′) with

(1) u′ = ⊤ if δ(g, σI, σO) <W, and u′ = ⊥ otherwise,
(2) t′ = ⊤ if σO , σ

′
O

, and t′ = ⊥ otherwise;

and Fs = {(g,u, t) ∈ Gs | (g ∈ W) ∧ (u = ⊥ → t = ⊥)}. We
use standard algorithms for safety games (e.g. [20]) to
compute the winning region Ws and the most permis-
sive winning strategy ρs : G × ΣI → 2ΣO of Gs.

B. Synthesis with Assumptions on the Occurrences of Faults

Our goal is to synthesize cost-optimal shields under
the assumption that the length of sequences of wrong
outputs is bounded by some constant b. Therefore, we
construct a new game graph, that incorporates this
knowledge and that can be used to synthesize cost-
optimal shields in the next subsections. We start from
the safety game Gs = (Gs, gs

0
,Σ,ΣO, δ

s,Fs) with winning
region Wins and permissive winning strategy ρs, and
a bound b ∈ N on the maximal length of sequences
of wrong outputs. We construct a new game Ga =

(Ga, ga
0
,Σ,ΣO, δ

a,Acca) where Ga = Wins × {0, . . . , b + 1}
is the set of states, ga

0
= (gs

0
, 0) is the initial state, δa

is the next-state function, such that δa((gs, v), σ, σ′
O

) =
(δs(gs, σ, σ′

O
) ∩ ρs(gs, σ), v′) such that

• if v ≤ b and u′ = ⊤, then v′ = v + 1,
• if v ≤ b and u′ = ⊥, then v′ = 0, and
• if v = b + 1, then v′ = b + 1;

and Acca is such that Acca(π) = ⊤ iff

• ∃i ≥ 0 . ga
i
= (gs

i
, vi) with vi = b + 1, or

• there are inf. many ga
i
= (gi,ui, ti, vi) with ti = ⊥.

Intuitively, the counter v tracks the length of the
current sequence of wrong outputs by the system, and
is reset to 0 when the output of the system is correct. If v
exceeds the bound b, it remains b+1 forever. Using this
counter v, we encode the assumption on the system.
Thus, the set Acca of wining plays in Ga consists of
all infinite plays that violate the assumption plus the
infinite plays that visit infinitely often a state in which
the output of the shield does not deviate from the
system’s output. Hence, Acca is a GR(1) condition.

C. Synthesis of Locally-Optimal Shields

Next, we propose a procedure to synthesize shields
that minimize the cost per deviation period assuming
that all sequences of wrong outputs are bounded.

We start with the augmented game graph Ga =

(Ga, ga
0
,Σ,ΣO, δ

a,Acca) and construct a new game
Gopt = (Ga, ga

0
,Σ,ΣO, δ

a,Acca,Valopt) with value function
Valopt(π) which is an accumulated cost objective using c
as edge labeling: costopt(ga, (σI, σO), σ′

O
) = c(σO, σ

′
O

).
Using the procedure described in [15], we synthesize

shields, that are winning according to Acca (i.e., either
the assumption on the system that any sequence of
wrong outputs has a length of at most b is violated,
or infinitely often the shield does not interfere) and
optimize Valopt (i.e., the worst-case accumulated cost for
reaching the end of the deviation per deviation period).

D. Synthesis of Fair Shields

We now turn to the synthesis of fair shields. For this,
we augment the states of Gs with Boolean variables
that track information about the minimal correcting sets
for each transition. We use these flags to encode the
fairness requirements for the agents.

Let Mcs(g, σI, σO,W) be the set of all minimal sets of
agents such that correcting the output of these agents
results in a successor state of g that is in W. Formally,
for Π ⊆ Agts it holds that Π ∈ Mcs(g, σI, σO,W) iff
(1) there exists σ′

O
such that δ(g, σI, σ

′
O

) ∈ W and
Diff (σO, σ

′
O

) = Π, and (2) Π is minimal (i.e., for all σ′
O
∈

ΣO with Diff (σO, σ
′
O

) (Π it holds that δ(g, σI, σ
′
O

) <W).
Given Gs = (Gs, gs

0
,Σ,ΣO, δ

s,Fs) with Wins and ρs,

we construct a game G f = (G f , g
f

0
,Σ,ΣO, δ

f ,Acc f)
with set of states G f = Wins × {⊥,⊤}n × {⊥,⊤}n, where
n = |Agts| is the number of agents. The initial state

is g
f

0
= (gs

0
,⊥n,⊥n), and the transition relation δ f

is such that δa((g,u, t,m1, . . . ,mn, c1, . . . , cn), σ, σ′
O

) =

(δs((g,u, t), σ, σ′
O

) ∩ ρs((g,u, t), σ),m′
1
, . . . ,m′n, c

′
1
, . . . , c′n)

where for each agent p ∈ Agts it holds that

• m′p = ⊤ iff there exist minimal correcting sets

Π,Π ∈Mcs(g, σI, σO,W) with p ∈ Π and p < Π,
• c′p = ⊤ iff p ∈ Diff (σO, σ

′
O

).

Intuitively, for each agent p ∈ Agts, the flag mp is set to
⊤ whenever the set of minimally correcting sets at that

step contains a minimally correcting set which does not
contain p, and one that does. The flag cp is set to ⊤
whenever the output of p is corrected by the shield.

The acceptance condition Acc f encodes the fairness
requirement on the shield for agent p using the vari-
ables mp and cp. It states for each agent p ∈ Agts that if
a play contains infinitely many occurrences of states in
which mp = ⊤, then it should contain infinitely many
occurrences of states in which cp = ⊥ and mp = ⊤.

Thus, Acc f is a Streett acceptance condition, and a
fair shield can be synthesized by solving a Streett game
using well-known methods [2].

VII. Experimental Evaluation

Now we describe the results of applying our shield
synthesis method to several examples. We use the reac-
tive synthesis tool Slugs [8] to compute locally-optimal
shields under the assumption, that sequences of wrong
outputs are bounded by a constant b, as discussed in
Section VI-C. All experiments were performed on an
Intel i5-5300U 2.30 GHz CPU with 8 GB of RAM.

A. Gridworld

In the first set of experiments, we consider a grid-
world with two agents that can move in one of the
four cardinal directions at each time step. One grid
cell is designated as a charging station. We require
global safety property ϕ = ϕcollision ∧ ϕcharge, where
ϕcollision requires collision avoidance and no simultane-
ous charging, and ϕcharge describes when and how the
agents should use the charging station. The formula
ϕcharge is of the form ϕcharge,1 ∧ϕcharge,2. These properties
are specified in LTL as follows:

ϕcharge,i =
(

chargingi → ¬ charging j

)

ϕcollision = ¬
(

positioni = position j

)

(1)

for i, j ∈ {1, 2} and i , j. The formula ϕcharge,i requires
that one agent cannot enter the charging area the time
step after the other one has left. The integer variable
positioni is the position of agent i in the grid. ϕcollision re-
quires that the agents do not occupy the same position.

We synthesized locally-optimal shields using an in-
terference cost function c that assigns higher costs for
any interferences with the first agent than for inter-
ferences with the second one. We consider different
values for the bound b on the length of sequences of
wrong outputs. A larger bound b results in more robust
shields, but also in larger state-spaces of the game, due
to the size of the counter that augments the state space.

We report the results in Table I under case (1). The
first column gives the bound b, the second and the
third column state the number of input and output
bits of ϕ. The fourth column states the total number
of variables of the constructed game (including the
variables that augment the state space) and the fifth
column gives the number of reachable states in the

TABLE I: Results

Case b
Inp
vars

Out
vars

Game
vars

Game
states

time
perm

time
cost-opt

(1)
2 16 6 28 887 245 67
5 16 6 30 3456 245 830

(2)
2 24 12 68 41544 3545 3019
5 24 12 70 7.5 × 105 3545 9822

game. In the last two columns, we report the synthesis
time (in seconds) to construct the permissive strategy
and the locally-optimal strategy.

An example for the interference of the shield with
the agents during an execution is shown in Figure 2

1

2

(a) t1

1

2

(b) t2

1

2

(c) t3

Fig. 2: Green cell is the charging station. Black arrows
correspond to intended actions (outputs from the sys-
tem) and red arrows correspond to shield outputs. The
absence of an arrow indicates that the action chosen
was to stay at the same cell. In 2a, no interference is
needed. In the next time step in 2b, the shield interferes
with agent 2 to prevent collision in the charging area.
In 2c, the shield forces agent 1 out of charging area, and
agent 2 to wait one time-step as agent 2 is not allowed
to enter immediately after agent 1 leaves.

B. UAV Mission Planning

We synthesized shields for 3 unmanned aerial vehi-
cles (UAVs) simulated using ROS/Gazebo1 for the case
study outlined in Section III. As shown in Figure 1, the
environment consists of 2 rows of shelves. We assume
there are 12 discrete package pick up points in each row
of shelves along with the drop off location and charging
station. The input of each UAV controller is its location
in (x, y, z). The possible outputs of each UAV consist
of 17 trajectories precomputed using a minimum-snap
trajectory generator that moves the UAV from one dis-
crete state to another. We consider a safety specification
ϕdist which captures the requirement that the controllers
should not choose trajectories that bring them within
distance less than a given threshold r. The output of
each UAV is chosen from the set T = {1, 2, . . . , 17}
where each integer corresponds to a particular trajec-
tory choice. Let the function dist : T×T→N map each
pair of trajectories traji, traj j ∈ T to the closest distance
between them. We define the safety specification as

ϕdist = ∧i, j

(

dist(traji, traj j) ≤ r
)

. (2)

1We thank Jesse Quattrociocchi for his help with the simulations.

Additionally, we specify ϕshel f which states that no
more than one UAV can move into the row of shelves
at the same time. Lastly, like VII-A, only one UAV can
be at the charging station or drop-off point at any given
time and UAVs cannot be allowed to run out of power
when not in a charging station.

We assign a higher cost of interference with the
orange UAV compared to the other two. Intuitively,
this will force the shield, where possible, to avoid inter-
fering with the orange UAV. We synthesize the shield
for two different values of b and the synthesis times
are reported in Table I under case (2). A video of the
simulation can be seen in https://bit.ly/2OSRhxJ.

VIII. Conclusion

In this paper, we proposed a general approach to
the synthesis of shields for multi-agent systems from
temporal logic specifications. Our key contribution is
the study of quantitative objectives in the shield syn-
thesis setting. Our work is also the first to consider
fairness requirements on the shields. We introduced
the notion of interference cost, and discussed several
costs and synthesis objectives that are of interest when
considering multi-agent systems. We demonstrated the
applicability of the proposed approach on a range of
quantitative interference requirements by synthesizing
shields for a multi-UAV system.

A promising avenue for future work is to investigate
bounded synthesis [12] with quantitative objectives,
in order to synthesize truly distributed shields, which
will enhance the efficiency of shields for distributed
systems.

References

[1] Netflix: 5 lessons we have learned using aws (2010).
[2] 21th IEEE Symposium on Logic in Computer Science (LICS 2006),

12-15 August 2006, Seattle, WA, USA, Proceedings. IEEE Computer
Society, 2006.

[3] Andreas Bauer and Yliès Falcone. Decentralised LTL monitor-
ing. Formal Methods in System Design, 48(1-2):46–93, 2016.

[4] Andreas Bauer, Martin Leucker, and Christian Schallhart. Run-
time verification for LTL and TLTL. ACM Trans. Softw. Eng.
Methodol., 20(4):14:1–14:64, 2011.

[5] Luca Bertuccelli, Han-Lim Choi, Peter Cho, and Jonathan How.
Real-time multi-uav task assignment in dynamic and uncertain
environments. In AIAA guidance, navigation, and control confer-
ence, page 5776, 2009.

[6] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and
Chao Wang. Shield synthesis. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages
533–548. Springer, 2015.

[7] Ian Cassar and Adrian Francalanza. On implementing a
monitor-oriented programming framework for actor systems.
In Integrated Formal Methods - 12th International Conference, IFM
2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings, volume 9681
of Lecture Notes in Computer Science, pages 176–192. Springer,
2016.

[8] Swarat Chaudhuri and Azadeh Farzan, editors. Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part II, volume 9780 of
Lecture Notes in Computer Science. Springer, 2016.

[9] Yliès Falcone. You should better enforce than verify. In Runtime
Verification - First International Conference, RV 2010, St. Julians,
Malta, November 1-4, 2010. Proceedings, pages 89–105, 2010.

[10] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier.
What can you verify and enforce at runtime? STTT, 14(3):349–
382, 2012.

[11] Yliès Falcone, Mohamad Jaber, Thanh-Hung Nguyen, Mar-
ius Bozga, and Saddek Bensalem. Runtime verification of
component-based systems in the BIP framework with formally-
proved sound and complete instrumentation. Software and
System Modeling, 14(1):173–199, 2015.

[12] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. STTT,
15(5-6):519–539, 2013.

[13] Adrian Francalanza, Jorge A. Pérez, and César Sánchez. Run-
time verification for decentralised and distributed systems. In
Lectures on Runtime Verification - Introductory and Advanced Topics,
pages 176–210. 2018.

[14] Adrian Francalanza and Aldrin Seychell. Synthesising correct
concurrent runtime monitors. Formal Methods in System Design,
46(3):226–261, 2015.

[15] Gangyuan Jing, Rüdiger Ehlers, and Hadas Kress-Gazit. Short-
cut through an evil door: Optimality of correct-by-construction
controllers in adversarial environments. In 2013 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Tokyo, Japan,
November 3-7, 2013, pages 4796–4802, 2013.

[16] Atishkumar Kalyan and Steven Gregory Dunn. Automated
inventory management system, December 22 2015. US Patent
9,216,857.

[17] Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem,
Laura Humphrey, Robert Könighofer, Ufuk Topcu, and Chao
Wang. Shield synthesis. Formal Methods in System Design,
51(2):332–361, 2017.

[18] Jay Ligatti, Lujo Bauer, and David Walker. Run-time en-
forcement of nonsafety policies. ACM Trans. Inf. Syst. Secur.,
12(3):19:1–19:41, 2009.

[19] Qingzhou Luo and Grigore Rosu. Enforcemop: a runtime
property enforcement system for multithreaded programs. In
International Symposium on Software Testing and Analysis, ISSTA
’13, Lugano, Switzerland, July 15-20, 2013, pages 156–166. ACM,
2013.

[20] René Mazala. Infinite games. In Erich Grädel, Wolfgang
Thomas, and Thomas Wilke, editors, Automata, Logics, and In-
finite Games: A Guide to Current Research [outcome of a Dagstuhl
seminar, February 2001], volume 2500 of Lecture Notes in Computer
Science, pages 23–42. Springer, 2001.

[21] Craig Olivo and Michael Buzaki. Method and apparatus for
warehouse cycle counting using a drone, August 25 2016. US
Patent App. 15/013,029.

[22] Jin Hock Ong, Abel Sanchez, and John Williams. Multi-uav
system for inventory automation. In RFID Eurasia, 2007 1st
Annual, pages 1–6. IEEE, 2007.

[23] Corina S. Pasareanu and Darko Marinov, editors. International
Symposium on Software Testing and Analysis, ISSTA ’14, San Jose,
CA, USA - July 21 - 26, 2014. ACM, 2014.

[24] Amir Pnueli. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977, pages 46–57. IEEE
Computer Society, 1977.

[25] Steven Rasmussen, Derek Kingston, and Laura Humphrey. A
brief introduction to unmanned systems autonomy services
(uxas). In 2018 International Conference on Unmanned Aircraft
Systems (ICUAS), pages 257–268. IEEE, 2018.

[26] Tariq Samad, John S Bay, and Datta Godbole. Network-centric
systems for military operations in urban terrain: The role of
uavs. Proceedings of the IEEE, 95(1):92–107, 2007.

[27] Sven Schewe. Synthesis of distributed systems. PhD thesis,
Saarland University, Saarbrücken, Germany, 2008.

[28] Fred B. Schneider. Enforceable security policies. ACM Trans. Inf.
Syst. Secur., 3(1):30–50, 2000.

[29] Eduard Semsch, Michal Jakob, Dušan Pavlicek, and Michal
Pechoucek. Autonomous uav surveillance in complex urban
environments. In Proceedings of the 2009 IEEE/WIC/ACM Inter-
national Joint Conference on Web Intelligence and Intelligent Agent
Technology-Volume 02, pages 82–85. IEEE Computer Society, 2009.

[30] PB Sujit, A Sinha, and D Ghose. Multi-uav task allocation using
team theory. In Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC’05. 44th IEEE Conference on, pages
1497–1502. IEEE, 2005.

https://bit.ly/2OSRhxJ

	Motivation and challenges
	Related Work
	Case Study
	Preliminaries
	Basic notations
	Reactive systems
	Multi-agent reactive systems
	Specifications
	Games
	Properties of traces

	Shields for Multi-Agent Systems
	Attaching the Shield
	Shield Definition
	Correctness
	No unnecessary interference

	Interference Costs and Shield Optimality
	Interference cost functions
	Shield optimization objective

	Assumptions on the Occurrences of Faults
	Fair Shielding

	Synthesis of Shields for Multi-Agent Systems
	Constructing and Solving the Safety Game
	Synthesis with Assumptions on the Occurrences of Faults
	Synthesis of Locally-Optimal Shields
	Synthesis of Fair Shields

	Experimental Evaluation
	Gridworld
	UAV Mission Planning

	Conclusion
	References

