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Abstract8

This paper presents a coupling method of the level set and volume of fluid9

methods based on a simple local-gradient based re-initialisation approach that10

evaluates the distance function depending on the computational cell location. If11

a cell belongs to the interface, the signed distance is updated based on a search12

in the neighbouring cells and an interpolation procedure is applied depending on13

the local curvature or the sign of the level set function following [D. Hartmann,14

M. Meinke, W. Schröder, Differential equation based constrained reinitialisa-15

tion method for level set methods, J. Comput. Phys. 227 (2008) 6821-6845].16

The search algorithm does not distinguish between the upwind and downwind17

directions and hence it is able to be used for cells with an arbitrary number of18

faces increasing the robustness of the method. The coupling with the volume of19

fluid method is achieved by mapping the volume fraction field which is advected20

from the isoface evolution at a subgrid level. Consequently, the coupling with21

the level set approach is utilised without solving the level set equation. This22

coupled method provides better accuracy than the volume of fluid method alone23

and is capable of capturing sharp interfaces in all the classical numerical tests24

that are presented here.25

Keywords: level set, volume of fluid, re-initialisation26

∗Corresponding author
Email address: b.c.hanson@leeds.ac.uk (Bruce Hanson)

Preprint submitted to Journal of Computational Physics October 24, 2019



1. Introduction27

1.1. Scope28

In implicit methods for calculating the interface between two fluids flowing29

in a fixed mesh, the interface is captured using a scalar field advected in space.30

The scalar field (marker) has to be intrinsically connected to the absence or31

presence of the liquid phase. These methods are easily extended into three-32

dimensions but might require fine meshes to resolve the interface. The same33

limitation holds for front-tracking methods. Here, we are interested in inter-34

faces for multiphase flows such as bubbles, droplets, and jets for liquid/liquid35

and liquid/gas interactions. The most commonly cited implicit methods are the36

volume of fluid method (VOF [1–11] and the level set (LS) methods [12–20].37

The level set formulation is utilised by transporting a continuous function, as38

in the VOF method. The level set method has been developed for an accurate39

representation of complex interface and boundaries for a wide range of appli-40

cations including among others the areas of shape optimisation [21], computer41

graphics [22], medical imaging [23], grid generation [24], seismology [25], and42

superconductors [26]. For fluid interfaces, and particularly in the two-phase43

flows considered in this paper, the interface of the fluid is defined by the zero-44

level of a signed distance function and the level set method provides an accurate45

representation of the curvature of the interface. One common characteristic of46

this method and VOF is that the user does not need to modify the method re-47

gardless of the complexity of the geometry since both VOF and level set adjust48

naturally to any topological changes. One of the main differences between the49

two methods, is the transition from one fluid to the other, which in the level set50

method occurs gradually rather than as in the volume of fluid approach where51

the interface exists in a one-cell layer in between the two fluids.52

Despite its efficiency in calculating the interface, the level set method has53

the shortcoming that mass conservation is not guaranteed. This barrier can54

be overcome by coupling the method with the volume of fluid approach which55

is conservative, with the level set being highly accurate. This idea was im-56
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plemented first by Bourlioux [27] and Sussman and Puckett [28] giving a new57

method, the coupled-level-set-volume-of-fluid (CLSVOF) approach. Use of the58

CLSVOF showed that advecting both the volume fraction and distance func-59

tions can conserve mass increasing the accuracy of VOF, and providing the basis60

for different variations of the level set method which have been used in chemical61

process, aerospace and automotive industries.62

The coupling of these two approaches does, however pose challenges for the63

interface reconstruction and the re-initialisation procedures that have to be ad-64

dressed to successfully simulate fluid flows in the case of three-dimensions or non-65

orthogonal meshes. In [29] a piecewise-linear interface construction/calculation66

(PLIC) method is described for advecting the interface, with the level set func-67

tion used to calculate the curvature. The volume of fluid in a computational cell68

defines a plane, which is constructed by the intersection points with the cell.69

The signed distance function is taken as the minimum distance from a finite70

volume centre to an interface-plane that is defined by a stencil of cells. This71

VOF-PLIC approach was developed for unstructured meshes in both two and72

three-dimensions. A similar approach was employed in [30] where the LS-VOF73

coupling evaluated the level set function from the minimum distance from an74

arbitrary cell centroid to the zero-level. In addition, no special re-initialisation75

process was employed, following the geometric operation proposed in [31] (the76

so-called coupled volume of fluid and level set, a.k.a. VOSET, method) to cal-77

culate the level set function near the interface. The VOSET method can be78

applied to accurately compute the curvature and smooth discontinuous physi-79

cal quantities near the interface for both structured and unstructured meshes.80

A different LS-VOF coupling suitable for overlapping and moving structured81

grids was proposed in [32] using a PLIC method for the advection of the volume82

of fluid approach. The interface was advected using a hybrid split, Eulerian83

implicit-Lagrangian explicit interface advection scheme which provided good84

results for the classical test of a deforming three-dimensional sphere. In [33]85

the idea of flux polygon reconstruction using vertex velocities was employed to86

evaluate the VOF function. The computed volume fraction was then corrected87
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by a flux corrector estimated using the face velocities. The level set function88

was advected by a high order total variation diminishing (TVD) scheme and89

then re-initialised in a narrow band around the interface with a geometric pro-90

cedure. In [34] the idea of the area of fluid was employed for advecting the91

volume fraction developing an iterative clipping and capping algorithm for the92

coupling of the level set and volume of fluid methods. Both the LS and VOF93

functions are advected by solving a transport equation for each one of them: the94

volume of fluid is advected employing an interface compression scheme whereas95

the LS function uses a van Leer TVD scheme. Despite its efficiency in calculat-96

ing the interface, the LS method has the shortcoming that mass conservation97

is not guaranteed. This barrier can be overcome by coupling the method with98

VOF approach which is conservative, and the LS which is highly accurate (see99

[27] and [28]). In [35] a conservative LS method was developed, which has been100

demonstrated to conserve mass. This has been the basis of different variations of101

the LS method which have been used in multiphase flows [34, 36–38]. Coupling102

the volume of fluid with level set it is possible to combine the benefits of both103

methods providing an improvement in capturing of the sharp interface with a104

reasonable accuracy for mass conservation. The ultimate purpose of the correct105

advection of the level set is the accurate calculation of curvature and mixture106

properties, in line with the one-fluid approach.107

1.2. Objectives108

This paper presents a novel coupled LS and VOF method capable of simu-109

lating the interface of two fluids, of different properties. The first part of the110

method is the re-initialisation step of the signed distance function. All tradi-111

tional level set methods face the problem of finding the proper values of the112

signed distance function, ψ, which satisfy the Eikonal equation, |∇ψ| = 1. This113

is usually done by solving the level set equation with a high order approach in114

time and space to minimise the error, and re-initialising the distance function115

to avoid the displacement of its initial value ψ0 [39]. In this paper a partial116

differential equation re-initialisation method is presented based on the works of117
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Russo and Smereka [40] and Hartmann et al. [41] which allows the simple and118

efficient calculation of the distance function across the interface. The presented119

formulation is second-order in space and constructed for computational cells120

of arbitrary shape, and is tested for both structured and unstructured meshes.121

The initial value of the distance function ψ0 in the coupled volume of fluid and122

level set methods is derived by advecting the volume fraction with either an123

algebraic or a geometric method. The VOF method for the research presented124

here, considers the motion of an isoface in a computational cell and advecting125

it, using the isoAdvector method proposed in [42] and implemented in the open126

source CFD code OpenFOAM [43]. The isoface is properly advected within a127

time step, estimating the volume transport across a face before moving on to128

the next time-step solution. The complete volume fraction advection algorithm129

is described in detail in the following sections. The coupling of the LS and VOF130

methods is developed here within OpenFOAM and is done without the need131

to solve the LS function equation. The approach maps the volume fraction to132

ψ0 directly from the VOF step, and then corrects the signed distance function.133

In order to preserve its distance function character, the level set function is134

re-initialised in two parts. First, the distance function is calculated for the cells135

at the interface and is mapped to the level set function. In the second part the136

re-initialisation equation is solved for the cells adjacent to the cells at the in-137

terface [39, 41]. Comparisons of the VOF and the coupled LS-VOF for classical138

numerical tests reveal that the LS step improves the accuracy of solution and139

boosts the ability of the method to capture sharp interfaces.140

2. Motivation and methodology141

2.1. Level set method142

The interface which separates the two fluids is represented by the level set143

function ψ(x, t). Depending on whether a given point (x, t) with a normal144

distance to the interface d, exists in one fluid or the other, ψ(x, t) is defined as145
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ψ(x, t) = +d, or ψ(x, t) = −d, respectively. The interface Γ is then defined as146

the set of points that belong to the zero-level, as follows147

Γ = {x|ψ(x, t) = 0} (1)

The level set function is then a distance function that is defined wherever an148

interface exists. The distance function can be advected using149

∂ψ

∂t
+ u · ∇ψ = 0 (2)

where u is the velocity field. The above equation can be solved using any high150

order scheme for hyperbolic systems of the ENO (essentially non-oscillatory)151

schemes family or the Runge-Kutta method [44]. A similar advection equation is152

used for the marker function in volume of fluid methods. Adding extra algebraic153

terms to the right-hand side of this advection term, compresses the interface,154

leading to conservative forms of both methods [35, 45].155

2.2. Re-initialisation step156

Although the distance function is advected well for ψ = 0, it tends to fail to157

remain an actual distance function when solving Eq. (2) because of the very158

small or large values the magnitude of the gradients |∇ψ| might attain on159

either side of the interface compromising accuracy [46]. Consequently, a re-160

initialisation step is required for the ψ-equation [39]. This is an extra step to161

straighten the distorted shape of the function ψ, which might be caused by the162

numerical solution of the convection equation or by the complicated fluid veloc-163

ity fields. With the re-initialisation step the LS function and the shape of the164

interface can be preserved as much as possible throughout the simulation. This165

is achieved by solving the following Eikonal equation [15]166

∂ψd
∂τ

= sgn(ψ)(1− |∇ψd|) (3)

where sgn() is the sign function. The new corrected distance function, ψd, is167

calculated iteratively knowing ψ which is used as an initial guess in the re-168

initialisation process, ψd(t = 0) = ψ. In Eq. (3), τ is a fictitious time-step169
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which can be associated to the grid resolution. Previous studies suggest vari-170

ous values for τ (see [36, 41]) and τ = 0.1∆x is considered in this study. The171

re-initialisation equation can be solved in steady state and ideally converges172

to |∇ψd| = 1. Previous numerical works have addressed the re-initialisation173

problem providing algorithms for either structured [40, 41, 47] or unstructured174

computational meshes [48]. In this study, we choose to incorporate and employ175

for unstructured meshes the algorithm of [41], which is a partial differential equa-176

tion based localised method, which imposes the zero-displacement constraint on177

the zero LS. If dP is the desired signed distance function at the interface for cell178

P , then dP is the value of ψ that has to be used to properly advect the LS func-179

tion. An initial guess, d̃P of the distance is required during the re-initialisation180

step. In [40] a central difference scheme was suggested based upon the knowl-181

edge of the upwind or downwind cells of cell P . However, in [41] a modified182

expression for d̃P was utilised by imposing additional conditions that depend183

on how the LS changes along the three co-ordinate directions x, y and z. In184

this present study, the distance function is calculated first for the cells at the185

interface and is then used to update the level set function. This is done using186

first order expressions as proposed in [40]. The Eikonal equation for ψ is then187

solved in a narrow band of cells adjacent to the cells that belong to the interface188

[41]. The algorithm starts by searching for all the cells at the interface Γ of the189

two fluids and performing the re-initialisation step. The algorithm is as follows:190

Step 1: For all cells P at the interface Γ, the signed distance function d̃P is esti-191

mated first using the values of the level set function before the re-initialisation,192

denoted for cell P by ψ̃P . It can be written that193

d̃P = ψ̃P /





∑

ζ

(∂ζψ̃ζ)
2





1/2

(4)

,where ∂ζψ̃ζ is the discrete derivative in the ζ direction [47]. The maximum194

between the central and upwind differences can be used for calculating the195

derivatives in this expression [40]. In the present study, upwind differences196

are considered, employing some of the neighbouring cells. First, a search is197
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performed for all the faces f of the cell P and if a neighbouring cellN that shares198

f with P also belongs in Γ, the discrete derivative of ψ̃P , ∂f ψ̃P , is calculated199

as:200

∂f ψ̃P =
ψ̃P − ψ̃N
xP − xN

(5)

Let the number of all these Γ−neighbours be NP,Γ. Then we use NP,Γ discrete201

derivatives. In the case of both upwind (ψ̃i−1) and downwind (ψ̃i+1) cells be-202

longing to the set Γ, then both differences are considered in the expression for203

d̃P . Since, 2[(∂i−1ψ̃i−1)
2 + (∂i+1ψ̃i+1)

2] ≥ [(ψ̃i+1 − ψ̃i−1)/∆x]
2, and given the204

fact that we cannot have more than ⌊NP,Γ/2⌋ pairs of such central differences,205

the sum of all these central differences for cell P in x, y, z (the right part of206

the above inequality) will be no greater than the quantity in the denominator207

of the signed distance function d̃P in Eq.(4), considering all the NP,Γ faces e.g.208

NP,Γ

[

∑

f (∂f ψ̃f )
2
]1/2

. For the tests presented here, we use this expression for209

calculating d̃P . We use these NP,Γ derivatives to calculate the target value of210

the LS which can be written as:211

d̃P =
ψ̃P

(NP,Γ
∑NP,Γ

k=1 (∂fk ψ̃fk)
2)1/2

(6)

Note that the summation in Eq.(6) is performed through the cell faces and thus212

NP,Γ is less than or equal to the number of faces of the cell P . The above213

expression for d̃P is bounded by the special case of a three-dimensional struc-214

tured mesh introduced in [41] for Cartesian meshes with pre-defined directions,215

x,y,z. The upwind discretisation was employed in [41, 47] and was proven capa-216

ble of avoiding any oscillations at the interface that could be caused by central217

differences.218

Step 2: The following step is performed for all the cells in Γ that have219

negative curvature κ (calculated from the interface normal n, κ = ∇ · n) or220

satisfy the condition κ = 0 and ψ̃ ≤ 0, (following [41]). A search is considered221

for all the neighbouring cells that share the same face fk with cell P that have222

an opposite sign for ψP (for instance, the neighbours N1, N2 in Fig.1). Let223

9



the number of these cells be MP , then, the signed distance function and LS224

functions dP , ψ̃P for the cell-centre P are interpolated with the same second-225

order operator as in [41] as:226

(d)p =
1

MP

MP
∑

k=1

dfk

(ψ̃)p =
1

MP

MP
∑

k=1

ψ̃fk

(7)227

228

Assuming that the ratio of the LS function with its interpolated value re-229

mains the same as the ratio of the signed distance value with its interpolated230

value, the position of the zero-level is fixed (a constraint imposed in [41]). The231

target value of the LS function is then calculated as [41, 47]232

dP = ψ̃P

∑MP

k=1 dfk
∑MP

k=1 ψ̃fk
(8)233

where the summation in Eq.(8) is performed over all the Mk cells that are234

neighbours of the cell P , at a face fk with a corresponding dfk , such that235

ψPψfk ≤ 0 (ψfk is calculated at the cell centre of the neighbouring cell).236

Step 3: The LS function for cell P is updated at the interface according to237

ψP = dP , as suggested by [41].238

Step 4: The re-initialisation equation is solved for the rest of the cells ad-239

jacent to the interface Γ but with a marker function value equal to 0 or 1 (see240

Fig.2). Eq. (3) is then solved in steady state:241

ψn+1 = ψn −∆τS(ψ̃)(|∇ψ| − 1) (9)

where S(ψ̃) = ψ̃/
√

ψ̃2 + |∇ψ̃|2∆x2 is a modification of the sign function and242

∆x is the cell size. The gradient magnitude is |∇ψ| ∼= HG(D
−

ζ ψ
n, D+

ζ ψ
n) is the243

Godunov-Hamiltonian of the LS function from the previous iteration through244

all faces of the particular cell. Here, the terms D−

ζ ψ
n, D+

ζ ψ
n are the first or-245

der approximations of the gradient of ψ along the ζ−direction, ζ = x, y or z246
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depending on whether the upwind ”-” or the downwind cell is considered ”+”247

D−

ζ ψ
n =

ψni − ψni−1

∆ζ
, D+

ζ ψ
n =

ψni+1 − ψni
∆ζ

(10)248

249

The need to use first order terms arises from the large gradients across the inter-250

face that require an accurate and stable method of calculating HG. The above251

formulation is the basis for various fast marching algorithms with structured252

meshes, e.g. [15, 28, 41]. Here, the normal gradient of the level set function ∇⊥

f253

is calculated for all the faces f based on the orientation of the normal at the254

face. In general255

∇⊥

f = αcorr(ψP − ψn)/|∆ζ|ζ̂ + (ζ̂ − αcorr∆ζ)∇(ψ)f (11)

where αcorr is the inverse cosine of the angle between the cell centres and the256

normal face, and ∇(ψ)f is the linearly interpolated gradient at the face f . This257

expression is used for meshes that non-orthogonality is high, and for orthogonal258

meshes the second part of the right-hand-side is omitted. Following [34] in the259

case of unstructured meshes, one possible approach is to select the upwind cell260

from all face-neighbouring cells of the central cell P as the one whose centre261

position is closest to the line through the centre and downwind nodes. If the262

position vector is ∆ζ and the unit vector is denoted as ζ̂, then if ψ < 0 and263

∆ζ · ζ̂ < 0 or ψ > 0 and ∆ζ · ζ̂ > 0 we have:264

aζ = min
(

∇⊥

f ψ · ζ̂
)

(12)

If ψ < 0 and ∆ζ · ζ̂ > 0 or ψ > 0 and ∆ζ · ζ̂ < 0 then:265

aζ = max
(

∇⊥

f ψ · ζ̂
)

(13)

The Hamiltonian-Godunov term is simply calculated as266

HG =
√

max(a2x) +max(a2y) +max(a2z) (14)

For the test cases presented here, no significant difference was observed using267

an explicit calculation of the gradient of ψ in Eq. (9). This can be performed for268
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unstructured meshes for a cell P with volume V (P ), faces f and surface vector269

Sf using:270

∇ψ
(P )
d =

1

V (P )

∑

f

ψfSf (15)

The steady solutions of Eq. (9) are distance functions. Furthermore, since271

sgn(0) = 0, then ψd(x, τ) has the same zero-level as ψ.272

The fictitious time step for the steady state iterations ∆τ , has to be chosen273

so that an accurate value of the LS function is obtained within a reasonable274

number of iterations. ∆τ can be a fraction of or equal to the mesh size, ∆x275

[34, 40]. For the simulations performed in this study, ∆τ = 0.1(∆x∆y∆z)
1
3 has276

been chosen.277

A fixed small number of iterations is needed in practice to guarantee the278

distance function property near the interface. Following [46], the number of279

iterations depends on the thickness of the interface 2ǫ∆x, with ǫ being the layer280

of cells across which the re-initialisation step takes place (the correction is kept281

local). The iteration process can stop after 2ǫ time-steps, and a value of ǫ = 1.5282

is chosen here so that the interface is spread over a thickness of three cells283

(see also Step 4). Finally, for both formulations, Eq.(3) and Eq.(9), the initial284

value ψ0(x) = ψ(x, 0) can be taken from the volume fraction α assuming the285

interface position is at the iso-surface contour α-0.5, (as in [49]) and is written286

as a function of the cell size [36].287

2.3. Utilising the one-fluid approach288

Having calculated the LS function, the mixture properties such as density289

and viscosity can be evaluated with the one-fluid approach. The two fluids are290

treated as one fluid with properties that change across the interface [7]. To291

achieve numerical robustness, a smeared Heaviside function, H, is used [35]292

defined as293
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Figure 1: Steps 1-4 performed for a computational cell P in a non-uniform two-dimensional

mesh.

Figure 2: Steps 4 performed for a computational cell C that does not belong to Γ.

H(ψ) =























0 if ψ < −ǫ

1
2

[

1 + ψ
ǫ + 1

π sin(
πψ
ǫ )

]

if |ψ| ≤ ǫ

1 if ψ > ǫ

(16)

The pseudo-fluid properties can be then calculated as294

ρ = ρ1H + ρ2(1−H) (17)

µ = µ1H + µ2(1−H) (18)

The surface tension force acting on the interface is calculated as [36, 50]295
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Fσ = σκδ(ψ)∇ψ (19)

Here δ() is the Dirac function which is employed for limiting the effect of the296

surface tension force in the vicinity of the interface, a region with thickness ǫ297

δ(ψ) =











0 if |ψ| > ǫ

1
2ǫ

[

1 + cos
(

πψ
ǫ

)]

if |ψ| ≤ ǫ

(20)

The curvature and the gradient can be discretised (since ψ is a continuous298

function) and the surface tension can be calculated at the cell faces using299

Fσ = (σκ)f δf (ψ)∇
⊥

f ψ (21)

2.4. Numerical formulation of coupling Volume of fluid and level set methods300

The initial value ψ0 used in Eq. 3 is the starting point for the re-initialisation301

iterations and the link with the VOF method. A straightforward approach302

without solving the LS equation [36, 49] is to use303

ψ0 = (2α− 1)∆̃x (22)

In the above initial value the α−0.5 iso-surface is used as a starting point for304

the signed distance function. The percentage of the interface thickness, ∆̃x305

here equal to 0.8∆x, is introduced for numerical robustness and gives a ψ0306

value within (−ǫ, ǫ) for the cells belonging to Γ. The volume fraction α can be307

advected with various methods [46, 51–53]. The advection of the volume fraction308

depends on the normal to the interface, usually performed employing values in309

the neighbouring cells by selecting the orientation of the interface. The coupling310

methods used with the VOF approach in [34, 36] use a transport equation for311

the volume fraction with the MULES limiter. Even with the addition of an312

extra term for compressing the interface, α(1 − α)Ur, where Ur is the relative313

velocity between the two fluids [45], the interface might still diffuse as previously314
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shown in numerical tests in [30, 42], which can be limited, coupling this scheme315

with a level set method [34].316

The approach in [42] is used to advect the volume and the surface submerged317

in one fluid inside each cell at the interface. The idea is that after every time-318

step, the iso-surface inside a computational cell (at Γ) splits the cell C with319

volume VC into two different parts: one occupied by fluid 1 with volume frac-320

tion α and the other one filled with fluid 2 with volume fraction (1 − α). Let321

X1, X2, ..., Xk be the nodes of a cell at the interface, as in Fig.3. The sub-grid322

face defined from the line connecting all the intersection points xm of the iso-323

surface and the cell edges, the isoface, is assumed to be advected with a velocity324

equal to the velocity of the previous time step and is calculated by solving the325

momentum equation. The points xm at a cell edge (XkXl) can be evaluated326

from327

xm = Xk + λα(Xl −Xk) (23)328

where λα is a weight function defined by interpolating at each node Xi the vol-329

ume fraction of the surrounding cells. Hence, λα = (α − αk)/(αl − αk), where330

αk, αl are the corresponding values at the nodes Xk, Xl. With this linear in-331

terpolation the isoface will split the cell into one subcell of fluid 1 with volume332

∆VC(α) and another one with volume VC − ∆VC of fluid 2. The isoAdvector333

method of Roenby et al. [42] is then performed to find the optimum isovalue334

a∗ such that α = ∆VC(α
∗)/VC . A proper value of α∗ will cut the cell C into335

two subcells with volumetric proportions calculated from the previous guess of336

the volume fraction αC leading to a more accurate reconstruction of the inter-337

face than would be obtained using the 0.5-isovalue. The procedure resembles338

the re-initialisation step in the correction of the LS method. Using a third339

degree polynomial pα(x) for interpolating the isovalue, we have the following340
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constraints:341

pα(xk) = fk

pα(xk +
xk − xl

3
) =

fk
3

pα(xk +
2(xk − xl)

3
) =

2fk
3

pα(xl) = fl

(24)342

343

Finding the polynomial that passes though these points, can then be used to344

calculate the isovalue and the isoface which are now defined since both the345

vertices and its area, Em, are known.346

Next step, is the time evolution of the isoface within a cell. The isoface will347

have a centre xc and velocity uc with a normal vector nc, as in Fig.3. The348

isoface will then pass all the vertices Xk at time tk which is calculated in [42]349

from350

tk = t+ dxi ·
nc

uc

(25)

where the vector dxk connects the isoface centre with the vertices, dxk =351

Xk−xc. Knowing the time tk allows calculation of the face-interface line during352

the solution time step δt. The submerged area can be integrated using all the353

time integrals [tk, tk+1] such that t < tk, tk+1 < t + δt. If there are Nsub such354

time steps then:355

∫ t+δt

t

Emdτ
′ =

Nsub
∑

k=1

∫ tk+1

tk

Emdτ
′ (26)

The volume of the fluid with the isoface Em is easily calculated, since:356

∆V nf =
φf
|Sf |

Nsub
∑

k=1

∫ tk+1

tk

Emdτ
′ (27)

using the volumetric fluxes and the face area at face f , φf and |Sf |. The volume357

fraction is then updated explicitly using the transported volume at each face as358

αt+δt = αt −
1

VC

Nf
∑

f=1

∆V nf (28)
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Figure 3: Isoface advection step inside a computational cell. Isoface nodes within the interval

[tk, tk+1] (green points), isoface (shaded face) and face-interface lines (blue).

The coupling algorithm of this isoface-level-set-volume-of-fluid (ILSVOF)359

method can be described in the following main steps. The numerical fields are360

initialised together with the LS function. The dynamic pressure is used to avoid361

any sudden changes in the pressure at the boundaries for hydrostatic problems.362

The time loop starts by correcting the interface and the volume fraction at the363

boundaries. The volume fraction is advected, and corrected, and new values of364

α are assigned at the boundaries. The new LS function ψ0 is calculated using365

the results of the advection equation. Next, ψ is re-initialised applying Steps366

1-4 described for the re-initialisation procedure, to obtain the signed distance367

function, and the interface at the boundaries is corrected. The new interface368

curvature is calculated. The mixture properties and fluxes are updated using the369

LS function. For instance, for density ρ = ρ1H + ρ2(1−H) is used, where H()370

is a Heavyside function of ψ which is used instead of ψ for numerical purposes371

in LS methods, [35]. The Navier-Stokes equations are solved for velocity and372

pressure using the pressure implicit with splitting of operators (PISO) method.373

The process starts again, by first correcting the interface and the volume fraction374

at the boundaries and then, following the described steps after that.375
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3. Numerical tests and discussions376

The performance of the proposed numerical methodology is tested using377

simple test problems involving two fluids of different densities and viscosities.378

The problems, in both two and three-dimensions, include comparisons between379

the presented method and other numerical works with or without the level set380

implementation. Different indicators are used for monitoring the method’s per-381

formance in terms of shape conservation and boundedness. The numerical tests382

presented here concern both structured and unstructured meshes and different383

mesh resolutions are examined for the presented test cases.384

3.1. Two-dimensional rotating disc385

The rotating disc has been proposed in [54] and considers a disc that under-386

goes a significant interface deformation and is used here to evaluate the abil-387

ity of the presented methodology to transport under-resolved interface struc-388

tures [6, 9, 33, 55]. The computational domain is a unit square which con-389

tains a disc with radius R placed in the domain so that the disc centre is at390

(x, y) = (0.5, 0.75). The rest of the domain is filled with a fluid of lower viscosity391

than the one of the disc. The velocity field is given by392

u(x, y, t) = −sin2(πx)sin(2πy)cos

(

πt

T

)

(29)

v(x, y, t) = sin(2πx)sin2(πy)cos

(

πt

T

)

(30)

The velocity field changes in time and space and causes the disc to rotate so that393

the initially circular disc is stretched with time (the flow lasts for one period T ).394

The resulting filament will then stretch until t = T/2 at which point the velocity395

field reduces to its minimum and becomes zero, according to Eq. (29). For the396

simulations here, a period of T = 8 was used with a total simulation time of 8s.397

The physical parameters considered are summarised in Table 1. Two different398

types of mesh have been used, quadrilateral and triangular, as the ones shown399

in Fig. 4 each using a coarse, medium and a fine meshes respectively. The400
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results for the new method are shown in Tables 2 and 3. A comparison of401

the ILSVOF methodology described here, with the case of using only the VOF402

method [42] without the level set, is also included. Previous studies in [42]403

have shown that the volume of fluid method of [42] provides higher accuracy for404

interface advection than the volume of fluid approach of [45] based on, hence405

only the error in shape preservation reported in [42] is included for comparisons406

in Tables 2 and 3. Some results obtained using only [45] approach for two and407

three-dimensional cases are presented for qualitative comparisons in Fig. 5. The408

error409

Eα =

∑

i Vi|αi − αexact|
∑

i Viαexact
(31)

is used as a quantitative measure of the shape preservation. Here, the exact410

solution is defined as the initial position of the rotating disk and Eα is calculated411

over all cells of the domain. The extent to which the solution stays within the412

range of physical values is also tested, considering the minimum and maximum of413

the liquid volume fraction of the rotating disc, min(α) and max(α) respectively,414

also calculated over all cells of the domain. One should expect ideally to have415

0 ≤ α ≤ 1 for all cells.

Table 1: Physical properties for rotating disc simulations.

Physical and numerical parameters

Heavy fluid density 1110 kg/m3

Light fluid density 806 kg/m3

Heavy fluid kinematic viscosity 1.017e-06 m2/s

Light fluid kinematic viscosity 2.35e-06 m2/s

Length of square domain 1 m

Period T 8 s

CFL number 0.3

416

19



(a) Quadrilateral mesh. (b) Triangular mesh.

Figure 4: Meshes used to discretise the domain used (coarse mesh study).

As indicated in the results of Fig. 5, increasing the mesh resolution, increases417

the sharpness of both methods with Eα decreasing. The mesh resolution is418

a important parameter that influences the ability of the interface capturing419

method to resolve the ligament stretching. The sharp tail at the end of the420

deforming ligament fails to be resolved at the subgrid scale. In all cases, at421

the time of maximum stretching, t = T/2, the rotating spiral thickness becomes422

equivalent to the local cell size and fragmentation starts to be noticeable (Fig. 5).423

The observed volume sharpness error was generally of the same order as that424

obtained from the other approaches, or smaller. The same behaviour is observed425

in boundedness were the marker function, α, stays above the minimum value of426

0 and below or equal to 1, contrary to the solution obtained without the level427

set step. The ILSVOF method maintains similar trends for the error measures428

for both structured and unstructured meshes (Table 3). A comparison between429

the presented ILSVOF and the VOF methods is shown for t = T/2 in Fig. 6 for430

the case of the medium size quadrilateral meshes using the OpenFOAM VOF431

methods of [42] and [45] which employs the multidimensional universal limiter432

with explicit solution (MULES) scheme [56]. As the rotating vortex thickness433

becomes progressively smaller, the droplets pinch off and the local interface434

curvature becomes of the same order as the mesh size. The decreasing interface435

curvature causes the isoface, used here to advect α, to become less accurate for436
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the resulting droplet motion. The coupling with level set shows that it is possible437

to have less diffusion at the tip for the rotating filament for both quadrilateral438

and triangular meshes (Fig. 7). The gradients appearing during the deformation439

of the vortex might have an effect on shape preservation, via Eq. (6), even though440

the vortex reverses after t = T/2 back to its initial position, but these do not441

seem to reduce the solution accuracy, at least for the re-initialisation steps used442

here which usually varied from 2 to 5. The ILSVOF retains the vortex shape443

better than the other methods at the maximum stretching position. Using444

the interface compression scheme MULES, sharpness can also be maintained445

at t = T/2, but this interface compression might cause the rotating spiral to446

break-up, fragmenting the vortex in the interval [T/2, T ] which is more evident447

at t = T in Fig. 6 and Fig. 7. The increased error in the averaged volume448

fraction for this approach is also reported in previous studies in [34], and is449

observed here in both structured and unstructured methods.450
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(a) 64x64 mesh (b) Coarse triangular mesh

(c) 180x180 mesh (d) Medium triangular mesh

(e) 256x256 mesh (f) Fine triangular mesh

Figure 5: Two-dimensional rotating disc test for level set-VOF method at t = T/2. The initial

(light purple line) at t = 0 and final position of the zero-level set iso-surface (blue line) at

t = T are indicated.

Comparisons with different grid resolutions (322, 642, 1282) are shown in Ta-451

ble 4 for the values of the calculated L1(α) error norm for the volume fraction.452

Results for L1(α) from other numerical works are included for comparisons and453
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Table 2: Comparison of the methods using quadrilateral meshes for the two-dimensional

rotating disc case.

Mesh resolution
ILSVOF method VOF method

Ea min(α) max(α) Ea min(α) max(α)

642 -1.03×10−7 0.0 1.0 3.30×10−7 0.0 1.0

1802 -1.58×10−8 4.60×10−9 1.0 1.2×10−8 -2.88×10−8 1.0-1.18×10−8

2562 -9.61×10−9 -7.16×10−7 1.0-1.5×10−9 -2.48×10−8 -3.34×10−5 1.0-3.64×10−8

Table 3: Comparisons of the methods using triangular meshes for the two-dimensional rotating

disc case.

Mesh resolution
ILSVOF method VOF method

Ea min(α) max(α) Ea min(α) max(α)

17521 -2.77×10−7 0.0 1.0 7.26×10−7 -1.14×10−8 1.0-9.61×10−10

79877 3.91×10−8 0.0 1.0 -4.34×10−7 0 1.0

108151 2.11×10−8 0.0 1.0 -1.68×10−8 -9.2×10−8 1.0-4.78×10−8

the domain and physical properties for the rotating disc test are set as those454

in [57]. The method presented here, overall demonstrated good accuracy for455

the two-dimensional rotating vortex case. Compared to other volume of fluid456

methods that use PLIC such that in [6] the error in L1(α) is lower for all the457

meshes tested here. Compared to the tangent of hyperbola for INterface cap-458

turing, (THINC) scheme and its variations [57–59], the results here are similar459

or lower. The L1(α) error is close for the coarse mesh compared to the level460

set method in [60], but had lower values for the medium and fine meshes. The461

mass conservation error through time is shown in Fig. 8. The method showed462

generally reasonable mass conservation error for the different meshes that were463

used, as shown in Table 4.464
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(a) Developed method (b) IsoAdvector VOF (c) VOF with MULES

Figure 6: Two-dimensional rotating disc test for the medium quadrilateral mesh at t = T/2.

The initial (light purple line) at t = 0 and final position of the zero-level set iso-surface (blue

line) at t = T are indicated.

(a) Developed method (b) IsoAdvector VOF (c) VOF with MULES

Figure 7: Two-dimensional rotating disc test for the fine triangular mesh at t = T/2. Initial

(light purple line) at t = 0 and final position of the zero-level set isosurface (blue line) at

t = T are indicated.
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Table 4: Comparisons of the methods using quadrilateral meshes for the two-dimensional

rotating disc case. The first order norm L1(α) is calculated for the three different meshes.

Authors 322 642 1282

RiderKothe/Puckett [61] 4.78×10−2 6.96×10−3 1.44×10−3

THINC/WLIC [57] 4.16×10−2 1.61×10−2 3.56×10−3

Markers-VOF [62] 7.41×10−3 2.78×10−3 4.78×10−4

DS-CLSMOF [60] 2.92×10−2 5.51×10−3 1.37×10−3

PLIC [6] 2.53×10−2 2.78×10−3 4.8×10−4

THINC/QQ [58] 6.70×10−2 1.52×10−2 3.06×10−3

THINC/SW scheme [59] 3.90×10−2 1.52×10−2 3.96×10−3

ISLSVOF method 4.19×10−2 1.43×10−3 8.36×10−4

Figure 8: Mass conservation error for the two-dimensional rotating disc case for the three levels

of refinement. Here, the meshes M1, M2 and M3 had 322, 642 and 1282 cells respectively.

3.2. Three-dimensional rotating sphere in a non-uniform velocity field465

The next test is the case of a three-dimensional rotating sphere of [54] and466

is used to assess the capability of the methodology for capturing the interface467

distortion in three dimensions. [34, 36, 42, 63]. In this test, a sphere with radius468

R = 0.15m is placed inside a box [0, 1]3 with its centre at (0.35, 0.35, 0.35). The469
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velocity field is defined as470

u(x, y, z, t) = 2sin2(πx)sin(2πy)sin(2πz)cos

(

πt

T

)

v(x, y, z, t) = −sin(2πx)sin2(πy)sin(2πz)cos

(

πt

T

)

w(x, y, z, t) = −sin(2πx)sin(2πy)sin2(πz)cos

(

πt

T

)

(32)471

472

The period is T = 3s, and the density and viscosity of both fluids in the test,473

are the same as in the previous section (see Table 1). The sphere is rotating474

within the non-uniform velocity field which causes the sphere to deform through475

time during [0, T/2]. At t = T/2 the flow reverses due to the sign change of the476

cosine parameter during [T/2, T ] causing the deformed sphere to return back477

to its original position at t = T . The ILSVOF method was first tested for478

three different meshes (with 402, 642, 1002 elements) to assess the error in shape479

preservation and the boundedness of the marker function. The results given in480

Table 5 compare the method with and without the level set step using structured481

meshes. Overall, the error Eα decreases with the level set implementation. A482

slight increase in Eα is observed for the fine mesh with respect to the medium483

mesh, although this is relatively insignificant. Similar trends were observed by484

previous authors using LS and VOF method coupling [34]. A more detailed485

comparison is given in Fig. 9 at the maximum deformation time, t = T/2 for486

different grid resolutions (402, 642, 1002, 1282 elements). The deforming sphere487

appears to be thicker in the case of the ILSVOF method which provides more488

detail for the deforming sphere for the different levels of mesh refinement. The489

sharp sphere end is also thickened in the ILSVOF case, and the thickening490

appears to be more evident for the finer meshes. The time evolution of the491

deforming sphere inside the non-uniform flow is shown for different times within492

[0, T ] in Fig. 10 for a 1283 mesh. Numerical results revealed as before, relatively493

large gradients that the LS function experiences in [0, T/2] which are maintained494

and are not reversed in the interval [T/2, T ] giving a perturbed profile at the final495

position of the sphere. The sphere interface is distorted in all cases as shown in496

Fig 11 at t = T , with or without level set or interface compression. In general,497
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the ILSVOF method shows better representation of the surface. The most498

significant surface distortion is observed in the case of the interface compression499

where the compression of the interface decreases the solution accuracy [34]. The500

three-dimensional sphere in the same non-uniform flow was also simulated using501

unstructured meshes and the results are shown in Table 6. The values of Eα502

are higher for the medium and fine meshes compared with those in Table 5 for503

structured meshes. The sheet thickness appears to be smaller than the average504

edge length even for the finest tetrahedral mesh (∼ 0.008), causing the solution505

accuracy to drop in the case of unstructured meshes. In addition, the impact of506

the steep gradients introduced in the LS method that originate from the initial507

value of ψ0 in Eq. 22 being inserted in Eq. 3 are more evident in the case of508

tetrahedral meshes. The L1 error for the volume fraction for different mesh509

resolutions (323, 643, 1283) for the three-dimensional case of the rotating sphere510

are shown in Table 7. Following [56, 59] the error L1 is calculated for all cells i511

and is defined as512

L1(α) =
∑

i

(αi − αexact)Vi (33)

The results are shown alongside with the L1 error obtained with other volume of513

fluid methods. The accuracy of the results here, remained lower than the volume514

of fluid with the THINC/SW scheme which uses no geometrical reconstruction515

[59] and was more accurate compared to the results obtained in [56] with the516

MULES limiter with interFoam. In all cases the L1 error was very close to the517

results from the PLIC VOF method in [64].518
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Table 5: Comparison of the methods using quadrilateral meshes for the three-dimensional

rotating sphere case.

Grid
ILSVOF method VOF method

Ea min(α) max(α) Ea min(α) max(α)

403 5.43×10−7 -4.05×10−17 1.0 5.84×10−7 -1.87×10−16 1.0

643 -9.85×10−8 -1.48×10−16 1.0 -2.22×10−16 -1.04×10−7 -1.53×10−9 1.0-5.93×10−11

1003 1.79×10−7 0.0 1.0 3.22×10−7 0.0 1.0

(a) 403 (b) 643 (c) 1003 (d) 1283

(e) 403 (f) 643 (g) 1003 (h) 1283

Figure 9: Three-dimensional rotating sphere in a non-uniform flow test for various levels of

mesh. The 0.5-iso-surface obtained with the ILSVOF method (top) and without the level set

step (bottom) are shown at the maximum deformation time, t = T/2.
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Figure 10: Three-dimensional rotating sphere in a non-uniform flow during time evolution in

[0, T ] for a fine hexahedral mesh of 1283 hexahedra.

(a) Developed method

ILSVOF.

(b) Isoface method without

level set.

(c) Interface compression

scheme, MULES.

Figure 11: Three-dimensional rotating sphere in a non-uniform flow test using the 1283 hex-

ahedral mesh. Initial transparent blue surface at t = 0 and final position of the zero-level set

iso-surface solid grey iso-surface at t = T .

3.3. Three-dimensional dam break case without obstacle519

The dam break problem is studied next which consists of a simple three-520

dimensional rectangular geometry wherein a liquid column is initially held still521

by a dam. When the dam is suddenly removed, the liquid column collapses. The522

tank containing the liquid column which collapses in this case is a rectangular523
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Table 6: Comparison of the methods using tetrahedral meshes for the three-dimensional

rotating sphere case.

Mesh resolution
ILSVOF method VOF method

Ea min(α) max(α) Ea min(α) max(α)

163208 -6.42×10−8 0 1.0 2.68×10−8 0.0 1.0

322676 -8.7×10−3 0.0 1.0 -3.78×10−3 0.0 1.0

1083126 -2.3×10−4 0.0 1.0 -7.8×10−3 0.0 1.0

Table 7: L1(α) error norm for different meshes for the three-dimensional rotating sphere case

and comparison with other numerical methods.

Authors 323 643 1283

RK-3D using PLIC [64] 7.85×10−3 2.75×10−3 7.41×10−4

THINC/SW scheme [59] 8.39×10−3 3.47×10−3 1.08×10−3

interFoam [56] 9.95×10−3 4.78×10−3 2.03×10−3

ISLSVOF method 8.89×10−3 2.96×10−3 8.06×10−4

30



domain with dimensions 4a × 2.4a × a. For a more convenient comparison,524

the fluid in the liquid column is assumed to be water and the rest of the tank525

is filled with air. Both fluids are assumed to be initially still, and the physical526

properties of the three-dimensional case are shown in Table 8. Initially the liquid527

column has dimensions a × 2a × a. The vertical acceleration due to gravity is528

taken to be 9.81 ms−2. The velocity before removing the dam, is zero for the529

liquid column and the air, and the pressure is set to be the hydrostatic pressure.530

Free slip boundary conditions are imposed for all the boundaries of the domain531

(assuming zero normal velocity and zero tangential traction) except for the532

open top boundary (where the tangential velocity and normal traction are zero).533

The displacement of the interface between water and air is tracked in order to534

characterise the performance of the developed method using three different grids535

(40× 10× 20, 80× 20× 40 and 160× 40× 80). The results are compared with536

the experimental data available in [65] and previous numerical studies using537

the LS method from [66] which is a conservative level set method based on the538

finite element approach which employs the volume fraction for correcting the539

distance function. The results for the position of the water-air interface along540

the horizontal (x-axis) and the vertical (y-axis) directions are shown in Fig. 12.541

The results for the position are normalised with the length parameter a and are542

plotted against the non-dimensional time. The predictions for the leading-edge543

position are in good agreement with the experimental data for the examined544

time interval. The accuracy in the predictions for the horizontal direction is545

closer initially and reasonably close to the experiment during the simulation546

until the leading edge reaches the wall, x/a = 4. The flow slows down as a547

result of wall friction as reported in the experimental work and, as a result, the548

calculated interface is expected to differ from the experiment, although this is549

less than five to ten percent here for the fine and coarse meshes respectively. The550

interface in [66] reaches the position x/a = 4 faster than the present simulations551

here. In the method presented here, the liquid front propagates slower than in552

[66] although the results in [66] for a coarse mesh (not shown here) had similar553

trends as for the results obtained here for the different grids. The coarse grid554
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results in the present study are close to the liquid front results reported in [65],555

with the results obtained with the other two meshes also being reasonably close556

to the experiment. The time evolution of the interface is shown in Figs.13. The557

shape of the interface remains almost flat for the considered time steps of the558

experiment, and in Fig.13(a-c). Once the collapsing liquid column reaches the559

wall, the water rises upwards forming a layer on the right wall. During the time560

interval [0, 0.26s] the vertical position of the interface decreases as expected, and561

both the present method and the results of Kees et al.[66] are seen to be very562

close in Fig. 12b, having the same rate of change in the liquid column height563

for the different grid resolutions. The fluid percent mass loss evolution for the564

dam break case is shown in Fig. 14. The mass loss approaches zero for the fine565

mesh and remains less than 0.01 percent for the coarse mesh.566

Table 8: Physical properties for the dam break case.

Physical and numerical parameters

Water density 1000 kg/m3

Air density 1.0 kg/m3

Water kinematic viscosity 1.0e-06 m2/s

Air kinematic viscosity 1.0e-04 m2/s

Length a 0.146 m

CFL number 0.5
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(a) X-axis. (b) Y-Axis.

Figure 12: Water-air interface position along the x-axis and y-axis for the three-dimensional

dam break case without obstacle.

(a) t=0s (b) t=0.1s

(c) t=0.2s (d) t=0.3s

(e) t=0.4s

Figure 13: 0.5-isosurface snapshots at different times for the three-dimensional dam break

case without obstacle. The liquid column starts to collapse at t=0s and moves towards the

right wall until it impinges and rises up forming a layer that keeps moving upwards until it

returns back to the tank due to gravity.
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Figure 14: Percent mass loss for the dam break case through time for different mesh resolu-

tions.

3.4. Static drop567

In this test case we are interested in the verification of the methodology568

for the stationary Laplace solution for a droplet inside a closed domain and569

assessing the spurious currents [29, 67]. Neglecting any gravitational effects570

and any external forces the interface between the drop and the ambient fluid is571

expected to remain at rest. The surface tension force (σκ) is balanced by the572

pressure force at the interface according to Laplace’s law: ∆pexact = σκexact,573

where the exact interface curvature is κ = 2/d and σ is the surface tension. For574

a constant pressure outside the droplet p0 and zero velocity, the pressure inside575

remains constant and equal to p0+2σ/d. Due to spurious currents the calculated576

pressure will differ. A 2d× 2d domain was used for the present numerical tests577

with d = 0.5cm and the density ratio between the droplet and the surroundings578

was 104. The viscosities inside and outside were equal to 1 and the surface579

tension was 1kg · s−2. For the two-dimensional tests, three meshes of triangular580

elements were used (with grid size ∆x = 1/25, 1/50, 1/100 as in [29]). In order581

to evaluate the parasitic currents in the domain, the L1 error norm is calculated582

as583
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L1(u) =
1

Nc

∑

i

(uu)1/2
µ

σ
(34)

where the summation is done over the entire domain as in [29] and [68]. The584

pressure ranges from pout (pressure outside the droplet) to the inside pressure585

(pin). The pressure error used to evaluate the pressure jump denoted by E(∆p),586

is587

E(∆p) =
|pin − pout − 2σ/d|

2σ/d
(35)

The calculated values for L1 and E(∆p) for the three meshes are shown in588

Table 9. The results are also compared to the ones obtained using the VOF589

only without using level set and the CLSVOF in [29] using PLIC. The parasitic590

currents obtained here are close to those in [29] and smaller than the VOF ap-591

proach. In all cases the error L1 decreases when increasing the mesh resolution.592

Similar behaviour is observed for the E(∆p) which remained smaller than the593

calculated error values for pressure jump reported in [29] for the different grid594

resolutions. Fig.15 shows the pressure jump for the three different meshes com-595

pared to the exact solution (normalised with the maximum pressure difference596

∆p0). Overall the calculated pressure is close enough to the exact value.597

Another values that are also used for the static drop test are the L1 error598

norm for pressure, L1(p) and the maximum velocity after one and fifty time-599

steps Umax,1, Umax,50. The drop density for the test is set to 1000kgm−3 with600

a density ratio with the ambient gas phase equal to 1000. The rest of the601

properties for the drop and the outside are set as in [68]. For this test, the602

drop has a radius R = 2cm and is placed at the centre of a 6cm × 6cm square603

domain. Three different grid resolutions were used for this case, with grid size604

∆x such that R/∆x = 10, 20, 40 and the results are shown in Table 10. The605

order for the L1(p) error remains at the order of 10−4 or below and the accuracy606

of the presented method was close to the CLSVOF works in [68] and [55]. The607

unphysical velocity fields that occur in the areas where pressure changes are608

monitored using the maximum velocity Umax. In this study Umax was of order609
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Table 9: Comparisons of the methods using unstructured meshes for the two-dimensional

static drop case.

Mesh resolution

ILSVOF method VOF method CLSVOF using PLIC [29]

L1(u) E(∆p) L1(u) E(∆p) L1(u) E(∆p)

1/25 1.24×10−4 0.011 5.84×10−3 0.026 1.3×10−4 0.02433

1/50 9.81×10−6 0.0046 3.76×10−5 0.0078 3.19×10−5 0.00651

1/100 7.46×10−6 0.0017 6.61×10−5 0.0049 8.82×10−6 0.00215

of 10−8 for the coarser mesh and was higher for the finer meshes, at the order of610

10−7 as in [67]. Similar patterns for higher parasitic currents while increasing611

the mesh resolution were also reported before in [68], [55] and [67] and has been612

reported for different VOF methods which employ the continuous surface force613

model [50].614

Figure 15: Distribution of the pressure for the static drop test case. Three different mesh reso-

lutions are used to capture the pressure jump across the interface. The pressure is normalised

with the exact value ∆p0 and the distance with the droplet radius R. The distribution of the

pressure for the finest mesh is also shown.
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Table 10: Convergence study for the calculation of pressure, pressure error and velocity for

the static drop test. Three different mesh resolutions are used and the density ratio was 1000

on three different grids. Results are compared with different numerical studies.

Authors R/∆x L1(p) |umax,1| |umax,50|

Gerland et al. 2006 [68] 10 4.81×10−3 7.82×10−8 3.91×10−6

20 9.48×10−4 1.70×10−7 8.53×10−6

40 7.04×10−5 4.34×10−7 2.17×10−5

Ningegowda et al. 2014 [55] 10 1.14×10−2 1.12×10−6 5.11×10−5

20 7.53×10−3 5.88×10−6 3.10×10−4

40 2.92×10−3 1.30×10−5 9.43×10−4

Jarauta et al. 2018 [67] 10 1.25×10−4 6.08×10−9 4.09×10−7

20 3.12×10−4 4.38×10−8 1.22×10−6

40 7.85×10−5 4.26×10−7 3.55×10−6

ISLSVOF method 10 7.36×10−4 2.36×10−8 8.89×10−6

20 1.66×10−4 5.41×10−8 3.46×10−6

40 8.21×10−5 7.22×10−7 1.17×10−6
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3.5. Rising bubble615

The final test case is the rising bubble test proposed in [69]. A circular616

bubble is initially placed in a column filled with fluid of higher density than617

the density of bubble. Due to the buoyancy force, the bubble rises and deforms618

while moving towards the top of the column. The bubble diameter is initially619

d = 0.5 units and is centred at (0.5, 0.5) in a rectangular domain with dimensions620

2d×4d as in Fig.16. At the bottom and the top of the column a no-slip boundary621

condition is applied with a free-stream boundary condition at the vertical walls622

of the domain. The velocity is set to zero in the domain, and inside the bubble623

the pressure is constant. The physical properties for the bubble and the heavier624

surrounding fluid are listed in Table 11. Different triangular meshes were used625

with their resolution varying as: d/40, d/80, d/160. The benchmark quantities626

used by [69] are the centre mass (yc), the rise velocity of the bubble (vc) and its627

circularity or sphericity in three dimensions (ζ). These are defined as628

yc =

∫

Ωb
xdV

∫

Ωb
dV

vc =

∫

Ωb
udV

∫

Ωb
dV

ζ =
πd

Π

(36)629

630

where Ωb is the region occupied by the bubble and Π is the perimeter of631

the bubble. Fig.17 shows the benchmark quantities through time for the dif-632

ferent meshes. Results obtained in the present study are close to the values633

obtained in [69] and [70] for xc, vc and ζ for the different mesh resolutions. For634

the present conditions with Re = 35 and Eo = 10, where Eo = gd2∆ρ/σ is635

the Eötvös number, the surface tension force is significant which prevents the636

bubble disintegrating. The bubble deforms (t = 1) and changes shape from cir-637

cular to ellipsoid (see also [70]) reaching its terminal velocity at t = 2 which is638

approximately 90 percent of the maximum bubble velocity. The change in rise639

velocity is in good agreement with the velocity obtained in [70]. At the change640

in circularity at t = 1.9 where the surface tension effect on the bubble shape is641
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more evident, and is captured with all three computational meshes in this study642

and is also in close agreement with the calculated ζ in [69]. Similar patterns643

for the calculated benchmark quantities were also observed in other numerical644

works [29, 33, 70]. The results for the relative error norms for yc, ζ and vc are645

shown in Table 12. The calculated errors are in close agreement with the results646

reported in [70] for the three benchmark quantities.647

For the three-dimensional version of rising bubble test case, a three-dimensional648

bubble is placed in a cylinder with height 8d and diameter 8d. The bubble is649

placed at a distance 1.5d from the bottom of the cylinder. The density and650

viscosity ratio between the bubble and the surrounding fluid were set to 100.651

Three hexahedral meshes with different resolution were used for this study,652

with a grid size ∆x = d/15, 20, 40. The errors ERe and Eζ for the calculated653

Reynolds number Re and sphericity ζ are used to assess the accuracy of the654

method, where ERe = (Re− Reexact)/Reexact, Eζ = (ζ − ζexact)/ζexact (where655

Reexact and ζexact are the exact values for Re and ζ respectively). The results656

shown in Table 13 are in good agreement for the three meshes compared to657

the results from the reference case in [29]. In Fig.18 the mass conservation658

error is shown through time. The mass conservation error is calculated with659

respect to the volume fraction at t = 0, α(0) and is defined following [29] as660

δM = |α−α(0)|/α(0). The error for the different meshes remained of the order661

of 10−5 or below showing reasonable accuracy for mass conversation. A similar662

order for δM is reported in the CLSVOF work in [29].663

Table 11: Physical properties for the two-dimensional rising bubble test case.

Physical and numerical parameters

Heavy fluid density 1000 kg/m3

Bubble density 100 kg/m3

Heavy fluid viscosity 10 kg/m · s

Bubble fluid viscosity 1 kg/m · s
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Figure 16: Domain for the two-dimensional bubble rise test case. The diameter of the bubble

is initially d = 0.5.

Table 12: Relative norm error for the centre of mass, circularity and velocity of the bubble in

the two-dimensional rising bubble case. Three different structured meshes are used, and the

results are compared with the level set method of [70].

Mesh size

ILSVOF method LS method of [70]

Centre of mass Circularity Velocity Centre of mass Circularity Velocity

1/40 1.79×10−3 1.19×10−3 1.06×10−2 2.65×10−3 1.0×10−3 1.19×10−2

1/80 8.91×10−4 3.18×10−4 1.81×10−3 9.64×10−4 3.01×10−4 2.9×10−3

1/160 2.41×10−4 6.37×10−5 6.21×10−4 2.62×10−4 8.83×10−5 7.73×10−4

(a) Centroid. (b) Circularity.

(c) Rise velocity.

Figure 17: Evolution of rising bubble benchmark quantities through time. The results are

compared with the case in [70].
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Table 13: Error for Re and sphericity of the bubble in the three-dimensional rising bubble case.

Three different structured meshes are used and the results are compared with the CLSVOF

method of [29].

Mesh size
ILSVOF method CLSVOF method of [29]

ERe Eζ ERe Eζ

d/15 0.00363 0.0126 0.00341 0.0118

d/20 0.00314 0.0063 0.00339 0.0074

d/40 0.00271 0.0036 - -

Figure 18: Mass conservation error for three-dimensional rising bubble case for the three levels

of refinement.

4. Conclusions664

A novel method for simulating the flow of two immiscible fluids tracking665

their interface is presented coupling the level set and volume of fluid methods.666

The new ILSVOF method involves a novel re-initialisation methodology which667

is described in detail. ILSVOF is simple and can be readily implemented for668

any type of polyhedral unstructured mesh. A smooth calculation of the gra-669

dient of the LS function is utilised considering the neighbouring cells via an670
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interpolation at the cell-faces. Using these cell-face calculations for each inter-671

face cell, it is easy to overcome the limitation of having to arbitrarily define the672

upwind and downwind cells. The initial value for the re-distancing algorithm is673

obtained via the advection of the isoface within a time step instead of by using674

an algebraic method. Overall, the method provides better accuracy compared675

to the VOF method in most of the numerical tests considered and has been676

demonstrated to give an accurate representation of the interface in both two677

and three-dimensional test cases. The mapping of the volume fraction to the678

distance function is extremely important for the re-initialisation procedure, and679

alternative ways of doing this, such as by employing a special advection step680

within each solution time step, should be further investigated. Further com-681

parisons with high order level set approaches could also be used to improve the682

level set advection step.683
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