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ABSTRACT: The redox chemistry of anoxic continental margin settings evolved 25 

from widespread sulphide-containing (euxinic) conditions to a global ferruginous 26 

(iron-containing) state in the early Neoproterozoic (1 to ~0.8 billion years ago, Ga). 27 

Ocean redox chemistry exerts a strong control on the biogeochemical cycling of 28 

phosphorus (P), a limiting nutrient, and hence on primary production, but the 29 

response of the P cycle to this major ocean redox transition has not been 30 

investigated. Here, we use a P speciation technique to investigate the phase 31 

partitioning of phosphorus in an open marine, early Neoproterozoic succession 32 

from the Huainan Basin, North China. We find that effective removal of 33 

bioavailable P in association with iron (Fe) minerals in a globally ferruginous 34 

ocean resulted in oligotrophic (nutrient limited) conditions, and hence a probable 35 

global decrease in primary production, organic carbon burial and, subsequently, 36 

oxygen production. Nevertheless, P availability and organic carbon burial were 37 

just sufficient to maintain an oxidising atmosphere. These data imply significant 38 

nutrient-driven variability in atmospheric oxygen levels through the Proterozoic, 39 

rather than the stable levels commonly invoked.   40 

 41 

Phosphorus is generally considered the ultimate limiting nutrient on geological 42 

timescales1, and is thus a key element in controlling primary productivity, organic C 43 

(Corg) burial, and consequently oxygen production. Atmospheric oxygen models 44 

suggest that after the Great Oxidation Event (GOE), pO2 remained well below the 45 

present atmospheric level (PAL), with estimates ranging from <0.001 to ~0.4 PAL [2–46 

4]. Furthermore, it is generally inferred that atmospheric oxygen may have remained at 47 

relatively constant levels after ~2.0 Ga, until the later Neoproterozoic (~0.8 to 0.542 48 

Ga; refs 3,5,6). However, evidence for fluctuations in both the extent of ocean 49 
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oxygenation4,7 and the global-scale nature of ocean redox conditions8,9 in the interim, 50 

could suggest variations in atmospheric oxygen concentrations.  51 

The role of P bioavailability in controlling atmospheric oxygen between the GOE 52 

and the later Neoproterozoic is poorly constrained. Attempts to reconstruct dissolved P 53 

concentrations in the Precambrian ocean have relied on P contents of black shales and 54 

iron-rich chemical deposits10–12. In the latter case, the assumption is that P contents in 55 

iron formations provide a first order estimation of dissolved P in the water column, with 56 

only minimal remobilisation during diagenesis10. However, conflicting experimental 57 

determinations of P co-precipitation and adsorption coefficients have led to widely 58 

divergent reconstructions of Precambrian P concentrations11,13,14.   59 

In contrast to iron-rich chemical sediments, shales P content offers the significant 60 

advantage of a continuous record through the entire geologic timescale. This record has 61 

led to the suggestion that oceanic phosphate concentrations were extremely low until 62 

~0.8 Ga12, which might support inferences of extremely low atmospheric pO2 (<0.001 63 

PAL) until the Neoproterozoic rise in atmospheric oxygen2. However, bulk shale P 64 

contents are limited in that they do not specifically track bioavailable P. In addition, 65 

bulk shale P contents cannot provide detailed understanding of the extent of P recycling 66 

from the sediment back to the water column, which is highly dependent on the precise 67 

redox state of both the water column and sediment pore waters15. 68 

The flux of P to marine sediment commonly occurs via the transport of detrital 69 

apatite, organic matter and Fe minerals through the water column. During deposition 70 

under oxic conditions, up to 90% of Corg may be re-mineralised, releasing organic P 71 

back to the water column. However, under ferruginous conditions, bacterial P 72 

accumulation16 and P uptake by iron minerals such as ferrihydrite17 and green rust18,19 73 

in the water column may be particularly significant sinks for P. Upon settling, P may 74 
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be released to pore waters and the water column during anaerobic diagenesis, via partial 75 

decomposition of organic matter and the reduction of Fe (oxyhydr)oxides20–23. This 76 

process may be compensated by re-adsorption onto Fe minerals at the sediment-water 77 

interface24, enhancing sedimentary P fixation in association with crystalline Fe oxides25 78 

or Fe phosphates19,26–28. By contrast, phosphorus recycling back to the water column 79 

may be particularly intense under euxinic conditions23,29, due to the rapid reduction of 80 

P-bearing Fe (oxyhydr)oxides by hydrogen sulphide30,31, and the preferential release of 81 

P from decaying organic matter during sulphate reduction21,23,29. As a result, C:P ratios 82 

commonly surpass the canonical Redfield ratio of 106:1 by several orders of 83 

magnitude21. However, under all redox scenarios, some, or all, of the recycled 84 

phosphorus may be fixed in the sediment via the formation of authigenic phases during 85 

‘sink-switching’, which involves the transfer of P from its carrier phase to a stable 86 

mineral form, such as authigenic apatite29,32 or Fe phosphates (e.g., vivianite)19,26–28. 87 

An understanding of P recycling thus requires detailed analysis of both the phase 88 

partitioning of P, and the redox context in which P was transported to, and preserved 89 

in, ancient sediments. From ~1.8 Ga, oceans were generally characterised by 90 

oxygenated surface waters overlying mid-depth euxinic waters in productive regions, 91 

with ferruginous deeper waters33–35. Mid-depth water column euxinia would be 92 

expected to promote extensive P recycling to the water column from slope and shelf 93 

sediments15, hence exerting a strong positive feedback on rates of primary production. 94 

Extensive euxinia in the mid-Proterozoic ocean contrasts sharply with the early 95 

Neoproterozoic (~1 to 0.8 Ga), where ferruginous conditions dominated the global 96 

ocean8. However, the response of the P cycle to this fundamental change in ocean redox 97 

chemistry has not been investigated. 98 
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Here, we quantify the speciation of P in ~1 to 0.9 Ga Neoproterozoic sediments 99 

from the Huainan basin (North China craton). We combine these data with C isotope 100 

systematics and existing Fe speciation data8 to evaluate redox controls on P cycling and 101 

bioavailability. We subsequently incorporate constraints from Earth’s surface redox 102 

balance and redox state to provide internally-consistent estimates of P, Corg and O2 103 

cycling under the globally-expansive ferruginous oceanic conditions of the early 104 

Neoproterozoic. 105 

 106 

Geological setting 107 

We focused on the ~1.0 to 0.9 Ga Liulaobei and Jiuliqiao formations (Huainan and 108 

Feishui Groups, Fig. 1), which represent unambiguously open marine continental 109 

margin successions covering a wide range of palaeodepths8. The Huainan Basin has 110 

experienced only low grade regional metamorphism36, providing an ideal opportunity 111 

to explore the speciation of sedimentary P during the early Neoproterozoic. Full details 112 

of the geological setting are provided in Methods and Supplementary Information (SI).  113 

 114 

Phosphorus drawdown in a ferruginous ocean 115 

Iron speciation data for the succession shows strong evidence for persistent ferruginous 116 

water column conditions in the Huainan Basin8, in agreement with the global signal 117 

from continental margin settings at this time8,9. Fe-bound phosphorus (PFe) constitutes 118 

the smallest P pool, representing on average ~5% of total P, despite the relatively high 119 

proportion of ferric oxides in our samples (Fig. S4). Organic P (Porg) is the second 120 

smallest contributor to total P (~9% on average). Authigenic carbonate fluorapatite 121 

(CFA) associated-P (Pauth), and detrital P (Pdet) are the two largest P pools, representing 122 

an average of ~29% and ~58% of total P, respectively. 123 
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Under ferruginous conditions, the increased transport of P in association with Fe 124 

minerals can result in significantly higher sedimentary P/Al ratios37. Yet, in the 125 

persistently ferruginous Huainan Basin, sediment phosphorus (PTot) contents are low 126 

throughout the entire succession (Fig. 2). Normalised P/Al ratios are close to the 127 

average shale value of 0.009 (ref. 38), and show no evidence for P. These low P contents 128 

may reflect either a relatively low marine phosphate reservoir, which is faithfully 129 

recorded by the P preserved in the sediment, or a high degree of phosphorus recycling 130 

back to the water column during early diagenesis, which we explore further below. 131 

 132 

Phosphorus cycling in the sediment 133 

The extent to which P is released from organic matter and Fe (oxyhydr)oxides, and 134 

ultimately fixed in the sediment or recycled back to the water column, will likely 135 

depend on the Corg loading close to the sediment-water interface. This would affect rates 136 

of microbial organic matter degradation and the production of sulphide (and thus 137 

ultimately the release of Porg and PFe), at a depth in the sediment column where the P 138 

released could readily diffuse to the overlying water column.  139 

The Huainan Basin sediments are characterised by low Corg (Fig. 2) and low pyrite 140 

concentrations, coupled with significant preservation of Fe (oxyhydr)oxide minerals 141 

(Fig. S4). This suggests that microbial recycling of Corg during early diagenesis was 142 

likely limited, and pore water chemistry at the sediment-water interface would have 143 

been poised at Fe reduction, rather than sulphate reduction. A lack of sulphide 144 

production close to the sediment-water interface would ultimately result in enhanced 145 

sedimentary P fixation, initially in association with Fe minerals and organic matter, 146 

followed by ‘sink-switching’ to other mineral phases such as authigenic apatite32 or 147 

vivianite37 deeper in the sediment profile. The speciation of P in our samples is 148 
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consistent with these suggestions, whereby the relatively low PFe and Porg we observe 149 

relative to Pauth (Fig. 2) suggest significant ‘sink-switching’. 150 

To further evaluate controls on P cycling, we consider variations in molar Corg:Porg 151 

ratios. Today, there is considerable variation between lower Corg:Porg ratios in nutrient 152 

replete conditions and higher Corg:Porg ratios in the most oligotrophic subtropical gyres 153 

(up to ~600; ref. 39). Consequently, it has been suggested that extreme P limitation in 154 

the mid-Proterozoic may have resulted in molar Corg:Porg ratios of up to 400 (ref. 12). 155 

Additionally, during incomplete remineralisation of Corg, preferential regeneration of P 156 

commonly results in higher Corg/Porg values21,23,29. For example, in laminated sediments 157 

underlying anoxic waters, C/P ratios may approach 600 in modern settings21, and 158 

average at 3,900 in the geological record40 (Table S2). 159 

In our samples, Corg/Porg values are close to the Redfield ratio (Fig. 3A), reflecting 160 

little preferential loss of P from organic matter during deposition and early diagenesis. 161 

This is also supported by dominantly heavy carbonate-C isotope values (Fig. 2), as 162 

larger amounts of Corg mineralisation during diagenesis would potentially result in a 163 

wider range of (more) negative δ13Ccarb (ref. 41). Corg/Preac rations (where Preac represents 164 

potentially mobile P during deposition and early diagenesis; calculated as Porg + Pauth + 165 

PFe) also provide useful insight into controls on P cycling32. First, however, we consider 166 

whether our Pdet analyses may have been affected by a possible transfer of authigenic 167 

apatite (i.e. Pauth) to the detrital apatite pool during burial diagenesis and 168 

metamorphism42, which would lower primary Preac values. We find strong linear 169 

relationships between Pdet and Al (as a proxy for the detrital input) throughout the 170 

succession (see SI), which suggests that the measured Pdet dominantly reflects the actual 171 

detrital P input, rather than post-depositional recrystallization. In support of these 172 

observations, we note that modern continental margin sediments typically have Pdet 173 
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contents of 186 ± 21 ppm (ref. 32), which is somewhat higher than the average of 145 174 

± 89 ppm we observe for the Huainan Basin sediments. Furthermore, modern 175 

oligotrophic settings commonly have Pdet values of 62-310 ppm (78 ± 41 ppm, ref. 27), 176 

which is similar to the range we observe (30-496 ppm). Hence, potential 177 

recrystallization of authigenic apatite was insignificant in terms of the dominant phase 178 

partitioning of phosphorus. 179 

The molar ratios of Corg/Preac plot below the Redfield ratio (Fig. 3A). Since we see 180 

little evidence for preferential release of P from organic matter, our novel Corg/Preac 181 

approach therefore implies efficient drawdown of P from the ferruginous water column, 182 

presumably as Fe-bound P. While a small proportion of this original PFe was preserved, 183 

a significant proportion was ultimately fixed in the sediment as Pauth. This is consistent 184 

with high proportions of Fecarb (Fig. S4), which likely formed during diagenesis 185 

following the dissolution of Fe minerals and release of adsorbed P.  186 

 187 

An early Neoproterozoic oligotrophic ocean 188 

The Huainan Basin sediments provide a case study for the behaviour of the P cycle 189 

under global ferruginous ocean conditions, and suggest that the low P content of these 190 

open ocean sediments reflects a relatively low seawater P reservoir in the early 191 

Neoproterozoic. This would have been a natural consequence of widespread P 192 

drawdown in association with Fe minerals as euxinia retracted and continental shelves 193 

transitioned to a ferruginous state8. A prediction of such conditions would be that 194 

sedimentary P should be dominated by detrital phosphorus12, with some fixation of 195 

primary Fe-bound P as authigenic P, both of which we observe in the Huainan basin 196 

(Fig. 2). The development of a low seawater P reservoir would be expected to act as a 197 

limiting constraint on primary production. Indeed, Corg/Porg ratios close to the Redfield 198 
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ratio, combined with lower Corg/Preac ratios, are typical signatures of modern 199 

oligotrophic settings27. 200 

An alternative view to the ‘Fe-bound phosphorus shuttle’ as a driver for 201 

Precambrian ocean P limitation invokes decreased aerobic Corg remineralisation due to 202 

widespread ocean anoxia43. However, if a lack of aerobic recycling was responsible for 203 

low productivity throughout the Precambrian, then no significant change would be 204 

expected in the TOC loading of sediments as the redox structure of the anoxic ocean 205 

evolved from widespread euxinia to global ferruginous conditions. Although TOC 206 

contents are not a direct metric for the Corg flux to the sediment, there is, however, an 207 

apparent contrast between lower TOC contents in early Neoproterozoic shales and the 208 

preceding Mesoproterozoic44 (see SI). This apparent contrast is entirely consistent with 209 

a mechanism invoking diminished Corg burial driven by a global decrease in 210 

productivity, due to efficient P removal and limited recycling under a global ferruginous 211 

state. 212 

We can, however, provide a further, more direct test of this hypothesis via detailed 213 

investigation of euxinic sediments from the preceding mid-Proterozoic. We thus 214 

augment our data with ~1.1 Ga and ~1.8 Ga sediments deposited under euxinic 215 

conditions in the Taoudeni Basin (Mauritania) and the Animikie Basin (North 216 

America), respectively (see SI for sample descriptions and redox interpretations). In 217 

contrast to the ferruginous data, Figure 3B demonstrates extensive recycling of P from 218 

organic matter, in addition to efficient recycling of P back to the water column (Corg/Porg 219 

and Corg/Preac are both significantly greater than the Redfield ratio), as we anticipated15 220 

under the euxinic conditions that characterised productive mid-Proterozoic continental 221 

margins34,35. Thus, when placed in the context of the global shale record (Fig. 4), the 222 

low P content of early Neoproterozoic sediments likely reflects low seawater P 223 
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bioavailability under the global ferruginous conditions that occurred from ~1.0 to 0.8 224 

Ga. This contrasts with the preceding mid-Proterozoic, where relatively low P contents 225 

instead reflect extensive recycling back to the water column under widespread euxinic 226 

conditions, resulting in a positive productivity feedback and hence increased Corg burial 227 

on a global scale (Fig. 5). However, despite an early Neoproterozoic drop in global 228 

productivity, sedimentary Corg:Porg ratios close to the Redfield ratio (Fig. 3A) suggest P 229 

limitation of primary production was not sufficiently extreme to alter phytoplankton 230 

stoichiometry. 231 

 232 

Maintaining an oxidizing atmosphere 233 

A recent model of Proterozoic atmospheric pO2 regulation predicts a pO2 of ~0.1 PAL 234 

during the Proterozoic, with a lower limit of pO2 >0.01 PAL, below which O2 is unstable 235 

and the GOE is reversed45 (see SI for details on model assumptions). The sulphur cycle 236 

is estimated to have been a net sink for oxygen at ~1.0-0.9 Ga due to widespread 237 

gypsum evaporite deposition8. Hence, to maintain an oxidising atmosphere, the Corg 238 

burial flux must have exceeded the input flux of reduced gases (~1.25 × 1012 mol O2 eq 239 

yr-1 in the present day, ref. 45). Comparing this to estimates of modern total (~5 × 1012 240 

mol O2 eq yr-1) and marine (~2.5 × 1012 mol O2 eq yr-1) organic C burial, it suggests that 241 

Proterozoic Corg burial could not have fallen below ~25% of today’s total value, or 242 

~50% of today’s marine value45.  243 

This constraint requires that reactive phosphorus inputs were at least half of today’s 244 

value, and the global average Corg/Preac burial ratio was comparable in magnitude to 245 

today. Our maximum total P contents of 0.05 wt% are comparable to the average value 246 

for upper continental crust46 of 0.065 wt%, and the maximum TOC content of 0.3 wt% 247 

(Fig. 2) is comparable to today’s reduced C content of upper continental crust and 248 
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sediments of 0.4-0.6 wt%. Assuming our section is globally representative, a pre-249 

anthropogenic sediment erosion rate of ~7 × 1015 g yr-1 (ref. 47) gives a total P burial 250 

flux of <1.1 × 1011 mol P yr-1, and a Preac burial flux of <4.6 × 1010 mol P yr-1 (using 251 

our average reactive P content of 42% total P), which is comparable to today’s P 252 

weathering flux, estimated at ~4 (2.3-15.5) × 1010 mol P yr-1 (ref. 48). This gives a Corg 253 

burial flux of <1.75 × 1012 mol C yr-1, which exceeds the ~1.25 × 1012 mol yr-1 threshold 254 

required to maintain an oxidising atmosphere (ref. 45). Thus, while efficient P removal 255 

under global ferruginous conditions drove a negative productivity feedback, we infer 256 

there was just sufficient Corg burial to maintain an oxidising atmosphere in the early 257 

Neoproterozoic. 258 

Furthermore, the observation that the deep ocean was anoxic49 implies that oxygen 259 

demand exceeded supply in deeper waters. During the early Neoproterozoic, which 260 

plausibly had a much weaker biological carbon pump, it would have been more difficult 261 

to drive deeper waters anoxic, requiring a pO2/[PO4] ratio <<0.4 of present levels50. 262 

Therefore, if pO2 was >0.01 PAL, then [PO4] >>0.025 of present ocean levels (POL) 263 

would be required, corresponding to [PO4] >>0.055 mol kg-1. Alternatively, if pO2 264 

was ~0.1 PAL, then [PO4] at >>0.25 POL (>0.55 mol kg-1) would be required to 265 

maintain deep ocean anoxia. 266 

 267 

In summary, we infer that in the ferruginous early Neoproterozoic ocean, P was 268 

effectively removed from the water column and fixed in the sediment as authigenic 269 

phases. The lack of phosphorus regeneration into the water column likely constrained 270 

primary production and Corg burial, limiting the extent of atmospheric oxygen 271 

production. However, whilst the early Neoproterozoic had lower [PO4] and pO2 than 272 

the preceding late Paleo-Mesoproterozoic, our data and existing models suggest that 273 
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the nature of P cycling supported sufficient Corg burial to maintain an oxidising 274 

atmosphere, with a stable pO2 of >0.01 PAL, and [PO4] >>0.025 POL. Furthermore, 275 

sedimentary organic matter close to today’s Corg/Porg Redfield ratio of ~106:1 argues 276 

against extreme P limitation of productivity. Together, these observations imply 277 

significant potential variability in atmospheric oxygen concentrations across Earth’s 278 

‘middle age’, which were tied to global-scale changes in ocean redox chemistry. 279 

 280 

Data availability 281 

All data generated and analysed for the current study are attached, and are available 282 

from data repository DOI:10.5285/72c9a48f-4813-4507-9137-a97d7e6bd2d9. 283 
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Figure Captions 428 

Figure 1. Sample locations within the north China craton. 429 

a, Location of the Huainan Basin within the Rodinia supercontinent during the early 430 

Neoproterozoic. b, Huainan region location within modern day China. c, Sample 431 

locations (red stars) within the Huainan region in the Anhui province. The figure was 432 

modified after refs. (8,36).  433 

 434 

Figure 2. Geochemical variations against the main stratigraphy of the Huainan 435 

Basin. 436 

a, Stratigraphy of the Huainan Basin and lithology of the sections studied, modified 437 

after ref. (8). Geochemical variations include: b, Total organic carbon (TOC) and total 438 

Fe (FeT) contents; c, Organic carbon and carbonate carbon isotope compositions 439 

(δ13Corg and δ13Ccarb, respectively); d, Total phosphorus (Ptot) contents and the P to 440 

aluminium ratio (P/Al), the dotted line representing the average shale value38 (note the 441 

difference in x-axis); e, The proportion of detrital (Pdet), authigenic (Pauth), organic-bond 442 

(Porg), and Fe oxide-bond (PFe) phosphorus within the total phosphorus pool. Errors are 443 

included within the data points. 444 

 445 

Figure 3. Organic carbon (C) versus P (P) contents in Proterozoic sediments. 446 
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 a, Molar organic C versus total P (Ptot), reactive P (Preac) and organic-bound P (Porg) in 447 

the ferruginous Huainan Basin. b, Comparison with the ~1.1 Ga Taoudeni Basin, 448 

Mauritania (euxinic setting, represented by triangles) and the ~1.8 Ga Animikie Basin, 449 

North America (euxinic setting, represented by squares). The grey lines represent the 450 

Redfield C/P ratio of 106:1. C and P contents are given in mol per 100 g of sediment. 451 

Errors are included in the datapoints.  452 

 453 

Figure 4. Phosphorus contents in black shales through time. 454 

Compiled data of P contents in shales, plotted as grey circles, are from ref. 12. Data 455 

from the Huainan Basin (this study) are represented by closed red circles. The green 456 

boxes represent the whisker data for each associated time period. Compiled data were 457 

binned as a function of the time period considered, and the boxes represent the 1st 458 

quartile, median and 3rd quartile of the binned data. Whiskers mark the Tukey’s range 459 

test for the binned data. Arrows indicate high value data in the Phanerozoic and the late 460 

Neoproterozoic that could not be represented on the figure. 461 

 462 

Figure 5. Biogeochemical evolution of the ocean at the Mesoproterozoic-463 

Neoproterozoic boundary (~1 Ga). 464 

a, Prior to ~1 Ga, mid-depth, euxinic (sulphide-rich, H2S) continental margins 465 

promoted phosphorous regeneration (as phosphate, PO4
3-) through preferential release 466 

from organic carbon (Corg) and the reduction of Fe (oxyhydr)oxides, resulting in higher 467 

productivity and higher Corg-to-organic P (Porg) ratio. b, After ~1 Ga, under the globally 468 

ferruginous (Fe(II)-rich) early Neoproterozoic ocean, P was effectively removed from 469 

the water column and fixed in the sediment as authigenic phases through ‘sink-470 
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switching’, resulting in oligotrophic continental margins and Corg/Porg close to the 471 

Redfield ratio. 472 

 473 

Methods 474 

Geological context. The Huainan basin only witnessed low grade metamorphism, and 475 

hosts exceptionally well preserved, light-coloured acritarchs36, as a result of low 476 

temperature gradients since deposition. Samples were collected from freshly exposed 477 

outcrops from an extensive, 700-800 m thick succession of shales, siltstones, mudstones 478 

and carbonates from the ~1-0.9 Ga Liulaobei and Jiuliqiao Formations. Because these 479 

sedimentary successions begin with relatively deep-water continental slope deposits, 480 

and shallow upwards to intertidal stromatolitic dolomites, they present an ideal site for 481 

exploring nutrient provision and cycling across a range of water depths. 482 

 483 

TOC and C isotopes. TOC values are from a previously published study8. C isotope 484 

analyses were performed on the organic and carbonate fractions of the sediment 485 

samples. For the organic fraction, samples were decarbonated via two 24 h HCl washes 486 

(25% vol/vol), rinsed, centrifuged and dried before analysis. All data are reported with 487 

respect to the Vienna Pee Dee Belemnite standard (V-PDB), with a precision of ± 488 

0.07‰ (1σ level). 489 

 490 

Elemental analysis. Bulk sediment digestions were performed on ~50 mg of rock 491 

powder using HNO3-HF-HClO4 at ~70°C, followed by H3BO3 and HCl. Total P and Al 492 

contents were measured by ICP-OES, along with Mn and Sr, with a precision of ± 0.4 493 

ppm for P and ± 0.9 ppm for Al, respectively (n = 8). Total digests of standard material 494 
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(PACS-2, National Research Council of Canada) yielded values within the certified 495 

range for all analyses elements (<3%). 496 

 497 

P speciation. We performed the sequential phosphorus SEDEX extraction51 adapted 498 

for ancient sedimentary rocks25 (Table S2 and ref. 52) on sediment aliquots of ~150-499 

200 mg. The method targets five operationally-defined phosphorus sedimentary pools, 500 

including iron bound phosphorus (PFe), authigenic CFA-associated P (Pauth), detrital 501 

apatite and inorganic P (Pdet), organic bound P (Porg) and total P (Ptot). The applied 502 

method was slightly different to the SEDEX scheme, in that the “loosely sorbed P” step 503 

was omitted, and an additional HNO3-HF-HClO4-H3BO3-HCl extraction step (V) was 504 

performed on the residue in order to achieve near complete P recovery. Using this 505 

approach, an average recovery of 99% of the total P pool (as determined by ICP-OES) 506 

was achieved during the sequential extractions (Fig. S3-A). For each extraction step 507 

and washes, except for extraction step I, P concentrations were determined 508 

spectrophotometrically using the molybdate-blue method on a Spectonic GENESYS™ 509 

6 at 880 nm. Reagents used in extraction I interfere with the molybdate complex, and 510 

for this step, P contents were measured by ICP-OES. Replicate analysis of a sample (n 511 

= 5) gave a RSD of <10% for each step, apart from PFe, where the RSD was 16%, partly 512 

due to the low concentrations of this phase (Table S2). 513 

 514 

References only in Methods 515 

51. Ruttenberg, K. C. Development of a sequential extraction method for different 516 

forms of phosphorus in marine sediments. Limnology and Oceanography 37, 517 

1460–1482 (1992). 518 
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52. Full data are available in the repository DOI: 10.0.20.165/72c9a48f-4813-4507-519 

9137-a97d7e6bd2d9. 520 
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