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Automated Decision Support System for Lung

Cancer Detection and Classification via

Enhanced RFCN with Multilayer Fusion RPN
Anum Masood, Bin Sheng, Member, IEEE, Po Yang, Senior, IEEE, Ping Li, Member, IEEE,

and David Dagan Feng, Fellow, IEEE

Abstract—Detection of lung cancer at early stages is critical,
radiologists read computed tomography (CT) images to prescribe
follow-up treatment. The conventional method for detecting
nodule presence in CT images is tedious. We propose an enhanced
multidimensional Region-based Fully Convolutional Network
(mRFCN) based automated decision support system for lung
nodule detection and classification. The mRFCN is used as an
image classifier backbone for feature extraction along with the
novel multi-Layer fusion Region Proposal Network (mLRPN)
with position-sensitive score maps (PSSM) being explored. We ap-
plied a median intensity projection to leverage three-dimensional
information from CT scans and introduced deconvolutional layer
to adopt proposed mLRPN in our architecture to automatically
select potential region-of-interest. Our system has been trained
and evaluated using LIDC dataset, and the experimental results
showed the promising detection performance in comparison
to the state-of-the-art nodule detection/classification methods,
achieving a sensitivity of 98.1% and classification accuracy of
97.91%.

Index Terms—Lung cancer, nodule classification, convolutional
neural network, computer aided systems.

I. INTRODUCTION

LUNG cancer is considered to be a major cause of death

worldwide. Almost 1.6 million people die in a year due

to pulmonary cancer. In 2018, pulmonary cancer has caused

142,670 deaths alone in the US [1]. Pulmonary cancer is a

disease indicated by the uncontrollable growth of abnormal

pulmonary cells. Most effective method for lung nodule detec-

tion in early stages is computed tomography scan owing to its

ability to generate high resolution 3D chest images. Detection

of lung cancer in the initial stages is crucial to patient’s

survival but it is tedious and difficult task since the radiologists

manually marked nodule position and possibly miss lung

nodules which have overlapping anatomical structures.

In the past decade, the lung cancer death rate is compar-

atively reduced owing to the advancements in the industrial
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applications used for lung cancer detection and diagnosis.

Different commercially available computer-aided systems have

potential to tremendously increase the detection as well as the

diagnosis accuracy even with high dimensional lung cancer

dataset without annotation features for classification. CAD

system for nodule detection comprises of Computer Aided De-

tection (CADe) and Computer Aided Diagnosis (CADx). The

CADe aims to distinguish between the nodule candidates as

non-nodule (anatomical structures like tissues, blood vessels)

while CADx characterize these detected lesions and classifies

them as benign or malignant tumors. The aim of these CAD

systems primarily is to overall enhance the accuracy of cancer

diagnosis by the radiologists while reducing the CT images

interpretation time duration. In this way, these tools have

become crucial to assist in their decision making.

With the introduction of deep learning techniques [2] partic-

ularly in object detection and feature extraction from big data,

various computer-aided (CAD) systems based on deep learning

are developed for real-world clinical use. These methods have

significantly enhanced the quality and the efficiency of the

healthcare sector particularly the screening process for lung

cancer early detection. Although the innovations in pulmonary

cancer are slow and unsteady in terms of survival rate as

compared to the other cancer types yet deep learning methods

have promising results and the detection systems based on

deep learning techniques have declined the lung cancer death

rate by the factor of 22% in the last 5 years. In this paper,

we have proposed a novel CAD system for pulmonary nodule

detection and classification. The key contributions of this paper

are listed as follows.

• A novel deep convolutional neural network based model

is proposed for early detection of lung cancer which is

capable of using 3D spatial as well as contextual infor-

mation yielding larger amount of discriminating feature

map for nodule candidates detection.

• Novel multi-Layer fusion Region Proposal Network (mL-

RPN) is proposed for selection of potential region-of-

interest (RoI) with position sensitive score maps (PSSM)

to achieve high accuracy in nodule classification. We

applied novel median intensity projection (MIP) to lever-

age three dimensional information from CT images, and

integrated deconvolutional layer to adopt mLRPN for

automatic RoI selection.

• The performance of proposed CAD system is validated
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in two modes: mRFCN stand-alone and mRFCN Cloud

based. Testing of both modes is done on LIDC dataset

and clinical dataset from Shanghai Sixth People's Hos-

pital (SPH). Furthermore, experimental results for the

performance of the proposed method on the LIDC dataset

show high precision and reduced false positive rate to

a significant extent in comparison to the state-of-the-art

nodule detection and classification methods.

II. RELATED WORK

In general, any CADe system for lung cancer comprise of

four phases; pre-processing, lung segmentation, analysis of

feature set and candidate nodule detection on the other hand

CAD systems have two stages; nodule candidate detection

and false positive (FP) reduction (see Fig. 1). For nodule

detection, traditionally lung segmentation is done using 2D

geometrical level set active contour, morphological features,

2D parametric deformable model, voxel clustering and multi

gray-level thresholding. The limitation of these models was

their dependency on the image and inability to detect nodules

overlapping anatomic structures [3]. Several researchers have

proposed various CADe systems to detect the lung nodules.

Armato III et al. [4] proposed a CADe system which uses

Linear Discriminant Analysis (LDA) method on 187 nodules

(juxtaplueral and solitary nodules) resulting in sensitivity of

approximately 70% while having 9.6 FP per case. Suzuki

et al. [5] used the dataset of 121 nodules (juxtapleural, jux-

tavascular, solitary and ground-glass shaped lesions) while [6]

developed MTANN (Massive Training Artificial Neural Net-

work) for nodule detection. The initial nodule candidates are

processed using filtering method in order to remove the false

positive results. Supervised approaches are also developed to

reduce the FP but these methods have high computational

cost. Hierarchical VQ, LDA, ANN, SVM are few supervised

reduction methods which are used for FP reduction [7]–[10].

In recent years deep learning is introduced in medical imaging,

according to Setio et al. [11], there are numerous CAD systems

using deep learning for nodule detection. Convolutional Neural

Network (CNN) [12], Fully Convolutional Networks (FCN)

[13], Multi-crop Convolutional Neural Network (MC-CNN)

[14], and DFCNet [15] are CAD systems based on deep neural

networks which are capable of classifying the detected nodules

as benign or malignant tumors.

III. METHODS

A. Datasets

In the real application of Computer Aided Diagnosis (CAD)

system, the screening stage is very crucial. Since it is a huge

computation cost for using 3D CT scans volume, an alterna-

tion of using source pictures in axis direction is applicable.

Therefore, we combined three neighboring CT scans for each

axis direction, respectively. The potential candidates choice of

search space can be further analyzed by selecting training sets

of original CT scans.

B. Augmentation

In situations, where a limited amount of labeled data is

available, neural networks tend to over-fit training dataset,

because these models have large quantities of parameters. An

efficient way to tackle this problem is data augmentation.

Although part of the resultant samples from data augmentation

might be similar to each other. During the data augmentation

phase, each RoI goes through a series of image transformations

for label-preserving, producing a huge amount of correlated

newly acquired training data samples. Affine transformation

namely translation, scaling and rotation are used. Mostly the

training data samples obtained from data augmentation have

a correlation, thus this step is recommended for data over-

fitting reduction. We opted to augment malignant samples

by cropping, duplicating, flipping, scaling and rotating copies

in training dataset. Specifically, among input batch, random

rotation were performed for up-sampling and down-sampling.

We resampled training and testing cases to 3 mm since

having common thickness method helped in attaining the

homogeneity among all cases (training and testing) which

further improved the dataset processing.

C. Architecture

1) Multiview Combination: Unlike traditional image clas-

sification problem where input channels are the same as the

color channels of the image, CT scan generates gray-scale

images. Another notion is that CT scans sets are originally

3D in which z axis to discriminate different positions of lung

nodule, whereas the input image sets are 2D patches. Inspired

by Hessian, we explore Median Intensity Projection (MIP) [16]

to combine information from three dimensions of CT scans.

We defined θ as image projected by MIP. With input image

patch I , θ for three dimensions can be presented as:

θ(q, r) = med
p

I(p, q, r)

θ(p, r) = med
q

I(p, q, r)

θ(p, q) = med
r

I(p, q, r)

(1)

where med denotes median operator. Different views can

provide different information, while patches in combination

with different dimensions can provide the space distribution of

tumor tissues. In order to construct input image sets with three

channels, we connected three MIP projected images together:

θ = [θ(q, r), θ(p, r), θ(p, q)].
The proposed multi-layer fusion region proposed network

(mLRPN) is designed to improve the original RPN from

Faster R-CNN [17] is designed to overcome the limitation

of the previous related work targeted for object detection i.e.

Faster R-CNN. Although the proposed work is inspired from

the resnet of Faster R-CNN yet it has replaced 2D with 3D

convolution layers. CT images can be processed by proposed

MIP method to interactively viewing volumes of CT data, in

which the CT number of each pixel is given by the minimum

number of CT through the volume. Furthermore unlike the

Faster R-CNN, the proposed mRFCN uses mLRPN which

improves the RoI selection thus improving the performance of

detection by the proposed method. Additional Deconvolutional
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Fig. 1: (a) Basic Stages of Computer Aided Detection (CADe)

System for Lung Nodules. (b) Stages of our proposed Com-

puter Aided Detection System.

layer improved the original RPN from Faster R-CNN. The

deconvolutional layer upsampled the features learned from

the input. Traditionally, Faster R-CNN depends on the skip

connection linked with the deconvolution layer on the upsam-

pling for generating initial results but the deconvolution layer

is unable to recover the small-sized objects such as nodules

which are lost after the downsampling. Therefore, they cannot

accurately detect small-sized nodules. In our proposed method,

we used deconvolutional layer which ensured the recovery

of any loss of small objects such as lung nodules in the

downsampling process. The challenge for Faster R-CNN in

case of lung nodule detection is that it cannot detect the diverse

sized objects using limited labeled dataset. To mitigate this

we proposed novel method, mLRPN has improved feature

extraction (multi-resolution) and we used multiple layers for

region proposal generation i.e. multi-angle, multi-size and

multi-shape. For efficient selection of the ROI, we proposed

to merge all the RoI which were extracted from multi-layers

in a single layer as shown in overview of the mRFCN in Fig.

2.

2) Multi-Layer Region Proposal Network (mLRPN): A

prevalent method for selecting region of interest (RoI) is to

split original CT scans into small sample windows: 8 × 8,

16 × 16, and 32 × 32. For our proposed work, we selected

the mini-window, whose spatial window contains the central

of malignant nodule according to the marked-up annotation

from experienced thoracic radiologists, as positive training or

testing samples. Such a strategy has an obvious disadvantage

that if a specific nodule is larger than pre-fixed sample window

or some nodule is located across two sample windows, then

it will be discarded. This disadvantage will lead to inaccurate

construction of training or testing sets, and further lead to low

classification performance. In order to address the problems

mentioned above and select several RoI efficiently, we pro-

posed a novel multi-Layer fusion Region Proposal Network

(mLRPN). In the mLRPN, in order to improve the ability

to detect nodules of different scales, shape and orientation,

we designed a three layer multi-RPN; multi-size vuL1, multi-

angle θgL1, and multi-shape djL3 which generate rectangular

object proposals set using the image (irrespective of size) as

its input, and further calculates objectness value for each set

[17]. We observed that malignant nodule occupy relatively

small proportion of CT scans compared to conventional object

Fig. 2: Overview of the mRFCN architecture.

Fig. 3: Our proposed anchor in multi-Layer fusion Region

Proposal Network (mLRPN).

recognition tasks where object takes up a larger space in the

image. Since VGG-16 Net contains several max pooling lay-

ers, which inevitably reduce the image size [18], resulting in

the relatively small nodule distorted. Gaining inspirations from

previous success of Long [19], we proposed a deconvolutional

layer, 4 kernel size and 4 stride size, to be added after the last

feature extracting layer. This deconvolutional layer is aimed

to recover the original CT scans size by upsampling (see Fig.

2 for our proposed system).

According to [20], we use a tiny network N to slide through

the activation (feature) map output Mout by the final added

deconvolutional layer. We also defined this tiny network N
to take 3× 3 spatial windows of the input activation(feature)

map Min with each spatial window w being mapped to 512 di-

mension feature. The feature will be fed into box-classification

layer (cls) and regression layer (reg), respectively. As for the

choice for anchor [21] size shown in Fig. 3, we explore

large quantities of nodule boundary size, and generate six

different sizes vuL1 (u represents anchor size) of reference

boxes centered at each sliding window location for our multi-

size layer. In order to contain nodules of different malignant

level, we choose anchor sizes of 4×4, 8×8, 12×12, 20×20,

26 × 26, 32 × 32, respectively (see Fig. 3). As the nodule

spreads in all direction therefore, we proposed multi-angle

layer, in which we rotated RPN with 12 different angles θgL2

where g represents angle i.e. 0,30,60,90,120,150,180,-150,-

120,-90,-60, and -30 degrees rotation from center of sliding

window. Lastly, we proposed multi-shape layer djL3 where j
shows different shapes based on the anchor’s width to height

ratio;1:1, 2:1 and 1:2.

3) Multidimensional Region-based Fully Convolutional

Network (mRFCN): With mLRPN proposing RoI, we apply
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7x7 conv, 64, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

…
…

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

…

3x3 conv, 512, /2

3x3 conv, 512, /2

3x3 conv, 512, /2

…

pool, /2

6 layers

7 layers

11 layers

5 layers

CT sans

Fig. 4: Detailed configuration of our proposed multidimen-

sional Region-based Fully Convolutional Network (mRFCN).

Region-based Fully Convolutional Network [22] to predict

presence of nodule or the malignancy level if nodule exists.

Our architecture is inspired from ResNet-101 [23] which is

based on the VGG nets, comprising of 3 × 3 filters with the

convolutional network. In ResNet-101, if the filters and layers

are comparable then the feature map size remains the same

but in order to maintain time complexity for each layer when

activation map size is halved, the number of the filters should

be doubled. In mRFCN, we excluded the fully convolutional

layer and the mean pooling layer for efficient computation of

the feature maps. In case of similar dimensions for both the

output and input, the identity alternatives can be directly used:

q = F(p, {Wi}) + p (2)

where p and q denotes input and output vectors, respectively,

that are fed into and considered by each network layer. The

function F(p, {Wi}) shows the residual mapping which is to

be learn. There are two alternate solutions in case the input

dimensions increase. If no extra parameters are already present

then the identify mapping’s dimensions are increased by zero

entries padding. Another way is to add 1 × 1 convolutional

layer to match dimension with shortcut projection. The stride

for both options is 2. Unlike ResNet-101, our proposed model

uses convolutional layer solely to compute the feature map,

therefore, the learnable weights are computed using convolu-

tional layers and shared on the whole image. The architecture

design of mRFCN is shown in Fig. 4.

Using the radiologist annotations, we add a k × k(5 + 1)-
channel convolutional layer (4 × 4) as the output layer to

generate position sensitive score maps (PSSM). Where 4
represents five malignant level of lung nodule, 1 represents

non-nodule, and we divide mLRPN proposed RoI into 4 × 4
grid cell. Specifically, for 32× 32 proposed rectangular, each

divided grid has the size of 8 × 8. Therefore, 4 × 4 × 6
score maps were generated, and we used the average pooling

operation to calculate the relevance score to 6 categories for

each split bin:

ζc(w, h | φ) =
∑

(a,b)∈bin(w,h)

zw,h,c(a+ a0, b+ b0 | φ)/n (3)

where φ denotes parameters of the network, ζc(w, h | φ) is

the relevance score of (w, h)th bin to malignant category c,
zw,h,c is the score map generated by last convolutional layer,

(a0, b0) is the top-left corner of RoI, and n denotes the total

pixel number in the bin. With 4 × 4 × 6 relevance scores ζ
being calculated, we decide the malignancy level of the RoI

by average voting and also apply cross-entropy evaluation for

ranking of RoI:

ζc(φ) =
∑

w,h

ζc(w, h | φ) (4)

ξc(φ) = exp(ζc(φ))/

5
∑

ι=0

exp(ζι(φ)) (5)

Here ζc(φ) denotes the relevance score for RoI to class c, and

ξc(φ) is the softmax response for class c.
Following [21], [23] we also applied bounding box re-

gression to generate 4-dimension bounding box vector t =
(tx, ty, tw, th), the parameters are defined as:

tx = (x− xa)/wa

ty = (y − ya)/ha

tw = log(w/wa)

th = log(h/ha)

(6)

where (x, y) denotes the box’s central position, and w rep-

resents the width and h shows the box height. The variables

above with subscript a are the corresponding parameters for

anchor box (see Fig. 3). We add a sliding 4 × 4 × 4 -d

convolutional layer for bounding box regression. After we

obtained 4× 4× 4 score maps bank, we simply use position-

sensitive region of interest pooling on them, further we get

4 × 4 × 4 dimensional vector for each region of interest.

The position-sensitive RoI pooling layer is used to leverage

position sensitive score in each grid. The whole computation

process is almost cost-free since there is no supervised learning

layer following the RoI layer.

D. Loss Function

In the training process, with RPN to provide region pro-

posal, we define our loss function by merging box regression

as well as the cross-entropy loss:

{L}t,ξ = − log(ξc∗) + {
1

Nr

}
∑

{L}r(t, t
∗) (7)

{L}r(t, t
∗) =

{

0.5(t− t∗)2, {if |t− t∗| < 1}

|t− t∗| − 0.5, {otherwise}
(8)

where the left part of equation 7 denotes classification cross

entropy loss [23], Nr is the input number of Regression layer,

Lr is similar to the bounding box regression loss as presented

in [17], and t∗ denotes ground truth values. Positive samples
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Algorithm 1 Multidimensional Region-based Fully Convolu-

tional Network Training Procedure

1: procedure MULTIDIMENSIONAL REGION-BASED

FULLY CONVOLUTIONAL NETWORK TRAINING

PROCEDURE(B, b, n, S, α, β1, β2)

2: Inputs:

3: B: RoI sample batch size;

4: b: mini-batch size;

5: S: Rescale image size;

6: α: Adam stepsize;

7: n: Training iteration;

8: β1, β2 ∈ [0, 1): Exponential decay rate for moment

estimates;

9: Initialization:

10: Initialize w̃0 = 0 (Initialize network parameter vec-

tor);

11: Pre-process dataset:

12: Construct 3-dim dataset using Median Intensity Pro-

jection according to Eq. (1);

13: Rescale dataset into S;

14: for s = 0, 1, 2, ..., n do

15: Forward Pass:

16: Generate feature map with multidimensional-

RFCN architecture;

17: Generate M Region of Interest;

18: for m = 0, 1, 2, ...,M do

19: Construct loss function for RoIm using Eq. (6);

20: end for

21: Backpropagation:

22: RoIs sorting by loss (positive RoIs and negative

RoIs);

23: Selection of highest loss L in set B RoIs;

24: Gradient estimation gs =
∑

i∈B
∇Li

B
;

25: ms+1 = β1 ·ms+(1−β1) ·gs (Updating of biased

1st moment estimate) ⊲ Adam process;

26: vs+1 = β2 · vs + (1− β2) · g
2
s (Updating of biased

2nd raw moment estimate);

27: m̂s+1 = ms+1/(1− βs+1
1 ) (Computation of bias-

corrected 1st moment estimate);

28: v̂s+1 = vs+1/(1− βs+1
2 ) (Compute bias-corrected

2nd raw moment estimate);

29: w̃s+1 = w̃s − α · m̂s+1/(
√

v̂s+1 + ǫ);
30: end for

31: return w̃n (the tuned network parameter);

32: end procedure

are represented by RoIs which have an intersection-over-union

(IoU) protrude with ground-truth box of minimum 0.5, and

alternatively, negative. In our mRFCN training procedure,

the computation cost of RoI is negligible which enables the

example mining to be cost free. We first construct the 3D

dataset using MIP and then re-scale the dataset as pre-defined

size. We followed the standard procedure to iteratively tune

our network parameters. In the forward pass, the input CT

scans are generated with higher dimensional feature map and

M RoIs are generated using RPN, we then follow the loss

function to evaluate M proposals loss. After sorting RoIs

(both the positives RoIs and negatives RoIs) by loss, the

highest loss of B RoIs is selected. In order to leverage

the gradient information from selected batches, we perform

average gradient operation on the B samples and use it as

the input gradient estimation for Adam process to iteratively

optimize our designed neural network. The detailed training

procedure is summarized in Algorithm 1.

E. Implementation Details

We initialized the network using LIDC pre-trained basic

model and the weights of layers in our proposed model. In the

first step we freeze all layers in basic model with only training

the layers of mRFCN and multi-layer fusion RPN (mLRPN).

Secondly, the whole network is trained within two stages by

decreasing learning rate. Following the common used settings

in Faster R-CNN, the input images are firstly normalized and

then we employed mRFCN architecture. The experiment was

conducted on Ubuntu 16.04.3 LTS with 4 processors, Intel(R)

Xeon(R) CPU E5-2686 v4 @ 2.3GHz and 64GB total memory

space. Our model is trained on Tesla K80 with 12GB Memory.

As for Region-based Fully Convolutional Network, we choose

to use Intel Extended Caffe since the convolution layer, max

pooling layer and fully connection layer in caffe is self-

adaptive to the shape of input. Some other common libraries

used include numpy 1.13.1, SimpleITK 1.1.0, pandas 0.19.2,

sklearn 0.18.2. The training process of mRFCNN is done in 3

hours on Nvidia Tesla K80 graphic card. Training process used

standard back-propagation using stochastic gradient descent

(weight decay: 0.00045, momentum:0.12 and learning rate of

0.02 with increasing factor of 15 after five hundred iterations).

F. Cloud-Based Multidimensional Region-Based FCN

For clinical validation of mRFCN, we collaborated with

the Shanghai Sixth People's Hospital. As a stand-alone CAD

system, our proposed method performed well but to further

improve the performance of our proposed method, we inte-

grated cloud computing (Infrastructure as a Service (IaaS) by

providing Virtual Machines, and Software as a Service (SaaS)

by giving our mRFCN model) into our CAD system as shown

in Fig. 5. In Cloud-Based mRFCN, we have four modules; data

submission, online medical reports submission by radiologists

of SPH, CAD result access, and physicians feedback, Firstly,

the medical systems from SPH sent CT images of patients to

the cloud storage using the router gateway. To record the phys-

iological information of patients, we used body area network

(BAN) comprising of multiple sensors attached to patients

body. Furthermore, gateways are used to forward this acquired

physiological data to cloud storage for processing. Afterward,

our proposed mRFCN model is used to screen the CT images

for nodules. Cloud storage enabled the storage of a vast

amount of clinical data on which the proposed method was

trained, the CT-images are processed by the mRFCN resulting

in the marked nodules and their classification as malignant or

benign. These results are considered as second opinion by the

radiologists for making final diagnosis decision. The diagnosis

decision is sent for real-time analysis by the physicians who



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 6

Metastasis Information  

from Wearable Sensors 

 Storage                       Cloud Storage 

CT Images             Reports               Prescription         Data Integration  

Nodule Classification  

Nodule 

Classification 

Nodule 

Localization 

Malignancy 

Score  CT Images 

Pre-processing 

Modified ResNet-101 

𝑳𝑫𝒆𝒄𝒐𝒏𝒗  𝐿𝐶𝑜𝑛𝑣𝑜 1,2,3,4,5 

Deconvolutional 

Layer 

3 3 

128 

128 

48 

48 

3 3 

 48 128 

512𝑑 

𝐿𝑅𝑒𝑔  𝐿𝐶𝑙𝑠  

512𝑑 

𝐿𝑅𝑒𝑔  𝐿𝐶𝑙𝑠  

512𝑑 

𝐿𝑅𝑒𝑔  𝐿𝐶𝑙𝑠  

𝑩𝑩𝒐𝒙  𝑹𝒆𝒈 𝑩𝑩𝒐𝒙  𝑪𝒍𝒔 3𝑥3𝑥3 3𝑥3𝑥3 

Nodule Candidate Detection 

RoI Pooling 

Fig. 5: Pipeline for our proposed decision support system.

Firstly, we used body area network (BAN) and CT-scan

to collect comprehensive physiological information and CT

images of patient which were forwarded to cloud storage.

Secondly, we applied affine transformations on CT-images for

data-augmentation. Furthermore, we pre-processed CT images

using multi-view combination. We used mRFCN model on

these pre-processed CT images for nodule candidate detection.

Meanwhile, multi-layer fusion region proposal networks (mL-

RPN) with three layer of designed multi-anchors are applied to

obtain the RoI proposals. Finally, we utilize position-sensitive

score maps (PSSM) to classify detected nodules into two

classes i.e. Benign and Malignant. The marked location of the

nodule and the classification results are stored on the cloud

for the physicist’s reference for diagnosis and treatment.

determine the disease level and send the regular check-up

notifications, reports, as well as treatment prescription to the

patient. The regular check-up reports, disease status and the

response of patient to the treatment is stored on the cloud

storage for further data analysis and improvement of our

proposed CAD system. Currently, we are able to deploy 10

VMs, and 24 processing units (cores) in our dedicated cloud

back-end. For each case the complete processing time is 11-12

minutes. Open-source tool, HTCondor, was used for real-time

optimization and monitoring of computing resources, thus the

users have updated responsive CAD system.

IV. RESULTS AND DISCUSSIONS

Every year, around 1.59 million deaths are caused by Lung

Nodule. It is essential to use CAD system to help radiologists

to detect and diagnose pulmonary cancer. For developing a

reliable CAD system, it should provide high performance in

terms of diagnosis speed, quantity, accurate evaluation and

overall low error rate. In state-of-art, the prevalent criteria for

CAD system performance are two kinds of rate: sensitivity

and false positive. The performance of proposed CAD system

is validated in two modes: mRFCN stand-alone and mRFCN

Cloud based. Testing of both modes is done on LIDC dataset

and clinical dataset. Furthermore, the Nodule detection results

of proposed CAD system are compared with state-of-the-

art CAD systems using Free-Response Receiver Operating

Characteristic (FROC) curve including average sensitivity and

TABLE I: Lung nodule features from radiologist.

Features Descriptions

Internal structure Soft tissue, fluid
Calcification Popcorn, solid

Margin Poorly defined, intermediate
Lobulation Marked, intermediate
Spiculation Marked, intermediate
Sphericity Linear, ovoid

Texture Non-solid, Part solid/(mixed)

TABLE II: Classifiers’ Accuracy, Sensitivity and FPs/Scan

Comparison to detect lung cancer based on Leave-One-Out

Validation Method.

Classifiers Accuracy (%) Sensitivity (%) FPs/Scan

CNN [12] 80.8 79.6 3.63
MTANNs [6] 88.6 86.53 2.62

FCN [13] 91.2 91.14 3.16
MC-CNN [14] 87.14 77.3 2.97

mRFCN 92.1 94.4 2.21

mRFCN
(Using mLRPN)

97.91 98.1 2.19

number of false positives per scan (FPs/scan) as evaluation

metric, where detection is considered a true positive if the loca-

tion lies within the radius of a nodule centre while the Nodule

Classification performance analysis, is done using area under

the ROC curve (AUROC) which shows the performance of our

proposed method on candidates’ classification as nodules or

non-nodules. In CAD system, when predicting the existence of

nodule, we make comparison with the ground truth annotation,

the false positive ratio is the probability of falsely rejecting the

null hypothesis for particular test.

We calculate FP with ratio between the number of non-

nodule samples are mistakenly predict as lung nodule with

certain level of malignancy and the total amount of non-nodule

samples. We give the definition of FP rate as:

FP

N
=

FP

FP + TN
(9)

SP =
TP

TP + FN
(10)

SP , FP , FN , and TP denotes sensitivity, false positive, false

negative and true positive rate, respectively. In our experiment,

if a sample with nodule is not predicted as disease in our

CAD system, it is FN. If a sample with nodule is predicted

correctly, it represents TP. The performance evaluation of

our proposed CAD system is done on the subset of LIDC-

IDRI [24]. We consider the 1000 CT subsets, from LIDC-

IDRI-0001 to LIDC-IDRI-1000. Note originally LIDC-IDRI

contains 1018 CT scans sets in total. Every CT scan has

around 300 slices, and each slice of which is gray level

picture in size of 512*512, the slice thickness is 3 mm. We

reconstruct all the images using sharp kernel (Siemens B50

kernel). For testing the performance accuracy of our CAD

system for detecting pulmonary nodules, we excluded the CT

scans which are inconsistent in slice spacing or have missing

slice. After that procedure, we finally make a list of 892 CT
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TABLE III: Performance Comparison of Proposed CADe with

state-of-the-art CAD systems to detect lung cancer based on

Leave-One-Out Validation Method.

CAD systems Sensitivity (%) FPs/Scan

Suzuki et al. [5] 80.3 4.8
Ye et al. [7] 90.2 8.2

Messay et al. [8] 80.4 3.0
Cascio et al. [9] 87 6.1
Han et al. [10] 82.7 4.0

mRFCN 94.4 2.21

mRFCN
with mLRPN

98.1 2.19

scans. We significantly reduced the quantity of the non-nodule

data samples since they are the majority component of CT

scans, which impact the accuracy of CAD system with large

quantity of presence. We give the definition of distinct features

in appearance of nodule in Table I.

We use Leave-one-out Validation method to validate our

CAD classifier’s generalization performance. We randomly

divided the CT scans from our dataset into training sets

and testing sets, training sets are used to train our CAD

classifiers and testing sets are used to validate the performance

of CAD classifiers. The effectiveness of mRFCN is verified

by comparing with existing methods CNN [12], MTANNs [6],

FCN [13], and MC-CNN [14], the results are depicted in Table

II. From Table II, we can deduce that mRFCN’s performance

is highest achieving a sensitivity of 92.1% and 94.4% accuracy

with a lowest FP rate of 2.21 per CT Scan among state-of-art

CAD system. The results indicate the superiority of mRFCN

as CAD system for nodule detection. The comparison between

‘mRFCN’ and ‘mRFCN (Using mLRPN)’ indicates the pro-

posed CAD system with three layer multi-anchor (multi-size,

multi-angle, multi-shape) parameter setting performs better

for RPN in candidate selection both in terms of sensitivity

and accuracy which are recorded to be 98.1% and 97.91%,

respectively.

Although different CAD systems are experimented on vari-

able data sets which makes the relative comparison a difficult

task, we still made the comparison between our proposed

system with previous published CAD systems to investigate

the perspectives of our mRFCN system since the average

FPs/Scan is comparable and the comparison results are shown

in Table III. In the experiment with nodule detection, data

analysis is different from binary classification problem that

each image might contain multiple lung nodule and more than

one FPs/scan. Therefore, the conventional ROC curve is not

suitable to analyze the performance of our CAD system. In

order to handle this problem, we apply Free-response ROC

(FROC) analysis [25]. A prevalent method [11] for evaluating

mRFCN curve is used. The sensitivity of FROC curve is a

function plotted on the mean number of FPs/scan. The mean

FROC-score is calculated as the sensitivity mean at 7 FPs:

8, 4, 2, 1, 1/2, 1/4, and 1/8 FPs/scan. Table IV and Table

V show the quantitative results of our proposed approach in

comparison with others.

Fig. 6 shows the different CAD systems for nodule detection

Fig. 6: FROC curve comparison between our proposed mR-

FCN system and other existing CAD system.

Fig. 7: AUROC based performance analysis of existing meth-

ods versus our proposed CADe system.

in terms of FROC curves, it is evident that our proposed mR-

FCN system has achieved the most satisfactory performance

amongst other tested CAD systems. It should be considered

that mRFCN (red line) keeps high sensitivity even in the region

where FPs per Scan is low. Although MTANNs have a high

sensitivity value of over 89% when FPs per Scan reaches

4, but the sensitivity value of MTANNs drop significantly

as FPs per Scan become small, which is impractical in real

world clinical environment. A summary of our proposed

CAD system and other CAD systems comparison in terms

of AUROC is depicted in Table VI

Fig. 8 shows true nodules (marked in green) that were

missed in the traditional CNN method, but is detected by our

proposed method, when the false positives per scan lies within

the range 1 to 4 with the sensitivity of 0.9813. The false

negatives are marked in red which have similar appearance

to nodules but our proposed system detected them as non-

nodules using the characteristics of lung nodules obtained by

our mRFCN, such as the example in Fig. 8 third row marked

in red. We obtained few false negatives results as the data

was not enough to represent that kind of nodules in training

phase of our region-based FCN. In Table VI, we can see area

under the FROC curve of the proposed system reaches highest
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TABLE IV: Quantitative measurements of Sensitivity, mean FROC-score, FP Rate (FPs/scan), Specificity, Mean Accuracy,

Inference Time for our proposed method in comparison with DFCNet in different mode (Stand-alone or Cloud Based).

CAD System
Dataset System Mode Sensitivity mean FROC-score FPs/scan Specificity Mean Accuracy Inference Time

Stand-Alone 98.1 44.6 2.19 93.2 97.91 ∼180s
mRFCN LIDC-IDRI Cloud-Based 95.2 48.3 2.1 94.5 96.7 ∼150s

(Using mLRPN) Stand-Alone 96.2 51.5 2.2 88.1 94.3 ∼175ms
Clinical Dataset Cloud-Based 97.6 52.2 2.4 91.4 95.5 ∼120ms

Stand-Alone 94.4 41.6 2.21 89.2 92.1 ∼180s
mRFCN LIDC-IDRI Cloud-Based 95.2 42.3 2.1 90.3 90.7 ∼150s

Stand-Alone 92.2 52.7 2.9 86.1 91.3 ∼175ms
Clinical Dataset Cloud-Based 90.3 54.1 2.4 87.4 89.5 ∼120ms

Stand-Alone 89.32 29.3 2.9 83.91 86.02 ∼80s
DFCNet [15] LIDC-IDRI Cloud-Based 91.4 39.1 3.2 79.1 88.4 ∼90s

Stand-Alone 96.17 53.5 1.17 83.67 86.32 ∼190ms
Clinical Dataset Cloud-Based 93.2 55.0 1.4 80.1 88.6 ∼150ms

TABLE V: Quantitative results associated with training and

testing errors for LIDC-IDRI and clinical datasets.

Dataset mRFCN Training Error Testing Error

LIDC-IDRI [24] Stand-Alone CAD 0.00418 0.00361
Cloud-Based CAD 0.00471 0.00298

Clinical Dataset Stand-Alone CAD 0.00364 0.00288
Cloud-Based CAD 0.00394 0.00224

TABLE VI: AUROC-based performance comparison of exist-

ing methods versus our proposed CAD system.

Classifiers AUROC Classes

CNN [12] 0.7928 Malignant
MTANNs [6] 0.8355 Malignant & Benign

FCN [13] 0.8864 Malignant & Benign
MC-CNN [14] 0.9330 Malignant & Benign

mRFCN 0.9813 Malignant & Benign

value i.e. 0.9813, we are confident that our proposed system

is the most suitable to use in clinics to detect and diagnose

of pulmonary nodule, since the most CAD system will be

applied in clinical environment to detect nodule where the false

positives per scan is setting from 1 to 4 mostly. The experi-

mental results presented in Fig. 7 demonstrate the superiority

in generalization of our proposed mRFCN CAD system. To

quantitatively evaluate the results for our proposed method,

we have measured Standard Deviation Error Rate (Std eD,C),

Mean ANODE (mAN) Score and Processing-time (Time) of

the CT images in the testing set of our clinical dataset with

LDA [4], Rule Based Scheme [26], Cascade Classifier [27],

Fuzzy Matching [28], Fisher Linear Discriminant (FLD) [29],

SVM [30], Feature Pyramid Network (FPN) [31], Sequential

Forward Selection (SFS) [32], Cluster Based Classifier [33],

3DDCNN [34] techniques. It can be seen in Table VII that,

our proposed method achieved comparatively good results

for Standard Deviation Error Rate, classification sensitivity

(Sensitivity), FPs per case and computational duration (of

around 219± 25.47 seconds) over other methods.

Qualitative results from the performance comparison be-

tween our mRFCN based CAD system versus state-of-the-art

Fig. 8: Nodules detected as True Positives Malignant (green

outline) and True Positives Benign (red outline) from the

proposed CADe system. White boxes mark the ground truth

and results produced by our CADe systems are marked by

blue or yellow boxes. Blues boxes and yellow boxes are

respectively denoting the malignant and benign nodules on

the basis of malignancy score at 98.1% sensitivity.
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Fig. 9: Malignant Nodules (red boxes) and Benign Nodules

(blue boxes) from the mRFCN based CADe system. Green

boxes mark the ground truth and compared to the results

produced by our CADe systems are marked by red or blue

boxes. Classification is based on the malignancy score at

98.1% sensitivity.

CAD system on having a confidence threshold of 95%. Green

represents the Ground truth box. Red boxes are predicted

as malignant nodules by our mRFCN method while blue

represents benign nodules predictions. Four random cases out
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of 120 cases from Shanghai Sixth's Hospital are selected. In

Fig.9, left-most images (a) show the ground truth of lung

CT scan, images (b) on in all cases show the predictions of

malignant as well as benign nodules prediction of our proposed

mRFCN model with confidence scores as high as 92.5%.

Table VII describes scoring criteria that are: statistical

parameters such as mean ANODE Score, Standard Deviation

which is used for both types of error rates i.e. Detection

error rate and Classification error rate. Std eD,C indicate

deviation from perfect detection, the metric StdeD represents

the standard deviation error rate between the radiologists from

Shanghai Sixth People's Hospital nodule detection and the

detection done by mRFCN and the term StdeC represents the

nodule classification by doctors from Shanghai Sixth People's

Hospital and mRFCN classification. Computed results are

presented in Table VII.

V. CONCLUSION

The solid criteria for a well performing CAD system is

to help the expert radiologist in the process of lung cancer

detection as providing them with helpful reference opinion.

In this article, we have proposed a novel CAD system using

multidimensional region-based fully convolutional networks,

where we applied median intensity projection to extract useful

information from the nodule dataset combining three dimen-

sion view, we proposed multi-layer fusion region proposed net-

work (mLRPN) in our architecture by using deconvolutional

layer to improve the original RPN from Faster R-CNN. Our

CAD system not only indicates presence of nodule, but also

gives the location as well as outlines the possible shape of

the detected nodule along with classification of the detected

nodule as benign or malignant. Our proposed system has

been trained and evaluated using LIDC dataset and clinical

dataset, the results from our experiments demonstrate that our

proposed system has attained the sensitivity of 98.1% and

classification accuracy of 97.91 %. In future, we aim to focus

on the detection of some micro nodules where the diameter

is less than 3 mm such that our CAD system works well

with all kinds of nodules while maintaining its performance

in sensitivity and FP/Scan.
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