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Online Disturbance Estimation for Improving

Kinematic Accuracy in Continuum Manipulators

Federico Campisano1, Andria A. Remirez3, Simone Caló2, James H. Chandler2,

Keith L. Obstein1,4, Robert J. Webster III3, and Pietro Valdastri2

Abstract—Continuum manipulators are flexible robots which
undergo continuous deformation as they are actuated. To describe
the elastic deformation of such robots, kinematic models have
been developed and successfully applied to a large variety of
designs and to various levels of constitutive stiffness. Independent
of the design, kinematic models need to be calibrated to best
describe the deformation of the manipulator. However, even
after calibration, unmodeled effects such as friction, nonlinear
elastic and/or spatially varying material properties as well as
manufacturing imprecision reduce the accuracy of these models.
In this paper, we present a method for improving the accuracy
of kinematic models of continuum manipulators through the
incorporation of orientation sensor feedback. We achieve this
through the use of a “disturbance wrench”, which is used to
compensate for these unmodeled effects, and is continuously
estimated based on orientation sensor feedback as the robot
moves through its workspace. The presented method is applied to
the HydroJet, a waterjet-actuated soft continuum manipulator,
and shows an average of 40% reduction in root mean square
position and orientation error in the two most common types of
kinematic models for continuum manipulators, a Cosserat rod
model and a pseudo-rigid body model.

Index Terms—Medical Robots and Systems; Kinematics; Flex-
ible Robots

I. INTRODUCTION

C
ONTINUUM manipulators (CM) have captured attention

within the research community for their unique capa-

bilities, including whole-arm grasping and manipulation [1],

navigation through complex and unpredictable environments
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[2], and passive compliance, which can make them safer for

human interaction [3]. A variety of different designs for CMs

have been proposed by researchers, including tendon-actuated

arms [4], manipulators driven by multiple push-pull rods [5],

concentric tube robots [6], [7], pneumatic and hydraulic soft

manipulators [8], and even robots actuated by the motion of

external magnets [9]. While the flexible nature of these robots

provides many benefits, it also presents kinematic modeling

challenges not seen in traditional rigid-link robotic arms, and

as a result, tip accuracies for these robots tend to be lower

than that of their rigid counterparts [10].

A number of different types of kinematic models for con-

tinuum robots have been developed, ranging in complexity

from simple constant curvature models [11] to more elaborate

models based on Cosserat rod theory [12]. The choice of

modeling approach for a specific manipulator depends on a

number of factors, including the mechanism of actuation, the

significance of the effect of external loads like gravity, the re-

quired level of accuracy, and in some cases computation speed.

All of these modeling approaches include parameters which

typically require calibration, including material properties and

geometric/structural characteristics of the robot [13]. However,

even after calibration of these parameters, kinematic accuracy

may still be less than desired, due to unmodeled effects such

as friction, nonlinear elastic and/or spatially varying material

properties, and manufacturing imprecision.

One option for further improving kinematic accuracy is to

incorporate some of these effects into the model. For example,

for certain designs, researchers have integrated more complex,

nonlinear constitutive laws within the models [14]. However,

accurately determining these constitutive laws requires tedious

material testing processes. Friction and manufacturing uncer-

tainties can also be modeled in principle, but for many designs,

these are extremely difficult to accurately describe in practice

[15], [16]. In addition, incorporating these effects increases

overall model complexity and can significantly increase the

number of parameters, thereby requiring an even more com-

plex calibration procedure.

Another approach to improving kinematic accuracy is to

incorporate feedback from sensors. One of the most commonly

used method is to embed strain sensors along the principal

bending directions and then use the kinematic model to predict

the shape of the manipulator based on strain measurement

[17], [18]. This approach, however, is not suitable for all

types of continuum manipulators, as these sensors do not scale

down well to small designs and require precise alignment,

complicating the fabrication process. Another common method
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is to use fiber optic shape sensors [19], [20]. However, this

method begins to lose accuracy at high curvatures due to

propagation losses, and cannot be implemented for many low-

stiffness designs, as the fiber optic sensor is often stiffer than

the manipulator itself. As an alternative which does not require

any mechanical interaction between the robot and the sensors,

much work has focused on reconstructing the shape from an

external camera [21], [22]. The use of an external camera,

however, can become problematic when direct visualization is

limited by occlusions, such as during operation in a confined

environment.

In this paper, we present a new method to improve the

accuracy of the kinematic model for CMs by utilizing sensory

information from two inclinometers, one at the base of the

manipulator and one at the tip. These sensors avoid the

problem of occlusions associated with camera-based sensing

modalities, while remaining compatible with low-stiffness

CMs undergoing large deflections, as the sensors themselves

do not need to bend with the structure of the CM. In addition,

this type of sensor is inexpensive, making it well-suited to

cost-sensitive applications. Utilizing this sensor feedback, our

approach is to include a “disturbance” parameter in the model,

which can compensate for a variety of unmodeled effects,

and then calibrate this parameter in real time, based on the

sensor data. The disturbance is in the form of an external

point wrench, which is not meant to describe any particular

external loads or actuation forces, both of which are considered

separately within the CM modeling framework. The update of

the disturbance can be performed by iteratively sensing the

end effector’s orientation through the inclinometers. Since the

disturbance represents a set of additional model parameters, it

is possible to numerically evaluate a sensitivity matrix that ex-

presses how changes in the disturbance affect the end effector’s

angular velocity. The sensitivity matrix can then be inverted

to update the disturbance estimate. This can then be applied

back to the model, with the process being repeated iteratively

to find a disturbance wrench that minimizes orientation error.

The contributions of this paper can be summarized as

follows. First, we propose a calibration method for CMs that

considers the addition of a disturbance wrench to compensate

for unmodeled effects such as friction, nonlinear elasticity,

non-uniform geometric and material properties, and inaccu-

racies in manufacturing and assembly. Second, we propose

a method to update the disturbance wrench using the abso-

lute orientation provided by two inclinometers located at the

proximal and distal ends of the manipulator through the use

of the sensitivity matrix. Lastly, to demonstrate the presented

method on a physical robot, we present a case study on a

soft continuum robot actuated by waterjets at the tip and

undergoing large deflections in three dimensional space. The

improvement in kinematic model accuracy is seen for both

a kinematic-based model (Pseudo Rigid Body (PRB) Model)

and a mechanics-based model (Cosserat Model), which are the

two most commonly used frameworks for CMs.

II. DISTURBANCE ESTIMATION APPROACH

In this section, we describe the estimation procedure used to

find a disturbance wrench which minimizes the tip rotation er-

Fig. 1. Iterative disturbance estimation algorithm. [A] Block diagram illus-
trating the iterative update of the disturbance based on inclinometer data.

The initial value for w
(i)
d

is obtained after initial calibration. [B] The
compliance matrix Swd

is used to minimize the orientation error between

current estimated orientation R(i) and the measured value from the sensors
Rm.

ror associated with the kinematics. We approach this problem

by first calibrating geometric and material properties of the

manipulator with the additional disturbance wrench parameter

to find a solution for the manipulator parameters which is

optimal across the initial calibration data set. Then, during

robot operation, the calibrated value of the tip disturbance

is iteratively changed by using sensory information to min-

imize the orientation error at the current position within the

workspace.

To describe the disturbance estimation approach, we begin

by assuming a general kinematic model for the continuum

robot which can be expressed in the form:

g = f(q, ζ) (1)

where g represents the pose of the end effector as a function of

the actuation inputs q, and a set of manipulator’s parameters

ζ =
[
η wd

]T
composed by geometric and material proper-

ties of the manipulator η, (such as length, Young’s Modulus,

etc.), and by the disturbance wrench wd. The nominal mapping

between end effector pose and actuator inputs can be used

to calibrate the manipulator’s parameters by using the scalar

product of end effector absolute orientations as the error metric
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[23]. After calibration, the resulting parameters (indicated as

ζ∗) are used to estimate the equilibrium pose of the end

effector that corresponds to the inputs q.

A. Iterative Disturbance Estimation

The sensing of absolute orientations can help to correct

the rotation error iteratively through the use of the sensitivity

matrix:

Sζ∗ = (g−1 ∂g

∂ζ∗ )
∨ (2)

which maps body frame end-effector velocities to changes in

the manipulator’s calibrated parameters ζ∗. Independent of

which kinematic modelling approach is used, the sensitivity

matrix can be computed numerically using a finite difference

approximation [24]. Each column can be computed as:

Sj ≈ (g−1 gj − g

∆ζi
)∨ (3)

where gj is the homogeneous transformation describing the

end effector pose obtained after perturbing g with a small

change in the ith calibrated parameter by ∆ζi. Using this

method, each column of the sensitivity matrix can be obtained

after 2 solutions of the kinematic equations.

The rotation error is iteratively minimized by using a

gradient descent approach where the change in the disturbance

wrench ẇd|m is calculated by:

ẇd|m = λ
(
ST
wd

(Swd
ST
wd

− µI3)
−1

)
ωdes (4)

where Swd
represents the columns of the sensitivity matrix

which map changes in the disturbance parameter to changes

in the tip orientation, ωdes can be calculated by using the

orientation error between the current estimated rotation Ri and

the measured value from the sensors Rm expressed in body

coordinate, λ represents a gain correction coefficient which

can be experimentally tuned, µ is a damping factor and I3 is

the identity matrix (Fig. 1). The calculated change can then

be added to the previously estimated value of the disturbance

and applied to the model w
(i+1)
d = w

(i)
d + ẇd where ẇd =[

ẇd|f ẇd|m
]T

and ẇd|f = 0.

III. CASE STUDY: THE HYDROJET SYSTEM

The HydroJet Endoscopic Device (HJ) was introduced in

[25]. It is a soft continuum endoscope that addresses the

need for upper GI cancer screening in Low and Middle

Income Countries (LMIC) and remote areas. The device uses

three miniature waterjet actuators, spaced 120 degrees apart

around the diameter (Fig. 2), to directly maneuver the camera

located at the tip. The pressurized water is carried through

a multilumen catheter that is connected directly to three

solenoid valves which control the flow to each nozzle. The

deflection is facilitated by a soft elastomer sleeve (Ecoflex

00-30), located at the distal end of the multilumen catheter,

which wraps around three flexible single lumen tubes that

are connected to the capsule. This structure is designed to

be soft and flexible to allow for high curvatures and thereby

Fig. 2. Mechanical deflection for the HydroJet endoscopic device expressed
in both PRB and Cosserat frameworks. The waterjet actuators are spaced 120
degrees around the capsule diameter and modeled as a tip follower force.

large deflections of the capsule. By controlling each jet’s

actuation force individually, the deflection generated by the

three waterjets creates a resultant motion in two DoFs. The

net applied wrench in the body frame acting on the tip of the

manipulator due to the waterjet forces is defined as:

Fa|xy = A



q1
q2
q3


 (5)

A =

[
sin (π3 ) 0 − sin (π3 )
cos (π3 ) −1 cos (π3 )

]

where q1, q2, and q3 are the three applied forces due to the

water jets and Fa|xy represents the x and y components of the

tip force in the frame of the tip of the manipulator, as defined

in Fig. 2. Since the three actuators are all coplanar with the

tip of the endoscope, the z component of the force is zero.

IV. KINEMATIC MODELLING FOR THE HYDROJET SYSTEM

In this section we present two commonly used kinematic

models for continuum manipulators and describe how they

can be applied to decribe deflection of the HydroJet Device.

A. Pseudo-Rigid Body Kinematics

The PRB model is based on the approximation of subdivid-

ing the elastic body of the continuum manipulator into a series

of rigid links connected by conventional revolute, universal,

or spherical joints. In this case, the continuum structure is

modeled as n+1 uniformly spaced rigid links connected by n
spherical joints (Fig. 2 (B)) [26]. The rotation of each joint i
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with respect to the orientation of the previous joint i−1 is de-

scribed using a rotation vector ωiθi = ωixθix+ωiyθiy+ωizθiz ,

where ωix, ωiy , ωiz are the three orthonormal axes attached

to the ith joint and θix, θiy , θiz are the rotation angles around

each axis. The resulting rotation axis and magnitude of rotation

are indicated with ωi and θi respectively. Considering that the

magnitude and the direction of rotation of the ith joint can be

calculated as φi = ‖θi‖ and ωi = θi/ ‖θi‖, the corresponding

twist, ξ̂i ∈ se(3) results in:

ξ̂i =

[
ω̂i ωi × qi
0 0

]
(6)

where qi is a vector pointing from the origin to any location

on the axis ωi, and ω̂i ∈ so(3) is the skew-symmetric matrix:

ω̂i =




0 −ωiz ωiy

ωiz 0 −ωix

−ωiy ωix 0


. (7)

The homogeneous transformation matrix of each joint can

be determined using the twists of equation (6), the rotation

angle φi and the product of exponentials formula [27]:

gsi(θ) = eξ̂1φ1eξ̂2φ2 ...eξ̂iφigsi(0) (8)

where gsi(θ) ∈ SE(3) is the configuration of joint i in the

space frame for joint angles
[
θ1 θ2 ... θi

]T
and gsi(0)

represents the initial configurations of joint i.
The relationship between the internal bending moment and

deflection angle at each joint i can be modeled as:

τ i = Kiωiθi

=



ki,x 0 0
0 ki,y 0
0 0 ki,z





ωixθix
ωiyθiy
ωizθiz


. (9)

where τ i ∈ R
3 is a vector representing the internal bending

moment and Ki is the stiffness matrix of joint i with compo-

nents in x, y and z directions. The effective torsional spring

constant can be found in terms of the elastic material properties

by comparing spring energy and strain energy due to bending,

as explained in [20]:

ki,x = lc/L
2EL,xI

ls
+ (1− lc/L)

2E0,xI

ls
(10)

where ls is the length of the ith link, lc ∈ [0, L] is an

incremental counter with ls increments, and E is varying along

the length of the body, with E0,x and EL,x representing the

Young’s modulus of the joints i in the direction x at l = 0 and

l = L, respectively. A similar expression can be found for y
and z directions.

The Jacobian matrix can be calculated using [26]:

Jsi(θ) =
[
ξ†1 ... ξ†i 0 ... 0

]
(11)

where

ξ†1 =
[
ξ†i,x ξ†i,y ξ†i,z

]

ξ†i,j = Ad−1
(eξiφi ...eξnφngsi(0))

ξi,j
(12)

The Jacobian for the end-effector can be expressed as:

Jsn(θ) =
[
ξ†1 ... ξ†n−1 ξ†n

]
. (13)

The mapping of forces applied on the body (i.e distributed

loads and actuations) are modeled through the manipulator

Jacobian. The effect of a distributed load on the body can be

modeled as:

τ f =

n∑

i=1

Jsi(θ)
T

[
w

03×1

]
(14)

where w represents a distributed force expressed in body

frame at the ith joint. The effect of the actuators can be

modeled as

τ a = Jsn(θ)
T

[
Fa +wd|f
Ma +wd|m

]
(15)

where Fa represents force and Ma moment due to the

actuators, wd|f represents the disturbance force at the tip and

wd|m represents the disturbance wrench.

The configuration vector θ is obtained by equalizing internal

and external moments applied on the body. The solution to this

equation cannot be obtained analytically, and is thus obtained

through the following minimization:

minimize
θ

Kω(θ)− τ f (θ)− τ a(θ,q) (16)

The first term in the objective function is the internal

moment due to the stiffness of the body, where Kω(θ) is

the internal bending moment of the whole body. The second

and third terms represent the external moments acting on the

body, which are related to the configuration vector θ through

the manipulator Jacobian, and q represents the actuation forces

(e.g. forces applied by the water jets).

B. Cosserat Rod Kinematics

A Cosserat rod-based kinematic model for continuum ma-

nipulators has been derived in [12]. In this section, we review

the model using the notation provided in [7]. The centerline of

an unloaded rod is expressed using a homogenoeous reference

frame consisting of an arc length-parameterized space curve

p̃(s) ∈ R
3 and a rotation matrix R̃(s), with s denoting arc

length. Under an external load, the parametric curve p̃(s)
deflects to the curve p(s), and R̃(s) rotates to R(s) (Fig. 2

(A)). The homogeneous frames (g(s)), defined by:

g(s) =

[
R(s) p(s)
0T 1

]
(17)

are assigned so that the z-axis of each frame is tangent to the

curve. The rotation of each point on the rod may be expressed

in terms of a local curvature vector u(s), which can be found

using the relationship [27]:
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u(s) = (RT (s)R′(s))∨ (18)

where the operator ∨ denotes conversion of an element of

so(3) to its corresponding element in R
3. The constitutive re-

lationship between the curvature vector and internal moments,

expressed in the local coordinate frame at s, is:

Mb(s) = K(u(s)− ũ(s)) (19)

where Mb(s) is the internal moment and K represents the

stiffness matrix, defined as:

K =



ExIx 0 0
0 EyIy 0
0 0 GJ


 (20)

where Ex, Ey are the the Young’s modulus, Ix and Iy are

the second moments of area of the tube cross-section, G is

the shear modulus and J is the polar moment of inertia of

the tube cross-section. The Young’s modulus is considered to

be linearly varying along the length of the body going from a

value E0 at the base to EL at the tip following the equations:

E = sEL,x + (1− s)E0,x. A similar expression can be found

for the y and z directions. The resulting Cosserat rod equations

that govern the rod shape expressed in local frame coordinates

are:

g′(s) = g(s)ξ̂(s)

n′
b(s) = −ûnb(s)−w

u′(s) = ũ
′(s)−K−1

(
(ûK +K ′)(u(s)− ũ(s))

+ êznb(s)
)

(21)

where nb is the internal force, w is the distributed force and

û and êz are the skew-symmetric versions of vectors ez and

u, respectively. In the equations listed above, we have ignored

the contribution of distributed moments along the body.

In the Cosserat framework, forces and moments applied at

the tip represent boundary conditions on equation (21). The

boundary conditions at s = L can be expressed as:

nb(L) = Fa +wd|f

u(L)− ũ(l) = K−1(Ma +wd|m)
(22)

while w is already included in eq. (21). The boundary condi-

tions at s = 0 are:

p(0) =
[
0 0 0

]T

R(0) = I
. (23)

and solution of the resulting boundary value problem provides

the full pose of the manipulators as a function of arc length.

V. EXPERIMENTAL VALIDATION

A. HydroJet System Testbed

The testbed was assembled as depicted in Fig. 3. The

capsule was manufactured from a durable plastic (Clear resin,

FormLabs, Sommerville, MA, USA) through rapid prototyp-

ing. The capsule’s outer diameter and length are 9.8 mm and

28 mm, respectively. A 6 DoF electromagnetic sensor (EM)

(Northern Digital Inc., Canada), with 0.48 mm and 0.70 deg

accuracy, was integrated within the capsule, with its frame

aligned to the capsule in a known orientation. The wire of the

electromagnetic sensor runs through the soft elastomer sleeve

together with the three single-lumen water lines connecting

the tip to the base connector. The base was connected to

three solenoid water valves (A352273, Asco Numatics, USA)

using standard hydraulic tubing (1/16”ID X 1/8”OD Tygon

E-3603, Cole-Parmer, USA). The base connector was held

in the desired orientation using a custom 3D printed holder.

The assembly was secured in place through attachment to

an aluminum frame (Rexroth, Bosch, Germany). A second 6-

DoF EM sensor was attached to the base holder to sense the

orientation of this frame as well and compute the direction of

gravity with respect to the capsule and tether.

B. Initial Calibration

The purpose of calibration is to find values for the param-

eters of the model that best describe the deflection of the

manipulator for a set of N poses distributed throughout the

workspace of the manipulator. This means that the intrinsic

parameters found during calibration may not be the optimal

for a single actuation value. The parameters of both models

are optimized such that the rotation at the tip and at the base

closely approximate those of the experimental data under the

same set of actuations. In these experiments, the data used

for calibration consist of a set of 40 randomly distributed

equilibrium configurations within the workspace. The overall

collection time was around 3 min and 30 sec. The parameter

optimization problem is defined as follows:

minimize
ζ

40∑

i=1

||(< hm(qi, ζ),hi >)||
2 (24)

where hm = a + bi + cj + dk represents the quaternion

associated with the rotation of the tip with respect to the

base, as computed by solving for the equilibrium configuration

(eq. (16) for the PRB model and eqs. (21), (22), (23) for the

Cosserat model) with inputs qi and manipulator parameters

ζ. Similarly, hi represents the quaternion associated with

the measured experimental rotation, which is obtained by

calculating the relative rotations of the two EM sensors. The

operator < · > represents the scalar product of two vectors

and is chosen as the distance metric between two elements of

SO(3) [23].

Assuming the soft elastomer body to have a cylindrical

shape with radially isotropic properties results in EL,x =
EL,y = EL, E0,x = E0,y = E0 and GL = EL/2γ
and G0 = E0/2γ, where γ is the Poisson’s ratio. The

manipulator’s parameters that we seek to calibrate are then
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Fig. 3. Experimental bench test setup consisting of the Hydrojet Endoscopic
Device. A 3D printed holder anchors the base of the device while the waterjets
at the tip cause deflection of the soft elastomer body.

TABLE I
CALIBRATED VALUES OF MODEL PARAMETERS

Parameter PRB Model Cosserat Model

(Value) (Value)

E0 2.35 · 105 N/m2
3.00 · 105 N/m2

El 1.68 · 105 N/m2
2.00 · 105 N/m2

L 0.0705 m 0.0698 m

wd,x|f −0.99 · 10−3N −1.54 · 10−2N

wd,y |f 0.02 · 10−3N −9.07 · 10−3N

wd,z |f 0.01 · 10−3N 2.07 · 10−2N

wd,x|m −0.04 · 10−3Nm 2.71 · 10−2Nm

wd,y |m −0.15 · 10−3Nm −2.33 · 10−2Nm

wd,z |m 4.69 · 10−3Nm −1.74 · 10−1Nm

ζ =
[
E0 El L wd

]T
. The results of calibration using

both models are summarized in Table I.

C. Constant Disturbance Results

The optimal value for the manipulator parameters ζ∗

was obtained for both PRB and Cosserat models using the

calibration procedure described in the previous section. To

validate the accuracy of both models after calibration, the

soft manipulator was moved throughout its workspace by

gradually increasing the actuation force of one waterjet at a

time until the maximum force was reached. This resulted in

three sweeping motions, shown in different colors in Fig. 4.

During this motion, the orientations of the base and the tip

of the manipulator were recorded through the EM sensors.

The force generated by the waterjet was directly controlled

by input signals to the solenoid valves. To facilitate quasi-

static motion, each command was sent with a delay of 5

seconds, which is higher than the settling time of the body

to its equilibrium. This delay time is primarily a requirement

of the actuator dynamics for this particular robot design.

The sweeping motion corresponding to each of the three

Fig. 4. Experimental validation of the calibrated coefficient ζ∗. Each sweep is
marked with a different color. The experimental deflection (dots) is projected
on xy, xz, yz planes together with the corresponding position estimated
from both PRB (black dashed line) and Cosserat (black continuous line)
frameworks.

jets was repeated three times, for a resulting total of nine

separate motions. For each actuation force, each model was

evaluated with the parameters obtained during calibration (ζ∗)

to compute the end-effector pose. The results are shown in

Figs. 4 and 5. The position error (||ǫ||2) is defined as the

Euclidean norm of the difference between model-predicted

tip position and measured tip position obtained from the

EM sensors, while the rotation error ∆ψ is calculated as in

section V-B. To enable similar discretization of the body of the

manipulator for both frameworks, the length of the links for the

PRB model was chosen to be the same as the integration step

size used for the Cosserat model (20 links in total were chosen

for the PRB model). This allows for a more direct correlation

between analogous parameters in the two models. The root-

mean-square (RMS) and standard deviation (SD) position and

orientation error resulting from the nine sweeps was 0.69 cm

± 0.20 cm with 6.85 deg ± 3.41 deg for the PRB and 0.51 cm

± 0.20 cm with 5.66 deg ± 4.21deg for the Cosserat model,

showing similar behavior of the two modelling frameworks.

D. Iterative Disturbance Estimation Results

The same sweeping motions described in the previous

section were used with online adjustment of the disturbance
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Fig. 5. Box Plot Comparison of PRB and Cosserat Models. Position and
orientation errors with constant disturbance wrench.

TABLE II
RMSE POSITION AND ORIENTATION OF ITERATIVE DISTURBANCE

ESTIMATION COMPARED TO STANDARD GEOMETRIC CALIBRATION

Bending Angle 10◦ 25◦ 50◦ 75◦

PRB
Model

Position
RMSE (cm)

Ref. 0.44 0.75 1.16 1.34

Proposed. 0.66 0.69 0.74 0.79

Orientation
RMSE (deg)

Ref. 9.06 9.89 10.02 10.75

Proposed. 1.74 3.18 5.18 7.07

Cosserat
Model

Position
RMSE (cm)

Ref. 0.52 0.78 1.01 1.25

Proposed. 0.37 0.47 0.56 0.75

Orientation
RMSE (deg)

Ref. 9.17 9.81 9.27 10.04

Proposed. 0.82 2.46 3.96 7.18

wrench based on sensor orientation. The disturbance wrench

was iteratively adjusted following the gradient descent mini-

mization approach described in Section 3 using a gain correc-

tion coefficient of λ = 0.4. The local minimum was generally

reached after one to two iterations per time step. Results

are shown in Fig. 6. Compared to the constant disturbance

approach, the iterative estimation reduces the orientation error

by 43%, going from an average error of 6.85 deg to 3.96

deg in the case of PRB model, and by 42%, from 5.66

deg to 3.29 deg for the Cosserat model. While the error

in orientation is significantly reduced, there is no significant

variation in positional error, which remains confined within the

same range of the values observed for the PRB model without

online disturbance estimation, and is slightly improved for the

Cosserat model. In Table II, the RMS errors calculated using

the iterative estimation method (Proposed) are compared to the

standard geometric calibration (Ref.). The proposed method

significantly improves both positional and orientation error

over the standard calibration method showing 42% positional

error reduction (from 17.9% of the robot length to 10.7%) and

32% orientation error reduction for 75◦ deflection of the end

effector.

Fig. 6. Box plot showing error distribution and variability over the nine
sweeping motions. The iterative estimation of the disturbance wrench using
sensor data allows for significant reduction in the rotation error for both
modelling frameworks.

VI. DISCUSSION

In this paper, we have presented a new method for using

sensory feedback from orientation sensors to improve the

kinematic modeling accuracy for continuum manipulators.

We achieve this by incorporating a “disturbance wrench”

to account for unmodeled phenomena, which is continually

updated based on the sensor data. While this method could in

principle be used to estimate external loads due to contact with

the environment, force estimation and contact detection are

substantial research problems in their own right, and typically

depend on the design and actuator methodology of the specific

CM. The validation of our method with external environmental

forces is thus left for future work. In addition, future work will

focus also on the integration of this method into a Jacobian-

based motion controller; the improved modeling accuracy

demonstrated in this work is expected to improve trajectory

following abilities as well.

The improved modeling and control accuracy which this

approach can enable is expected to be highly valuable, as im-

proving kinematic modelling accuracy is still a very active area

of research for CMs in particular. For the HydroJet System

described in Section III, we anticipate that this improved ac-
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curacy will enable medical providers to more precisely control

the device within the stomach during upper gastrointestinal

endoscopy. It is expected that this approach could provide

similar benefits for a wide range of soft robotics applications,

both in and outside of the medical field. In this paper we have

used EM sensors to calculate absolute orientations; however,

these sensors can be replaced by cheaper inertial motion units

(IMUs) without changing the proposed disturbance estimation

method. Absolute orientation can be obtained from IMUs

through an orientation filter, as the one proposed in [28], which

provides static accuracy comparable to that of the EM sensors

(0.6 degrees). While IMUs are well suited to the HydroJet

device, integrating even these low cost sensors will not be

practical for all applications, making the need for adding

sensors one of the primary limitations of our method.

VII. CONCLUSION

This paper presents a method for augmenting the kine-

matic models for continuum manipulators with information

from orientation sensors in order to improve model accuracy.

The method is based on online calibration of a “disturbance

wrench” used to account for various unmodeled phenomena.

We apply this method in particular to continuum manipulators

actuated by a tip follower wrench and experiencing external

loading, and demonstrate the performance of the method on

a soft continuum endoscope actuated by waterjet propulsion.

Our results indicate that the method is effective for both PRB

and Cosserat rod modeling frameworks.
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