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A B S T R A C T

For product supply chains, contractual relationships that provide win-win outcomes between the supply chain
members, have been found to ofer optimum results. However, for bargaining situations where time/cost is the
source of the uncertainty, i.e. projects, there is limited knowledge available on how contracts can be used to
establish win-win relations. This paper investigates whether cost-sharing project contracts can establish a win-
win solution in project supply chains where the project manager is risk-neutral and the contractor is risk-averse.
The paper examines how the theory can be extended beyond the symmetrical normal distributions to asym-
metrical beta and gamma distributions that are more appropriate, and so more often used, for project completion
times. Besides using the Nash bargaining approach for analyzing the bargaining process, the paper also analyzes
the bargaining problems using the Kalai-Smorodinsky and Utilitarian approaches to bargaining. It was found that
the solutions from cost-plus contracts dominate any other form of cost-sharing contract, and so they provide a
win-win solution for both members of the supply chain for the cases of Nash and Kalai-Smorodinsky bargaining.
However, this is not the case for Utilitarian bargaining. A numerical exercise was conducted to investigate the
results and implications of how the models would work in practice. The research shows that from a theoretical
perspective, cost-plus contracts are the optimal bargaining solution not only when using a normal distribution,
but also when using more appropriate asymmetrical distributions. This optimality is robust for the Nash and
Kalai-Smorodinsky bargaining approaches, but not for the Utilitarian approach whose sensitivity to noise makes
it an inappropriate choice here.

1. Introduction

This paper analyzes the problem of setting an appropriate contract
price between a project manager and a contractor for carrying out a
project whose cost is uncertain. Cost uncertainty is a major issue that
projects encounter. Numerous examples exist of large projects costing
substantially more than their original estimates, e.g. the refurbishment
of Wembley stadium, and Denver airport baggage handling system in-
stallation project [36]. Misaligned goals and objectives between the
members of the supply chain are often cited as one of the main reasons
behind this e.g. the case of cost overrun in the Denver airport baggage
handling system installation project [36]. Despite these problems, little
is known about the tools and techniques that could help organizations
to avoid these problems and achieve a win-win solution by aligning the
individual goals and objectives with the overall goals and objectives
when projects have greater uncertainty [28]. Some authors have at-
tempted to address these challenges through the use of project

contracts, but these have been limited to the context they used such as a
take it or leave it situation [28] or the optimization was considered for
one organization only [4]. Hence, this research investigates if win-win
coordination can be achieved when the outcomes are negotiated be-
tween a project manager and a contractor faced with cost uncertainty.

Aligning the goals and objectives of the members of the supply
chain can reduce the impact of supply chain problems such as in-
formation distortion across the supply chain [10] and double margin-
alization [31]. For product supply chains, numerous papers have ad-
dressed these issues. However, these concepts have received much less
attention in project settings. A few models have been described that are
based on take it or leave it situations like the counterpart problem in
manufacturing supply chains [5,28,33]. When the supply chain mem-
bers negotiate in bargaining situations, the tools required to analyze the
process are diferent in comparison to those that are used in take it or
leave it situations. Thus, the existing models for take it or leave it si-
tuations may not work correctly in bargaining situations. Interestingly,
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bargaining in a project setting in practice was considered in the study of
Bajari et al. [3]. The authors discussed the negotiated contracts in the
North California building construction sector during 1995–2000. More
recent instances include the re-negotiated building contracts in Dubai
post the economic downturn in 2008 [7]. Despite these reports, bar-
gaining situations have received limited attention in the existing models
in the literature. Lippman et al. [33] developed a bargaining model
using the Nash bargaining approach coupled with a normally dis-
tributed cost function, but this is limited by the selection of the cost
function and the bargaining approach. Unfortunately, normal dis-
tributions are not usually a good model for project cost functions as the
cost functions are normally asymmetric with high Skewness and Kur-
tosis values [2]. Moreover, the use of normal distributions may require
certain assumptions that are not applicable in practice e.g. it is un-
bounded on both sides of the peak and has a non-zero probability of
having a negative cost. In fact, the use of bounded distributions is more
appropriate in project settings due to the ease of combining with the
widely used tool PERT, a tool recommended by the Project Manage-
ment Book of Practice [39]. The beta distribution has been found to be
the most commonly used distribution in this context [17,39,43].
However, there are situations with greater uncertainty around the
maximum possible completion cost, where a better distribution with no
upper bound on the right tail would be more appropriate. There is a
considerable academic debate on the actual nature of these distribu-
tions, partly because they are context dependent. Despite all these de-
bates, the project manager can make an estimate of the probability
distributions from past experience [17]. Hence, to cover these situa-
tions, we used the beta and gamma distributions as a representative of
the skewed distributions for the cost functions. The beta distributed cost
is representative of bounded distributions (both tails) and the gamma is
representative of unbounded distributions (for the right tail). We used
cost-based contracts that can be lexibly converted to various contract
types including ixed-price and cost-plus. These types of contracts are
commonly used as mentioned by the Joint Contracts Tribunal Ltd., UK
[26]. Furthermore, we present some recent examples of the use of these
cost-based contracts from real-life projects in the discussion section.
Additionally, although the Nash bargaining model is widely used, there
are equally valid alternatives to it. Hence this research investigates and
answers the research questions:

If win-win coordination can be achieved when the outcomes are nego-
tiated between a project manager and a supplier using more appropriate
project cost functions? and whether the results depend on the bargaining
approach used with three diferent bargaining approaches (Nash, Kalai-
Smorodinsky and Utilitarian) being analyzed?

Our results for the case of a risk-neutral project manager and a risk-
averse contractor support the indings of Lippman et al. [33] for Nash
and Kalai-Smorodinsky bargaining, but there are some diferences
when using the Utilitarian approach. However, when both the members
of the supply chain have some degree of risk-aversion, we found some
diferent results as partial cost-sharing was an optimal solution.

The rest of this paper is organized as follows: the next section
provides a brief literature review; and then descriptions of the basic
model are presented for the three diferent bargaining approaches:
Nash Bargaining, Kalai-Smorodinsky Bargaining, and Utilitarian
Bargaining. This is followed by the numerical analysis and results.
Finally, we discuss the implications of the proposed model along with
some concluding remarks.

2. Literature review

For many situations, cooperative bargaining approaches have been
found to be beneicial for all the parties involved in the negotiation by
ofering them win-win outcomes. A recent example is Fan et al. [13]
who consider an energy-hub based integrated energy system. However,
despite its proven beneits, the application of bargaining models in
supply chain management (particularly with respect to supply chain

coordination) has received relatively less attention in comparison with
other game-theoretic approaches [38]. Among the few papers on bar-
gaining approaches in the supply chain literature, Nash bargaining has
been found to be the most commonly used tool. This has been used in
the literature to address several supply chain issues such as coordina-
tion and beneit sharing in a three echelon distribution channel with a
deteriorating product [38], optimization of inventory [16,45], co-
operative advertising [24], cost-sharing [45], and proit-sharing
[30,37,44]. One of the limitations of these papers is the lack of focus on
the risk preference of the members of the supply chain as the members
have been assumed to be risk-neutral. However, authors including Abad
[1], Huang [23], Gan et al. [14], He and Zhao [20], and Huang and Li
[24] used a Nash bargaining approach to propose optimal solutions
with diferential risk preferences for the members of the supply chain.
As an extension to Nash bargaining, authors including Hezarkhani and
Kubiak [21], Lin et al. [32], Zheng and Negenborn [47], and Modak
and Kelle [34] used generalized Nash bargaining that takes into account
the diferential bargaining power of the supply chain members. How-
ever, a key aspect of these supply chains is that the product’s demand is
the decision variable. Other notable uses of bargaining models in supply
chains include the Nash Bargaining like solution for the division of the
uncertain future proits [15], inventory model for a two-echelon supply
chain with a declining price-sensitive demand [35], the Rubinstein
bargaining model [46] and a few other non-zero sum bargaining al-
gorithms [41,42]. Again, the diference between these supply chains
and this paper is that these are supply chains with the product’s demand
as the decision variable.

In contrast to the supply chains mentioned in the last paragraph, the
application of bargaining concepts in a project setting is very limited.
To the best knowledge of the authors of the present research, only the
models proposed by Lippman et al. [33] have considered bargaining
games between the members of a project-based supply chain. However,
these models are limited by assuming that the statistical distribution of
the cost variable is a normal distribution. The restrictive nature of this
assumption was discussed in the Introduction. Thus, the existing model
proposed by Lippman et al. [33] might not work correctly with a cost
function distributed as a non-normal continuous distribution. Moti-
vated by this problem in practice and the limitations in the literature,
this research has examined if the model proposed by Lippman et al.
[33] can be extended with gamma and beta distributed cost functions.
Moreover, the models by Lippman et al. [33] are only based on Nash’s
bargaining approach. Hence, it would be valuable to see whether the
results are consistent with other bargaining approaches. This is im-
portant as although the Nash bargaining approach is widely employed
in the economics literature, alternative bargaining models can be re-
garded as equally valid. To compare the results of bargaining across
diferent bargaining approaches, we derived models using Kalai-Smor-
odinsky and Utilitarian approaches alongside the Nash bargaining ap-
proach. Additionally, the literature mostly considers one member of the
supply chain as risk-averse (usually the contractor) and the other as
risk-neutral. In practice, there could be some degree of risk aversion for
both the members of the supply chain. We analyzed this further using
numerical examples.

3. Problem description

A dyadic supply chain with one project manager and one contractor
is considered. The project manager is referred to as she and the con-
tractor is considered as he. This research assumes that the project
manager belongs to a large scale organization with the inancial re-
sources to be neutral towards the level of the inancial risks from the
projects whereas, her counterpart contractor belongs to a small scale
organization that is more vulnerable to inancial risk. Thus, in this
context, the project manager is considered to be risk-neutral and the
contractor is considered as risk-averse. In order to maintain consistency
with the existing literature, the bargaining models are analyzed using
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utility maximizing supply chain members. The following acronyms are
used in this paper.

• z = Wealth value or the pay-of to the member of the supply chain
under consideration

• =Upm The project manager’s utility

• =Uco The contractor’s utility

• N (a,b) = Nash product

• a = Fixed part of the cost-sharing contract with a= a0 for the ixed-
price contract and a = a1 for the cost-plus contract

• b = Variable part of the cost-sharing contract with b ∈ [0, 1]

• X = Cost function as a random variable

• W = Risk exposure of the contractor

• q = The project value

• D = Disagreement point pay-of

• ai(z, D) = The aspiration point pay-of

• K(z,D) = The Kalai-Smorodinsky solution

• U(z,D) = The utilitarian sum

• η = Constant representing the degree of risk preference of the
contractor

• δ = Constant representing the degree of risk preference of the
project manager

• ω = Shape parameter of the gamma distributed cost

• ϕ = Scale parameter of the gamma distributed cost or scale for the
beta distributed cost

• c & d = Shape parameters of the beta distributed cost

• μ = Mean value of the cost

• σ = Standard deviation of the cost

By deinition, the utility function for a risk-neutral member should
have a constant marginal return [19,29]. This is satisied by a linear
form of utility function with respect to wealth. Thus, for, the risk-
neutral project manager and the risk-neutral contractor, the utility
functions are as follows

= =U z U z z( ) ( )pm co (1)

On the contrary, a risk-averse contractor’s utility function should satisfy
the diminishing marginal return [19,29]. This condition is satisied as
long as the utility function is concave in nature [29]. We used the de-
creasing exponential form of the utility function as it is the most
common concave form of utility function [8]. This ensured no change in
the risk premium with respect to the absolute risk aversion (We con-
sidered a decreasing absolute risk-aversion case in the numerical ana-
lysis section as an extension to this original case). Thus, the utility
function for the risk-averse contractor was assumed to be

= >U z e( ) 1 where 0 for the risk averse membersco
z (2)

The project manager has a project of value q. She needs to outsource the
project to an external contractor and so she ofers a cost-sharing con-
tract P. The contractor can either accept or reject the contract. If he
rejects the contract, then it would be the subject of further negotiation.
The contractor would accept the contract if his utility is at least equal to
the disagreement point utility (D). We assume that the disagreement
point utility (D) for the members of the supply chain to be zero. When
the contractor accepts the contract, he needs to select a resource con-
sumption rate to complete the project. Upon completion, the project
manager veriies the cost of completion and makes the payment to the
contractor. We also assume that the value of η to be of common
knowledge to the members of the supply chain in this case.

For a cost-sharing contract, P takes the form of P = a+ bX, where X
is the cost function to the contractor. The cost-sharing contract has two
parameters a and b. It is assumed that a > 0 and b ∈ [0, 1]. a is the
ixed component of the contract. b is the variable component of the
contract. When b=0 or b=1, the cost-sharing contract is equivalent to
a ixed-price contract and a cost-plus contract respectively. For ease of
exposition, the time value of money is ignored from this model. Thus,

the expected utility functions can be derived as follows from Eqs. (1)
and (2)

= + =U E q a bX q a bE X For the project manager[ ( )] ( )pm

(3)

=

=

+U E e

e E e For the risk averse contractor

[1 ]

1 [ ]

co
a bX X

a b X

{( ) }

(1 ) (4)

[Where the X is the cost function (a random variable)].

4. Bargaining models of supply chain coordination with cost-
sharing contracts: Nash’s bargaining

Using the Nash bargaining approach, the project manager and the
contractor would maximize the Nash product N(z, D) as below

=

=

N z D N a b

N a b U a b U a b

( , )* max: ( , )

where ( , ) ( , )* ( , )pm co (5)

With b ∈ [0, 1], the solution of the bargaining process with the risk-
neutral project manager and the risk-neutral contractor leads to equal
utilities for the project manager and the contractor [33]. More im-
portantly, it can be shown that the solution is the same for all b ∈ [0, 1]
in this case. Due to their simplicity of implementation, in practice,
ixed-price contracts are likely to be preferred by members in these
cases.

On the contrary, for the case where the risk-neutral project manager
and the risk-averse contractor are as deined in Eqs. (3) and (4),
Lippman et al. [33] used a normally distributed cost function X. As
argued earlier, this is very unlikely in practice. Thus, this research ex-
tends the model with diferent forms of the probability distribution for
the cost function X, namely the gamma and the beta distributions.

As deined earlier, the expected value =E X µ( ) . Additionally, let W
be deined as =W E e[ ]b X(1 ) . The value of E e[ ]b X(1 ) can be derived
from the moment generating function of the respective distribution of
the cost function X. We assume that W represents the expected risk
exposure of the contractor. Thus, using these values in Eq. (5) gives

=N a b q a bµ e W( , ) ( )(1 )a (6)

In order to get the optimal irst-best value, diferentiating Eq. (6) with
respect to a and setting that equal to zero gives the irst-order condition
as

= + + =
N

a
W a bµ q e We( ) 1 0a a

(7)

On the one hand, with b =0, the contract becomes a ixed-price con-
tract. On the other hand, with b=1, the contract becomes a pure cost-
plus contract. Thus,

= =

= =

a a W W

a a W W

and for fixed-price contracts

and for cost-plus contracts

0 0

1 1

It can be easily shown when b = 1, then =W 11 . Both the contracts’
(ixed-price and cost-plus) parameters should satisfy the irst best
condition in Eq. (7). Thus, using the values of a and W from above, the
following conditions can be derived as

+ + =

+ + = =

W a q e

a µ q e W

[ ( ) 1] 1 0 For fixed-price

[ ( ) 1] 1 0 For cost-plus[ 1]

a

a

0 0

1 1

0

1
(8)

The W value can be calculated as below

= =

+
+

+ +
= =

W E e

t

c r

c d r

t

i

[ ]

1

(1 )
gamma distributed cost

1
!
beta distributed cost

tX

i

i

r

i
i

1 0

1

(9)
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where =t b(1 ), please see Section 3 for the rest of the parameter
details

Thus, for a ixed-price contract with b = 0, the following can be
derived

= =

+
+

+ +
= =

W W
c r

c d r i

1

(1 )
gamma distributed cost

1
!

beta distributed cost
i r

i i i0

1 0

1

(10)

As stated earlier, W=1 for b=1 irrespective of any distribution. Now,
the mean value μ for the cost functions are as follows

=

+

µ c

c d

gamma distributed cost

beta distributed cost
(11)

Using these values of W (Including W0) and μ in Eq. (7), the optimal
condition for the contract parameter a can be determined for the se-
lected distributions of the cost function. This is summarized in the
following lemmas.

Lemma 1. The optimal value of contract parameter a0 of a cost-sharing
contract P= a+bX that maximizes the Nash product, satisies the following
conditions if b = 0

+ + =

+
+

+ +

+ + =

= =

1

(1 )
[ ( a q) 1]e 1 0 gamma

1
c r

c d r i!

[ ( a q) 1]e 1 0

beta

0
a

i 1 r 0

i 1 i i

0
a

0

0 (12)

Lemma 2. The optimal value of contract parameter a1 of a cost-sharing
contract P= a+bX that maximizes the Nash product, satisies the following
conditions if b = 1

+ +

=

+

+ +

=

a q

e

a
c

c d
q

e

[ ( ) 1]

1 0

gamma distributed cost

1

1 0

beta distributed cost

a

a

1

1

1

1 (13)

Following Lippman et al. [33]’s suggestion to use the sign test of the
derivatives, the Nash product or the individual utility functions of the
members of the supply chain can be shown as either increasing or de-
creasing in b. Accordingly, it can be concluded whether ixed-price, or
cost-plus or any other form of cost-sharing contract dominates the so-
lution. Thus, diferentiating Eq. (5) with respect to b, we get

= +
dN a b

db
U

dU

db
U

dU

db

( , )
co

PM

PM

co

(14)

Diferentiating Eq. (3) with respect to b, and using the value of
=E x µ( )

=

dU

db

da

db
µ

PM

(15)

Rearranging the terms from Eq. (7), we get

= =

=

q a bµ
e W

e W

A

A

A e W

( )
1 1

[where ]

a

a

a (16)

Diferentiating Eq. (16) with respect to b, we get the following

=

da

db
µ

A

dA

db

1

2 (17)

Now

= +
dA

db
e W

da

db
e

dW

db

a a

(18)

Using this value of A and dA

db
from (18) in Eq. (17)

= + = +
da

db
µ

A
A
da

db

A

W

dW

db A W

dW

db
µ

1 1 1

2

(19)

As mentioned earlier, =U e W1co
a . Based on the assumption made

in Eq. (16), =U A1co . Thus, diferentiating both sides with respect to
b

=

dU

db

dA

db

co

(20)

Thus, the signs of dU

db

pm and dU

db

co depend on the signs of dW

db
and dA

db
re-

spectively. The sign tests of these derivatives depend on the nature of
the distribution of the cost function X. Using the irst-order derivative of
W i.e. dW

db
for gamma and beta distributed cost in the Eq. (19) we get

=

+

+

+

+ +

+

+ + + +

+

+ + + + +

+

+

+ + +

( )
( )

da

db
µ

A

b

b

b

1

1

(1 )

{1 (1 )}
gamma dist cost

1 (1 )
beta dist cost

c b

c d A

d

c d c d

d c b

c d c d c d

c

c d

b

c c

c d c d

2

(1 )

( ) ( )( 1)

2 ( 1) (1 )

2 ! ( )( 1)( 2)

(1 )

2 !

( 1)

( )( 1)

2

2 2

2

(21)

The parameters ω, c, d, and ϕ are assumed to be positive. The value of A
as assigned in Eq. (16) is positive. It can be easily shown that

>b1 (1 ) 0 for the gamma distributed cost functions (Please see
the appendix for a detailed proof). Hence, from Eq. (21), it can be
shown that the right-hand side of the equation becomes positive for
0 ≤ b < 1 and zero for b=1. Combining this observation with what
we found in Eqs. (15) and (17), the situation is summarized in the
following lemma (Please see the appendix for a detailed proof)

Lemma 3. With a cost-sharing contract P=a+bX (where X follows a
gamma with shape parameter ω and scale parameter ϕ or beta distribution
with shape parameters c and d, and scale parameter ϕ), the Nash product
and the utility functions of the risk-neutral project manager & the risk-averse
contractor are higher under the cost-plus contract than under the ixed-price
contract or any cost-sharing contract (0 < b < 1).

Similarly, the calculations can be extended for cost functions fol-
lowing other continuous distributions such as the exponential, and
Weibull. It can be shown that cost-plus contracts are capable of ofering
a dominating solution to ensure a win-win solution. Hence, from the
indings from lemma 3, the following generalization is proposed

Proposition 1. With a cost-sharing contract P=a+bX (where cost
function X follows any non-normal skewed continuous distribution), the
Nash product and the utility functions of the risk-neutral project manager &
the risk-averse contractor are higher under the cost-plus contract than under
the ixed-price contract or any other cost-sharing contract (0 < b < 1).
The optimal condition for the ixed parameter of the contract satisies the
condition in Eq. (13) in lemma (2) for the gamma and beta distributed costs.

N. Palit and A. Brint Operations Research Perspectives 7 (2020) 100130

4



5. Bargaining models of supply chain coordination with cost-
sharing contracts: Kalai-Smorodinsky bargaining

The utility functions for the project manager and the contractor
remain the same as described in Eqs. (3) and (4) respectively. According
to the Kalai-Smorodinsky rule [27], the optimal solution is

=K z D arg
z D

a z D D
( , ) max min

( , )z i pm co

i i

i i( , )i (22)

Where i denotes either the project manager or the contractor; zi is the
pay of to member i; Di is the disagreement pay-of; and ai(z, D) is the
aspiration pay-of to member i. ai(z, D) is deined as

=a z D arg z( , ) max( )i i . Thus, the Kalai-Smorodinsky solution K(z,D)
maximizes the individually rational pay-of normalized (Upmn for the
project manager and Ucon for the contractor in this case) with respect to
the aspiration point pay of.

As before, the disagreement pay-of (Di) for both the members is
assumed as zero. The aspiration point for the project manager and the
contractor are respectively as follow

For the project manager

= =a z D q E X q µ( , ) ( )pm (23)

For the contractor

=

=

a z D
q µ

e E e e V
( , )

Risk neutral contractor

1 { } 1 Risk averse contractor
co q X q

(24)

[where =µ E X( ) and =V E e{ }X ]
Similar to the case of Nash’s bargaining with risk-neutral members,

for Kalai-Smorodinsky bargaining the maximum utility is equally split
amongst the members. Like Nash’s bargaining, this is the same for ixed-
price and cost-plus contracts. Thus, due to its simplicity, the ixed-price
contract is likely to be preferred over the cost-plus contract in practice
in this situation.

On the contrary, for the case with the risk-neutral project manager
and the risk-averse contractor, using these aspiration point values, the
normalized individual rationalities of the members of the supply chain
are calculated as follows

=U
q a bµ

q µ
For the project managerpmn

(25)

=U
e W

e V
For the contractor

1

1
[W follows equation (9)]con

a

q (26)

In order to satisfy the condition for optimal K, the minimum values of
the two fractions on the right hand side of the Eqs. (25) and (26) should
be maximized. When the minimum of these two fractions are max-
imized, they become equal in value. Thus, at the optimal solution

=

q a bµ

q µ

e W

e V

1

1

a

q (27)

As deined earlier, =W E e( )b X(1 ) . Thus, (for b = 0), =V W0 as V is
assumed as E(eηX). Moreover, it is deined in Section 4 that =b 1, =a a1

for a cost-plus contract, and =W 1. On the contrary, =b 0, =a a0 for a
ixed-price contract; and =W W0. Thus using these values in the op-
timal condition for the Kalai-Smorodinsky Solution in Eq. (27), the
optimal conditions are summarized in the lemmas

Lemma 4. The optimal value of contract parameter a0 of a cost-sharing
contract satisies the following when the Kalai-Smorodinsky bargaining
approach is followed with b=0

=
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Lemma 5. The optimal value of contract parameter a1 of a cost-sharing
contract satisies the following when the Kalai-Smorodinsky bargaining
approach is followed with b=1

=

=

+

=

+

+

= =

+

+ +
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1
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1 0
1

! (29)

In order to identify if the solution with the ixed-price or the cost-
plus contract or any other cost-sharing contract (0 < b < 1) dom-
inates, the sign tests for the irst-order derivatives of the utilities of the

project manager ( )dU

db

pm and the contractor ( )dU

db

co are required. To de-

termine the sign on the right hand side of the above equation, both sides
of the Eq. (27) are diferentiated with respect to b

=

µ

q µ
e W

da

db
e

dW

db e V

1

1

da

db a a
q

(30)

Rearranging the above gives

+ =
da

db
µ e WB e

dW

db
e Wµ B( )(1 )a a a

(31)

[where =B
q µ

e V1
q ]

Now the term B is positive as the maximum possible utilities of the
members have to be positive for the participation of the members. The
values of W and dW

db
would change depending on the nature of the

distribution of X. Using the values of W and dW

db
for the gamma and beta

distributed costs, we get the following

=

+

+ + + +

+

+

+ + + + +

+

da

db
µ

B e W

B e W

Be µ

B e W

d b

c d c d

d c b

c d c d c d

(1 )
gamma

(1 )

(1 )

( )( 1)

2 ( 1) (1 )

2! ( )( 1)( 2)

beta

a µ b

b

a

a

a

(1 )

{1 (1 ) }

2 2 2

(32)

The value of B has to be positive as it is assigned as the ratio of the
maximum value of the utilities of the members of the supply chain (The
maximum values of the utilities have to be positive for participation
purposes). Following the same assumptions and arguments from
Section 4, from Eq. (32), it can easily be shown that the right-hand side
of the equation is positive for 0 ≤ b < 1 and 0 for b=1. Now dif-
ferentiating both sides of Eq. (30), and replacing the values of ,

dU

db

co it

can be shown that 0
dU

db

co for b ∈ [0, 1]. Hence, combining these ob-
servations with the indings from Eq. (15), the situation is summarized
in the following lemma (Please see the appendix for a detailed proof)
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Lemma 6. With a cost-sharing contract P = a+bX (where X follows a
gamma with shape parameter ω and scale parameter ϕ or beta distribution
with shape parameters c and d, and scale parameter ϕ), the Kalai-
Smorodinsky value K, and the utility functions of the risk-neutral project
manager and the risk-averse contractor are higher under the cost-plus
contract (b = 1) than under the ixed-price contract (b = 0) or any other
cost-sharing contracts (0 < b < 1).

Similarly, the calculations can be extended for cost functions fol-
lowing other continuous distributions such as the exponential and
Weibull. It can be shown that cost-plus contracts are capable of ofering
a dominating solution to ensure a win-win solution. Hence, from the
indings from lemma 6, the following generalization is proposed

Proposition 2. Using the Kalai-Smorodinsky bargaining with a cost-sharing
contract P = a+bX (where X can follow any non-normal continuous
distribution, and a & b are contract parameters), the solutions for the Kalai-
Smorodinsky value K, and the utilities of the risk-neutral project manager &
the risk-averse contractor are the dominant solution for a cost-plus contract
(b = 1). This dominates the solutions from any cost-sharing contract
(0 < b < 1) and ixed-price contract (b = 0). The optimal condition for
the ixed parameter of the contract satisies the condition in Eq. (29) in
lemma (5) for the gamma and beta distributed costs.

6. Bargaining models of supply chain coordination with cost-
sharing contracts: Utilitarian approach to bargaining

According to the Utilitarian rule, the sum of the utilities during the
bargaining negotiation is maximized. Thus,

= =U z D arg U( , ) max ( for all the members i.e. i pm, co)
u z

i

(33)

In a similar way to the previous calculations of supply chains with both
risk-neutral members, the solution is indiferent to ixed-price or cost-
plus contracts for the utilitarian approach. Due to the simplicity,
members of the supply chain are likely to be inclined to use ixed-price
contracts in practice. For the case with a risk-neutral project manager
and a risk-averse contractor, substituting the utility functions from
Eqs. (3) and (4) into Eq. (33) gives

= +U z D arg q a bµ e W( , ) max[( ) (1 )]
u z

a

(34)

In order to get the optimal solutions for contract parameter a, Eq. (34)
is diferentiated with respect to a and then it is set equal to zero as
below.

= + =
dU z D

da
e W

( , )
1 0a

Rearranging the terms of the above equation, the irst-order condition
for a is as follows

= +a W
1
log ( )

1
log ( )

e e (35)

In order to ind the optimal conditions for b (0 ≤ b ≤ 1), Eq. (34) is
diferentiated with respect to b and rearranging the terms gives

=

dU z D

db

da

db
e W µ e

dW

db

( , )
( 1)a a

(36)

Diferentiating Eq. (35) gives

=

da

db W

dW

db

1

(37)

Thus, using this value of da

db
Eq. (36) becomes

=

dU z D

db W

dW

db
µ

( , ) 1

(38)

The values of W and dW

db
would vary depending on the nature of the

distribution (see Eq. (9)). Using the values of W and dW

db
for the gamma

and beta distributed costs in the equation above (38), we get the fol-
lowing

=

+ + +

+

+

+ + + + +

+

dU z D

db

µ b

b

µ

W

d b

c d c d

d c b
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{1 (1 ) }
gamma dist

(1 )

( )( 1)

2 ( 1) (1 )

2! ( )( 1)( 2)

beta dist

2 2 2

(39)

It can be shown that the right-hand side of Eq. (39) is positive for
0 ≤ b < 1 and 0 for b=1. Diferentiating Upm with respect to b and
using the values of μ for the gamma and beta distributed costs, it can be

shown that =

dU

db

dU z D

db

( , )pm and = 0
dU

db

co . Using this observation, the si-
tuation is summarized in the following lemma (Please see the appendix
for detailed proof)

Lemma 7. With a cost-sharing contract P = a+bX (where X follows a
gamma with shape parameter ω and scale parameter ϕ or beta distribution
with shape parameters c and d, and scale parameter ϕ), the Utilitarian sum
U, and the utility functions of the risk-neutral project manager are higher
under the cost-plus contract (b = 1) than under the ixed-price contract (b
= 0) or any other cost-sharing contracts (0 < b < 1). However, the risk-
averse contractor’s utility does not change for any values of b for b ∈ [0, 1].

Similarly, the calculations can be extended to cost functions fol-
lowing other continuous distributions such as the exponential and
Weibull. It can be shown that cost-plus contracts are capable of ofering
a dominating solution to ensure a win-win solution for the project
manager and the contractor’s utility remains unchanged for b ∈ [0, 1].
Hence, from the indings from lemma 7, the following generalization is
proposed

Proposition 3. Using the utilitarian bargaining approach for any non-
normal continuous distribution with a cost-sharing contract P=a+bX, the
solutions derived from a cost-plus contract (b = 1) dominates over the
solutions derived from any other cost-sharing contract (0 < b < 1) or a
ixed-price contract (b = 0) for the utilitarian sum U(z,D) and the utility
value of the risk-neutral project manager. However, the utility value for the
risk-averse contractor remains the same for b ∈ [0, 1]. The optimal value of
a satisies the condition in Eq. (35). The W value in Eq. (35) satisies the
conditions in Eq. (9).

Following from the Proposition 3, the contractor is indiferent to the
value selected for b when b ∈ [0, 1] if his objective is to maximize his
utility from the contract ofered by the project manager. Hence, if the
contractor has a secondary objective of maximizing his proit or if the
contractor is less risk-averse than the project manager perceives, then
there is a chance that the contractor may prefer the b which is not 1 for
b ∈ [0, 1]. Thus, depending on the bargaining power of the members of
this supply chain, the negotiation may result in an outcome which is not
win-win for both.

7. Numerical analysis and results

This section illustrates the bargaining models using numerical ex-
amples. We used an Australian electricity company’s dataset from their
construction projects. The dataset was retrieved from the paper by
Jackson [25]. The authors derived the standard deviation of the com-
pletion costs as a percentage of the mean. Hence, for ease of exposition,
we assume the mean completion cost to be =µ k$100 . The average
value of the standard deviation has been computed as 26%. According
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to Potts and Ankrah [40], construction projects have low margins.
Thus, we assume the cost to be 80% of the original project value and we
calculate this to be q=$125k.

The models are derived using gamma and beta distributed costs. The
parameter η is assumed as 0.05 in the beginning. The other distribution
speciic values are assumed as below. With the information (mean and
standard deviation) as above, for a gamma distributed cost, the shape
parameter becomes ω = 14.80 and the scale parameter becomes ϕ =
6.76. Firstly, the value of W is calculated for the gamma distribution
using the numeric values. For construction projects, beta distributed
costs are usually coupled with Project Evaluation Review Techniques
(PERT). Davis [11] proved that the sum of the shape parameters should
be between 4 and 8 i.e. +c d4 8. With the mean and standard
deviation values mentioned earlier, using Excel’s Solver, we calculated
the shape parameters as c = 4.97 and d = 3.03. The scale is calculated
as = 160.84.

7.1. Nash bargaining

Using the conditions from equation (8), the optimal value of a is
calculated for b=0, 0.25, 0.5, 0.75 and 1. Using these values, the values
of Upm, Uco and Nash product N are calculated. The results are presented
in Fig. 1(a).

From Fig. 1(a), it was found that the value of the Upm was 1.51
(5.76) units at b=0 for the gamma (beta) distributed cost. Then it in-
creased monotonically and became 14.24 units at b=1 for both the cost
distributions. Similar is the case for Uco with 0.07 (0.22) units at b=0
for gamma (beta) distributed cost, then increased monotonically, and
inally became 0.42 units at b=1 for both the cost distributions. As a
result of the changes in Upm and Uco, the Nash product increased
monotonically for b ∈ [0, 1]. For b=0, the Nash product was 0.11
(1.28) units for the gamma (beta) distributed cost and at b=1, it was
5.93 units for both the cost distributions. Thus, the results of a cost-plus
contract (at b=1) dominates the solutions from a ixed-price contract
(at b=0) or any other cost-sharing contract with 0 < b < 1. This
supports the original indings from the models. Comparing the results of
the two distributions, we found a similar movement of the functions
Upm, Uco, and N. However, the diference of utilities for b=0 (ixed price
contract) and for b=1 (cost-plus contract) is higher in the case of
gamma distributed cost. This could be explained by the nature of the
distributions. The upper limit of the gamma distributed cost is un-
bounded whereas it is bounded for the beta distributed cost. Having an

unbounded upper limit would leave the possibility of a higher incurred
cost than the bounded upper limit. This was perceived as more risky
leading to a greater amount of perceived beneit of using a cost-plus
contract over a ixed-price contract. Hence, for the same mean and
standard deviation, the impact of using the cost-plus contract was more
signiicant over the ixed cost in this unbounded case (gamma dis-
tributed cost function).

We further presented the eiciency of the win-win solution of se-
lecting b=1 over the other cost-sharing contracts with 0 ≤ b < 1 in
the form of comparison in Fig. 1(b). If the project manager deems the
cost-plus contract i.e. b=1 to be inappropriate due to the lack of control
over the contractor’s expenditure and any opportunistic behavior, then
she would lose up to approximately 90% and 60% of her utility (at
b=0) for the gamma and beta distributed cost functions respectively.
For other cases (0 < b < 1) where the project manager shares a part
of the cost of the contractor, the loss of utility may not be as signiicant
as 90%, but may still be signiicant in most cases. However, for values
of b≥ 0.75, this utility loss is less than 10% for both the contractor and
the project manager for both the distributions. In practice, any project
manager would try to avoid these huge utility losses. However, she
would be required to make the trade-of between the trust she has on
the contractor not being opportunistic to exaggerate the cost, and the
loss she would incur for selecting a cost-plus contract (b=1). If her fear
of being exploited becomes a dominant decision making factor, that
would lead her to become risk-averse and in that case, her decisions for
the selection of the b value will change.

7.2. Kalai-Smorodinsky bargaining

Using the parameter values assumed earlier, the values of Upm, Uco,
and the Kalai-Smorodinsky Function K are determined for b=0, 0.25,
0.5. 0.75 and 1. The results are presented in the distributed cost
Fig. 2(a).

Similar to the observation in the case of Nash’s bargaining, the
values of Upm, Uco, and K are found to be increasing in the value of b
when b ∈ [0, 1]. From Fig. 2(a), it was found that the value of the Upm

was 2.67 (7.96) units at b=0 for the gamma (beta) distributed cost.
Then it increased monotonically and became 22.37 (17.89) units at
b=1 for both the gamma (beta) distributed cost function. Similar is the
case for Uco which was 0.01 (0.13) units at b=0 for gamma (beta)
distributed cost, then increased monotonically, and inally became 0.12
(0.30) units at b=1 for the gamma (beta) distributed cost function. As a

Fig. 1. Individual Utilities/Nash Product for diferent b values.

N. Palit and A. Brint Operations Research Perspectives 7 (2020) 100130

7



result, the K values increased monotonically from 0.11 (0.32) for the
gamma (beta) distributed cost at b=0 to 0.89 (0.72) for gamma (beta)
distributed cost at b=1. Thus, once again the results of a cost-plus
contract dominate the solutions from a ixed-price contract and from
any other cost-sharing contract with 0 < b < 1. This once again
supports the original indings from the model.

Again similar distribution speciic impacts on the functions Upm, Uco,
and K were observed as we found in the case of Nash bargaining. Again,
the unbounded gamma distributed cost has a non-zero chance of having
higher completion cost at a speciic value which is not the case with the
bounded beta distributed cost. This was again perceived to be riskier
leading to a greater amount of perceived beneit of using a cost-plus
contract over a ixed-price contract for the gamma distributed cost over
the beta.

We further presented the eiciency of the win-win solution of se-
lecting b=1 over the other cost-sharing contracts with 0 ≤ b < 1 in
the form of comparison in Fig. 2(b). The project manager and the
contractor both would lose up to approximately 90% and 55% of her
utility (at b=0) for the gamma and beta distributed cost functions re-
spectively. For other cases (0 < b < 1) where the project manager
shares a part of the cost of the contractor, the loss of utility may not be
as signiicant, but is still considerable in many cases. In practice, any
project manager would try to avoid a huge utility loss. Hence, again, the
project manager would be required to manage the trade-of we men-
tioned in the case of Nash bargaining.

7.3. Utilitarian bargaining

Using the optimal value of a from Eq. (35) in the equation of the
utility function of the contractor and rearranging the terms

=U 1
1

co

(40)

As mentioned earlier, Uco > 0, otherwise the contractor will not par-
ticipate in the bargaining. Thus, for the utilitarian bargaining approach
η > 1. Thus, unlike the case of Nash’s bargaining and Kalai-Smor-
odinsky bargaining, the risk aversion parameter η cannot take lower
values. To put it in other words, the utilitarian approach is applicable
for more risk-averse members than the cases we explored for Nash and
Kalai-Smorodinsky bargaining cases.

μ and q are assumed as $100k and $125k respectively as before.
However, η is assumed as 1.3. Moreover, we assumed the σ as 2.69%

instead of 26%. This was because the derived models were generating
undeined utilities for standard deviations with a higher θ for
0 ≤ b < 1. In practice, this can be explained as the non-applicability of
the models in the cases of higher risk and lower risk-aversion. Thus, this
would become another limitation of using the utilitarian approach.
Again, the analysis was conducted for gamma, and beta distributed
cost. For the gamma distributed cost, the parameters are calculated as
= 14.80 and = 0.7. The parameters for the beta distributed costs are

calculated as c = 4.97, d = 3.02 and = 16.66. Using these, the values
of Upm, Uco, and the Utilitarian Sum are determined for b=0, 0.25, 0.5.
0.75 and 1. The results are presented in distributed cost Fig. 3(a). We
found some similarity in results for the utilitarian sum and the utility of
the project manager in comparison to what we found in the cases of
Nash bargaining and the Kalai-Smorodinsky bargaining. Both those
functions (U and Upm) were found to be monotonically increasing with
the increase in b for b ∈ [0, 1]. However, unlike the previous cases, the
contractor’s utility remained the same ( =U 0.23co ) throughout for
b ∈ [0, 1].

Again some distribution speciic impacts on the functions Upm and U
were observed. The impact of using cost-plus contracts on the project
manager’s utility and on the utilitarian sum was more signiicant over
using the ixed-price contracts for the gamma distributed cost functions.
Again this was due to the same distribution speciic characteristics
explained in the case of Nash bargaining. However, the impact of using
the cost-plus contracts over ixed price was found to have no efect for
both the distributions. In fact, it even remained unchanged for gamma
and beta distributed costs as long as η remained the same. This can be
explained from the Eq. (40). The contractor’s utility only depended on
his risk perception parameter η.

We further presented the eiciency of the win-win solution of se-
lecting b=1 over the other cost-sharing contracts with 0 ≤ b < 1 in
the form of comparison in Fig. 3(b). The project manager would lose up
to approximately 15% and 2.5% of her utility (at b=0) for the gamma
and beta distributed cost functions respectively. In practice, any project
manager would try to avoid any huge utility loss. Hence, again, the
project manager would be required to manage the trade-of we men-
tioned in the case of Nash bargaining.

7.4. Comparison between the three bargaining approaches

We found similarities and dissimilarities between the results of the
three bargaining approaches we used for modeling. In both the cases of

Fig. 2. Individual Utilities/Kalai-Smorodinsky value K diferent b values.
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Nash and Kalai-Smorodinsky bargaining approaches, the solutions with
a cost-plus contract ( =b 1) were found to be dominating the other so-
lutions for both the project manager and the contractor. In fact, the
project manager (the contractor) was found to be losing up to 90% of
her utility for not selecting the cost-plus contract in certain cases of the
gamma distributed cost. However, the percentage loss of utilities for not
selecting b=1 was diferent for the project manager and the contractor
for the Nash bargaining approach, but the same for the Kalai-
Smorodinsky bargaining approach. This was due to the normalization
applied as part of the Kalai-Smorosinsky approach. Nevertheless, the
trade-of for the project manager (between not trusting the contractor
to avoid the opportunistic behavior of cost exaggeration and losing a
signiicant amount of her utility) would generate signiicantly diferent
results upon selection of the extremes of the trade-of in both of these
bargaining cases.

On the contrary, the utilitarian bargaining approach, showed
somewhat diferent results for the cases explored. The contractor did
not have any change in his utility for b ∈ [0, 1] and hence, no loss of
utility for not selecting b=1. The percentage loss of utility for the
project manager not selecting b=1 was not as signiicant as we found in
the other two bargaining approaches (Please see Fig 3(b)). Thus, the
trade-of for the project manager (between not trusting the contractor
to avoid the opportunistic behavior of cost exaggeration and losing a
signiicant amount of her utility) would not generate such signiicantly
diferent results as found in the other two bargaining cases. Thus, the
project manager may have some indecision over selecting the correct
value of b ∈ [0, 1]. Furthermore, the project manager’s (the con-
tractor’s) proit was found to be increasing (decreasing) with any in-
crease in b for b ∈ [0, 1]. Due to the indiference in her utility values, if
the contractor has a secondary objective of proit maximization apart
from his primary one of reducing the risk, then he might prefer the ixed
price contract. Summarizing the discussion of this paragraph, the use of
the utilitarian bargaining approach may lead to some inconclusive re-
sults. This suggests that the win-win solution may be diicult to be
reached, and hence, this approach may be diicult to be managed in
practice.

7.5. Further sensitivity analysis

In Sections 7.1, 7.2, and 7.3, we presented the cases with only the
contractor as risk-averse whereas the project manager as risk-neutral. In

this section, we consider the case when the project manager is risk-
averse too. We denote her degree of risk preference as δ (as stated
earlier). Her utility function becomes =U e M1pm

q a( ) (assuming
the risk-averse project manager will also have an exponential utility
function like the risk-averse contractor. =M E e[ ]bX is the expected risk
exposure of the project manager).

For the case of Nash bargaining, the project manager and the con-
tractor would try to optimize the Nash product
=N e M e W(1 )(1 )q a a( ) . The optimal a value satisies the

condition +Me We MW e{ ( ) }a q a a q a( ) ( ). We further
analyzed the optimal b value numerically and the results are presented
in Figs. 4(a) and (b).

From these igures, we found that the optimal value of b is neither 0
nor 1, but somewhere between 0 and 1 when both the project manager
and the contractor are risk-averse. We analysed two cases: when the
project manager was less risk-averse than the contractor ( = 0.02 and
= 0.05), and vice-versa ( = 0.05 and = 0.02). When the project

manager is less risk-averse than the contractor, the optimal solution is
around b=0.75 to 0.8 i.e. she is ready to share 75% to 80% of the
contractor’s cost as an optimal solution. This reduction in b value in
comparison to the base case of the risk-neutral project manager was due
to the project manager becoming risk-averse. We further investigated
the case with the project manager becoming more risk-averse (with
= 0.05) and the contractor becoming less risk-averse(with = 0.02).

We found that the optimal b=0.25 to 0.3 the project manager preferred
to share approximately 25% to 30% of the contractor’s cost. It can be
easily shown that when the project manager becomes risk-averse and
the contractor risk-neutral, the optimal solution becomes a ixed-price
contract. This can be explained from practical considerations - as the
project manager became more risk-averse, she preferred to avoid any
risk of an excessive cost from the contractor being passed over to her
(please see the issues around trust in Section 7.1). This is why she
preferred contracts closer to a ixed price when she started to become
more risk-averse. It can be easily shown when both the project manager
and the contractor are equally or almost equally risk-averse, the op-
timal solution of b is around 0.5 i.e. they negotiate to share approxi-
mately 50% of the cost incurred by the contractor.

Similar results were also found in the Kalai-Smorodinsky case. The

optimal a value satisied the condition =

e M

e L

e W

e V

1

1

1

1

q a

q

a

q

( )

(M is de-

ined earlier in this section; L is assumed as the =L E e[ ]X ) which are

Fig. 3. Individual Utilities/Utilitarian sum value U for diferent b values.
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presented in Figs. 5 (a) and (b).
For the Utilitarian bargaining approach, for various values of δ and

η, the proposed model failed to ofer solutions for some of the values of
b ∈ [0, 1]. However, for most of the cases, we found that b=0.5 gave
the optimal value of both the project manager’s and the contractor’s
utilities.

We also conducted a sensitivity analysis of when the utility function
of the risk-averse contractor is not an exponential function keeping the

project manager risk-neutral as before. We considered =U z( )co

z

1

1

(For z > 0 and η ≠ 1. For = 1, the function would become

=U zlnco ); so the utility of the contractor becomes =Uco
a b X{ (1 ) }

1

1

.
This type of risk-aversion function is used for decreasing absolute risk
aversion (DARA) cases. This ensures that the risk-averse contractor will
require less risk-premium with the increase in wealth value z. We did
not consider the increasing absolute risk-aversion case as the risk pre-
mium will continue to increase with the increase in the wealth, and so
the original results are less likely to change. We kept the risk-neutral
project manager’s utility as considered before. The results are generated
with the assumption that >a b X(1 ) , i.e. the project manager needs
to ofer a minimum contract value that is greater than the incurred cost
by the project manager. We also used the same set of parameter values
as assumed in sections 7.1 and 7.2. The results for the Nash bargaining
and Kalai-Smorodinsky bargaining cases are presented in Fig. 6(a) and
(b) respectively. We found that the cost-plus contracts are still dom-
inating the solutions i.e. the best possible options for both the project
manager and the contractor. However, the change in utilities with re-
spect to the ixed price or any other cost-sharing contracts, for using the
cost-plus contract was found to be very low. This was due to the fact
that the contractor’s risk aversion function was a decreasing absolute
risk aversion and he was prepared to invest more money or expecting
less risk premium for his participation. As a result, the expected beneits
were less than the base case. The results for a Utilitarian bargaining
case (presented in Fig. 6(c)) is somewhat diferent than we found in the
case of the Nash and Kalai-Smorodinsky bargaining case. Unlike the
original case presented in Section 7.3, the proposed models failed to
generate any meaningful result for η > 1. Hence, we considered
= 0.05 keeping the rest of the parameters the same as assumed in

Section 7.3. The cost-plus contract was found to be very marginally
more beneicial (in comparison to the ixed price) for the project
manager, but it was marginally less beneicial (in comparison to the
ixed price) for the contractor than in comparison. As a result, our

model failed to get a unique win-win solution in this case. In real
projects, if the members use this type of bargaining, then the outcome
would be subject to their individual bargaining power.

8. Discussions and concluding remarks

This paper has analyzed the bargaining solution for projects where
the contractual payment from the project manager to the contractor is a
linear function of the contractor’s cost. The important categories of
ixed price and cost-plus contracts are included in this type of contract.
It was assumed that the project manager was risk-neutral and the
contractor was risk-averse - this corresponds to the common situation of
a large project manager and a signiicantly smaller contractor. The key
contributions to the knowledge include

• The derivation of mathematical models for project supply chain
bargaining situations that can establish an optimal win-win solution
with diferential risk perceptions of the supply chain members when
the cost functions follow more realistic distributions (gamma and
beta).

• The Nash and Kalai-Smorodinsky bargaining approaches have a si-
milar impact on the win-win results, while the Utilitarian approach
gives diferent results.

• An investigation of the diiculties a utilitarian bargaining approach
has on generating the win-win outcome as it leads to inconclusive
results in certain cases.

There are certain managerial implications that can be drawn from
the indings of this paper. The irst one is the analysis of more realistic
distributions for the cost functions. Gamma and beta distributions were
used to model the contractor’s cost as they have been found to be a
better model of project costs than the previously used normal dis-
tribution [17,43]. A comparison between the two types of cost dis-
tributions revealed some further managerial implications. Due to the
right tail being unbounded, the gamma distributed cost functions had a
non-zero probability of having an unknown maximum value of com-
pletion cost. This led to a greater cost uncertainty. This did not apply to
the beta distributed cost due to its bounded nature. Thus, for these
cases, the project manager was required to ofer a greater amount of
surplus to entice the contractor to participate. Especially in these types
of cases of uncertainty (with unknown maximum cost), the beneit of

Fig. 4. Individual Utilities/Nash Product for diferent b values: both risk averse members.
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using a cost-plus contract over the ixed price contract was signiicantly
higher than with the cases of having a known upper bound of the cost.
Similar results can be derived for other continuous distributions fol-
lowing the same set of procedures highlighted in this paper for the cases
of the gamma and beta distributed cost. The results would vary a little
depending on the type of the distribution (if bounded on the right tail or
not).

Secondly, three bargaining models were analyzed: Nash, Kalai-
Smorodinsky and Utilitarian. The results from the analyzes of these
three also revealed further implications for practice. In most of the
cases, the cost-plus contract was the best linear contract, i.e. b=1.
However, in the Utilitarian case, the contractor’s utility Uco was the
same for b ∈ [0, 1]. Hence the contractor is insensitive to the value of b.
This has the problem that if the contractor is slightly less risk-averse
than the project manager believes or if the contractor has a secondary
objective of maximizing his proit, then the contractor will prefer the
utility they receive if b is ixed at zero and then the value of a is chosen,
by the bargaining model, rather if b is ixed at one before choosing a.
For the Nash and Kalai-Smorodinsky bargaining models, the con-
tractor’s utility was higher at b=1 than for other values of b, and so
they do not sufer from this instability. Consequently, this highlights a
signiicant problem with the Utilitarian bargaining model. This may be
due to the fact that the utilitarian approach is one of the extreme
bargaining approaches.

Although cost-plus contracts solve the bargaining models, and so
provide the optimal solution, they have the drawback as far as project
managers are concerned, that the project manager lacks direct control
of the costs that the contractor incurs. Consequently, there can be a
concern that the contractor is making expenditure decisions that may
be higher than the optimal on the grounds that they will be reimbursed
for the project costs. This fear of being exploited may lead to some
trade-of in the decision making of the project manager (between the
loss of utility for not selecting a cost-plus contract and the loss of
control due to the opportunistic behavior of the contractor) of the
project manager. In practice, if the project manager has less trust over
the contractor’s opportunistic behavior, she may choose a value of b
that is below 1 if the utility loss for not selecting the optimal is not
signiicant. Despite these challenges, it is used in practice. We found
evidence of its use from a report of the European Union on the projects:

treatment, valorisation and solid-waste disposal of inter-municipal
system of the “Litoral Centroâǥ region (ERSUC), and Sanitation sub-
systems of Barreiro/Moita and Seixal (SIMARSUL) in Portugal [9]. We
also found recent evidence of the use of cost-based contracts including
cost-plus contracts, e.g. the USA’s Department of Defence, recently
awarded a cost-plus ixed-fee contract to Science Application Interna-
tional Corporation [22]. Bargaining power can play an important role
in the selection of the type of the contract and a wrong selection could
make things less proitable leading to organizations involved going into
administration. This is quite common in construction sector projects
such as recent failures in the UK of JistCourt [6] and Carillion [18]. The
main reason cited for these failures was the presence of less proitable
projects. In fact, Goodley [18] reported that the failure of Carillion was
due to a popular phenomenon “subbie-bashing” where the small and
medium irms are inancially exploited by powerful large farms in their
supply chain. Above all, the value of the current research is in proving
that the best solution occurs at b=1, and so allows the loss of utility
from choosing a non-optimal value of b to be determined.

Furthermore, our sensitivity analysis investigated how things
changed when the project manager also became risk-averse. This has
several practical implications. In reality, it is likely that the project
manager may have some degree of risk-aversion in many cases. It can
be easily shown (both analytically and numerically) that the risk-averse
project manager’s best interest was to ofer a ixed price contract to
avoid any exploitation of uncontrolled costs being passed over to her by
the contractor as discussed in the last paragraph. On the contrary, our
analysis showed that the risk-averse contractor was inclined to bargain
for a cost-plus contract as he was having the fear of uncertainty in cost
estimation at the beginning of the project. Depending on the degree of
risk-aversion of the member, the optimal results were neither a ixed
price (b=0) nor a pure cost-plus (b=1), but rather a cost-sharing
contract with 0 < b < 1. We also found when both are more or less
equally risk-averse, the optimal solution tends to be around b=0.5 i.e.
the cost incurred by the contractor is equally shared between the pro-
ject manager and the contractor. In reality, the bargaining power of the
members of the supply chain also plays an important role in this type of
bargaining where both members are risk-averse. As a result, things may
not always be optimal and this may become detrimental for the member
with less bargaining power.

Fig. 5. Individual Utilities/K for diferent b values: both risk-averse members.
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Further sensitivity analysis with a diferent type of risk-aversion
(Decreasing Absolute Risk Aversion) showed how the eiciency of the
cost-plus contracts may change (decrease in this case) when the type of
risk aversion changes. The main reason for this change was the change
in the contractor’s level of inancial engagement (more in this case and
as a result expecting less risk premium). Again, the results were quite
similar for the Nash and Kalai-Smorodisnky bargaining cases, but
somewhat diferent for the Utilitarian bargaining cases. This may be
again due to the extreme bargaining nature of this type of utilitarian
approach.

There are certain areas where our models can be extended for future
research. Firstly, how the optimal solutions may change in the presence
of another third party such as a mediator can be investigated in future
work (as highlighted in a diferent context in the recent work of
Fairchild [12]). Furthermore, we showed numerically with multiple
scenarios of how the optimal contract was neither a ixed price (b=0)
nor a pure cost-plus (b=1) when both the members were risk-averse.

Further research can be conducted with the empirical validation of this
type of situation with how the bargaining power plays a role in it. The
proposed models of this paper could also be extended to the situation
where several potential contractors are competing through an auction
process. Of particular interest would be how a ixed b, e.g. b=0.5, in-
teracts with the risk aversion level of the bidder, and so, for example,
quantifying how much smaller contractors are disadvantaged when b is
small.
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Appendix A. Proof of Lemma 3 and Proposition 1

Diferentiating equation (9) with respect to b, the following is derived

=

+

+ +
= =

dW

db

W

b

c r

c d r

i b

i

{1 (1 )}
gamma dist cost

(1 )

!
beta dist cost

i r

i i i i

1 0

1 1

(A.1)

As mentioned in the problem description i.e in Section 3, η > 0 for the risk-averse members. It can also be shown that >q a 0,0 otherwise the
project manager’s utility would be negative and she would never participate in the bargaining. Thus, from equation (12), it can be shown that

> 0
1

(1 )
for a gamma distributed cost when η and ϕ both are positive. Thus, ηϕ < 1. It was shown on page 9, Section 4 that W=1 for b=1 and

=W W0 for b=0. It is also assumed before that 0 ≤ b≤ 1. This leads to <b0 (1 ) 1 and >b1 (1 ) 0. Thus, the value of dW
db

is negative.
This means W is a decreasing function of b for b ∈ [0, 1]. Since W is decreasing in b for b ∈ [0, 1], W is positive as the minimum value could be 1.

Now using the value of =µ from equation (11) and the value of dW
db

from Eq. (A.1) in equation (19), the value of µ
da

db
for the gamma

distributed cost in equation (21) is derived.
In the equation (21), the right-hand side of the equation is positive with 0 ≤ b < 1 and zero with b =1. Thus, the value of the term µ( )

da

db
is:

positive with 0 ≤ b < 1 ; and zero with b =1 for a gamma distributed cost function X. Using this observation in equation (15), Upm is found to be
increasing in b in the range 0 ≤ b < 1 and attains the maximum with b = 1. It is also assumed earlier that η > 0. Thus, from equation (17),

> 0
dA

db
. This proves that 0

dU

db

co for b ∈ [0, 1]. Thus, Uco is increasing in b with 0 ≤ b < 1 and attains the maximum with b=1. This proves the

case for gamma distributed cost for Lemma 3. Using these above observations in equation (14), it can be shown that > 0
dN

db
for 0 ≤ b < 1 and

= 0
dN

db
for b=1. This proves the case for Nash product with gamma distributed cost in lemma 3.

Now for the beta distributed cost, expanding the right-hand side of Eq. (A.1), the following is derived
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Using this value of dW
db

and the =
+

µ
c

c d
for the beta distributed cost in Eq. (19) and expanding the value of W from Eq. (9), we get the following
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This above equation serves the case for the beta distributed cost in equation (21). It can be easily shown that the term

+ + +
+

+

+ + +
b1 (1 ) ,

c
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in the above equation is W. Similar to the argument for the case of gamma distributed cost

function, it can be shown that W is positive. The parameters η, c, and d are all positive. It is also shown that A is positive. Thus, when 0 ≤ b < 1, the
right-hand side of the equation (21) becomes positive. When b=1, the right hand side is zero. Hence, µ 0

da

db
with 0 ≤ b ≤ 1. This again

concludes that Upm is increasing in b with 0 ≤ b < 1 and attains the maximum value with b = 1. Using the observations above in equation (17), it
can be shown 0

dA

db
for b ∈ [0, 1] i.e. 0

dU

db

co for b ∈ [0, 1]. Thus, similar to the calculations of the gamma distribution, it can be shown Uco is
increasing in b for 0 ≤ b < 1 and attains the maximum at b = 1. This proves the case for beta distributed cost in lemma 3. Using these observations
in equation (14), it can be shown that > 0

dN

db
for 0 ≤ b < 1 and = 0

dN

db
for b=1. In other words, N is increasing in b for 0 ≤ b < 1 and is maximum

at b = 1. This proves the case for Nash product with beta distributed cost in lemma 3. The proposition 1 is the generalization following from lemma 3
and can be very easily proved for other non-normal continuous distributions. The paper by Lippman et al. [33] has derived models for the normal
distributed cost and Nash bargaining.

Appendix B. Proof of Lemma 6 and Proposition 2

Using the value of W (for the gamma distributed cost function) from equation (9) of Section 4 and dW

db
(for the gamma distributed cost function)

from Eq. (A.1) in Eq. (31) in Section 5 and rearranging the values in terms of W, we get the right-hand side of the equation (32) in Section 5 for the
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gamma distributed cost function. It was shown Appendix A that >b1 (1 ) 0 for a gamma distributed cost function with shape parameter ω
and scale parameter ϕ. Hence, the right-hand side of the equation (32) is positive for 0 ≤ b < 1 and zero for b=1 for a gamma distributed cost
function with the shape parameter ω and the scale parameter ϕ. Hence, combining this with the indings from equation (15), it can be said that Upm is
increasing in 0 ≤ b < 1 and attains the maximum value at b=1. By replacing the value of dU

db

co on the right-hand side of equation (30) in Section 5

and rearranging the values, it can be easily shown that =µ B( )
da

db

dU

db

co . Now the term B is positive as argued in Section 5. Hence, from the above

observation, if µ( )
da

db
is positive for b ∈ [0, 1) and zero for b=1, then same is the case for dU

db

co . This means Uco is increasing in b for 0 ≤ b < 1
and attains the maximum value at b=1. These observations about Upm and Uco prove the arguments presented in lemma 6 for the gamma distributed
cost.

For a beta distributed cost X with scale parameter ϕ (0 < X < ϕ) and shape parameters c and d, using the value of dW
db

from Eq. (A.2) and the
expanded form of W from equation (9) in equation (31) gives
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[The value
+

c

c d
was replaced with μ for the beta distributed cost in the above derivation on the right hand side in step 2]

From the above equation, it can be shown that the right-hand side of the equation is positive for 0 ≤ b < 1 and zero for b=1. This is because η is
positive (as argued earlier), and c and d are both assumed as positive as well. Following the steps shown in gamma distributed cost, it can be again
shown that Upm and Uco both are increasing in b for 0 ≤ b < 1 and maximum at b = 1. These observations about Upm and Uco prove the arguments
presented in lemma 6 for the beta distributed cost.

Now using these above observations for Upm and Uco (for gamma and beta distributed costs) with what was found in equation (27), it can be
shown that the Kalai-Smorodinsky value K value is increasing in b for 0 ≤ b < 1 and is maximum for b=1. This further proves the argument about
the Kalai–Smorodinsky value K in lemma 6. The proposition 2 is the generalization following from lemma 6 and can be very easily proved for other
non-normal continuous distributions. For the normally distributed cost, the standard deviation and the mean are not the functions of the same
combination of parameters. Hence, it would be interesting to see this in future work if the derived models can be generalized for the case of normal
distributed costs.

Appendix C. Proof for Lemma 7 and Proposition 3

Using the values of W from equation (9) and dW

db
from Eq. (A.1) for the gamma distribution in equation (37) gives

=

da

db b1 (1 ) (C.1)

Using the value of =µ from Eq. (11), and using the value of da
db
from the Eq. (C.1) in Eq. (37) or the values of W from Eq. (9) and the value of dW

db

from Eq. (A.2), in Eq. (38), we get the right-hand side of the Eq.(39) for the gamma distributed cost. Following the arguments from Appendix A, it
can be shown that ηϕ < 1, and >b1 (1 ) 0. Hence, it can be shown that the right-hand side of the Eq. (39) for the gamma distributed cost is
positive for 0 ≤ b < 1 and zero for b=1. Combining this observation with the indings from Eq. (15), Upm is found to be increasing in b for

0 ≤ b < 1 and attains the maximum with b = 1. From Eqs. (15), (37) and (38), it can be easily shown that =

dU z D

db

dU

db

( , ) pm . Now diferentiating both

sides of the Eq. (34), and replacing the value of ,

dU

db

pm it can be easily found that = 0
dUco

db
. Hence, Uco remains unchanged for b ∈ [0, 1] and U(z,D)

changes the same way Upm does. This proves the case for gamma distributed cost as argued in lemma 7.
Using these values of W for the beta distribution from Eq. (9) and dW

db
from Eq. (A.2) in Eqs. (37) and (36), we get
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[The mean value of beta distributed cost =
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Following the arguments from Appendix B,it can be shown that the right-hand side of the above equation is positive for 0 ≤ b < 1 and zero for b =
1. This leads to the conclusion that U(z, D) is increasing in b for 0 ≤ b < 1 and reaches a maximum at b = 1. Following the same steps for the case of

gamma distributed cost with utilitarian bargaining, it can be shown that = 0
dU

db

co and =

dU

db

dU z D

db

( , )pm . Hence, Uco remains unchanged for b ∈ [0, 1] and
U(z,D) and Upm are found to be increasing in b for 0 ≤ b < 1 and attains the maximum with b = 1. This proves the case for beta distributed cost as
argued in lemma 7. The proposition 3 is the generalization following from lemma 7 and can be very easily proved for other non-normal continuous
distributions. For the normal distributed cost, the standard deviation and the mean are not the functions of the same combination of parameters.
Hence, it would be interesting to see this in future work if the derived models can be generalized for the case of normally distributed costs.
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