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Abstract 

In this paper, we employ a new approach to assessing the impact and efficiency of virtual water use along the 

supply chain. This approach involves estimating the economic value of virtual water flows. A realistic tea 

supply chain case study is presented to test this new approach and compare it with alternative volumetric and 

stress-weighted methods. The case study is used to highlight the total value of the blue and grey water used to 

produce one tonne of tea as a finished good ($224). The case study also illustrates how variations in the 

relative unit value of water between geographies, in this case between multiple locations where crops are 

cultivated (India $0.08 m3, Indonesia $0.09 m3 and Kenya $0.27 m3), can be used to inform supply chain 

optimisation and allocative efficiency. Indeed, the case study suggests that taking into account the economic 

value of virtual water may provide differing prescriptions for the sustainable management of supply chains 

when compared to the traditional volumetric water footprint, and the stress-weighted water footprint used in 

LCA.  

Keywords: Benefit transfer, economic value of water, stress-weighted water footprint, supply chain 

management, virtual water, Water Footprint.
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1. Introduction 

Less than 1% of the earth’s water is easily accessible freshwater (USGS, 2016). This limited resource 

is subject to spatial and temporal disparities that are becoming more pronounced in light of multiple and 

interrelated socio-economic, demographic and environmental pressures (Vörösmarty et al., 2000; Arnell, 

2004; Kundzewicz et al., 2008). Indeed, by 2030 it is estimated that global water requirements will exceed 

sustainable supplies by 40% (2030 Water Resources Group, 2009), and the World Economic Forum 

consistently ranks “looming” freshwater crises as one of the most significant long-term global risks (World 

Economic Forum, 2018).  

The complex and geographically diffuse nature of modern supply chains ensures that they are often 

the first to suffer in the face of water-related events. This vulnerability is particularly apparent with agri-food 

supply chains as they are both sustained by water resources but also significantly contribute to water scarcity 

(CERES, 2015). Globally, 70% of all water is used in agriculture (FAO, 2016) and approximately one-third of 

all cropland is located in areas of high or extremely high water stress (World Resources Institute, no date). As 

Morgan (2017) puts it, global water challenges are then, to a large degree, global sustainable food production 

challenges. 

Against this backdrop, the concept of virtual water (Allan, 1996, 1998, 1999) – the volume of water 

used along a supply chain to produce products – has gained traction as a means of understanding how 

production and consumption in one location impacts watersheds in other locations. Virtual water studies have 

shown that it is the hidden component of water dependency associated with indirect water use in the supply 

chain that frequently represents by far the largest appropriation of freshwater (e.g. Aldaya and Hoekstra, 2010; 

Ercin et al., 2011). Indirect water use is also an area that businesses neglect, thus exposing themselves to 

unknown risks and vulnerabilities.1 

The main debate in the virtual water literature at present concerns the primary rubric for measuring 

sustainability. Should this be the efficient allocation of water volumes at the global scale as advocated by the 

Water Footprint Network (Hoekstra et al., 2009; Hoekstra et al., 2011; Hoekstra, 2016)? Alternatively, should 

                                                           
1 In the 2017 edition of the CDP Global Water Report, less than half (41%) of those companies surveyed engaged with 
their supply chain and required suppliers to report water management. 
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this be the local impact of water use at each supply chain location as indicated by scarcity weighted water 

volumes that can be used in Life Cycle Analysis (LCA) (Ridoutt, et al. 2009; Bayart et al., 2010; Ridoutt and 

Pfister, 2010; Kounina et al., 2013; Ridoutt and Pfister, 2013; Pfister and Ridoutt, 2014; Boulay et al., 2015; 

Ridoutt et al., 2016; Pfister et al. 2017)? The application of environmental (economic) valuation, however, 

has not been introduced into this debate. Environmental (economic) valuation refers to the estimation of 

welfare values for goods and services provided by the natural environment. These goods and services are 

typically not responsive to markets, and therefore welfare or shadow values are used to signal relative 

resource scarcity and inform allocative efficiency (e.g. see Champ et al. 2003).2 As Lowe et al. (2018a) argue, 

the correct estimation of welfare values has the potential to inform both the impact and allocation of virtual 

water dependencies. 

Several authors have introduced economic-related concepts into the water footprint literature. For 

example, Chouchane et al. 2015 and Owusu-Sekyere et al. 2017 introduced the idea of economic water 

productivity. In addition, Input/Output frameworks have been used to derive the value-added of water in the 

supply chain (e.g. Acquaye et al. 2017). However, these approaches overstate shadow values as they are not 

focused on the contribution that water makes in isolation. Indeed, the most notable attempts to apply genuine 

welfare economic valuation concepts to water in the supply chain have occurred in the non-peer reviewed 

grey literature (PUMA, 2010; Ecolab and Trucost, 2015; Park et al. 2015; Ridley and Boland, 2015). These 

approaches set out in the grey literature have been used by companies such as PUMA, Kering, Bloomberg and 

Novo Nordisk.  

In view of this, Lowe et al. (2018b) set out a new approach that involves estimating the economic 

value of the blue, green and grey water employed along agri-food product supply chains, using existing 

empirical water value estimates. In this paper, we provide an in-depth illustration of this new approach in the 

context of a simple four-stage tea supply chain case study (tea case study) that reveals the total value of the 

virtual water associated with the product. More importantly, however, the method also illustrates how 

variations in the value of water between multiple locations (in this instance locations of crop cultivation), 

                                                           
2 Savenije (2002), Hanemann (2006) and Young and Loomis (2014) set out the market and institutional failures associated 
with water goods and services. 
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could be utilised to drive allocative efficiency along a supply chain and thus inform supply chain sourcing and 

optimisation.  

The rest of the paper is organised as follows: Section 2 introduces the tea case study and the 

secondary data sources utilised to estimate the volumetric water footprint. Section 3 presents the unit 

economic value estimates that have been used at each stage of the supply chain, together with the economic 

value of the virtual water associated with tea. Section 4 discusses the benefit of an economic valuation 

approach to assessing the sustainability of virtual water use when compared to alternative methods 

(volumetric and scarcity-weighted footprints). Section 5 undertakes sensitivity analysis on the economic 

values used in the case study and sets out limitations associated with the approach adopted. Finally, Section 6 

concludes.  

2. The Volumetric Water Footprint of Tea – A Secondary Data Case Study 

This paper begins by presenting the secondary data that we have drawn on to estimate of the volumes 

of water employed along the tea supply chain. This data provides a context in which to test the economic 

valuation approach that is the wholly novel aspect of this research and which we go on to describe here. 

Therefore, given that the water volume data is a means to an end, we do not provide a detailed description of 

this data here. For a fuller description of the methods used by the original authors, readers should consult the 

papers cited. 

2.1. Case Study Background 

The case study is based loosely on Jeffries et al. (2012) who use the Water Footprint method 

(Hoekstra et al., 2011) to estimate the volumes of blue and green water consumption, and grey water 

degradation that are associated with one box containing 50 grams of black tea.3 However, when the emphasis 

is on economic values (as it will be in what follows), larger production quantities are more meaningful units of 

analysis. This is because the economic value of water only tends to register in volumes that exceed those 

associated with individual products. Therefore, the water footprint associated with one tonne of black tea – 

                                                           
3 Blue water refers to surface and ground water. Green water is rainfall stored in the soil as moisture. Grey water is the 
volume of water needed to assimilate pollution. Water consumption refers to water that is no longer available at a place 
and point in time because, for example, it has evaporated or been incorporated into a product (Hoekstra et al. 2011). 
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20,000 50g boxes – will be the focus here, with linear aggregation assumed. While it is acknowledged that 

there may be some economies of scale associated with larger production quantities, there will also be water 

use associated with additional packaging and palletisation. It is therefore assumed that the overall effect is a 

zero-sum outcome.  

The key stages in the production of tea are set out in the supply chain map shown in Figure 1 together 

with their geographical location.  

 

Figure 1. Tea supply chain map. Stages in grey are excluded from the analysis of the water footprint. Adapted 
from Jeffries et al. (2012). 
 

Crop cultivation (Stage 4) occurs in the Rift Valley (Kericho) and Central Highlands (Nyeri) of 

Kenya, in the Jawa Barat province of Indonesia (Agrabinta), and in the state of Himachal Pradesh in northern 

India (Kangra district). With the exception of the regional location in India, each of these locations has been 

taken from Jeffries et al. (2012). The location in India was selected due to the availability of corresponding 

water valuation data that will be introduced in Section 3, as well as the fact that the Kangra district is a major 

tea-producing region. As shown in Table 1 – which sets out the top 15 tea producing countries in 2016 

together with the associated country average water footprint – each of the three countries where tea is sourced 

from in the supply chain resides in the top ten global tea producing nations. Following Stage 4, the tea is first 

sent to the UK (Manchester) for blending (Stage 3), before it is packed (Stage 2) in Belgium (Brussels). Final 

consumption of the tea by the end consumer (Stage 1) is assumed to occur in Brussels. 
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Table 1 
The top 15 tea producing countries in 2016 

Countries
  

Production 
quantity 2016 
(tonnes) a 

% contribution to 
global production a 

Yield 
(tonne/ha) a 

Country average water 
footprint (m3/tonne) b 

    Green Blue Grey 

China           2,414,802  40.56% 1.08 9,277 798 1,496 
India          1,252,174  21.03% 2.14 4,778 1,332 360 
Kenya              473,000  7.94% 2.16 4,061 4 89 
Sri Lanka              349,308  5.87% 1.51 10,306 - 1,421 
Turkey              243,000  4.08% 3.18 2,296 735 160 
Vietnam              240,000  4.03% 2.02 12,490 191 485 
Indonesia              144,015  2.42% 1.23 11,172 - 257 
Myanmar              102,404  1.72% 1.19 37,609 951 214 
Argentina                89,609  1.50% 2.38 7,641 1,222 246 
Japan                80,200  1.35% 1.82 4,996 55 2,081 
Iran                75,000  1.26% 3.68 1,827 8,791 444 
Bangladesh                64,500  1.08% 1.07 10,997 - 113 
Uganda                63,322  1.06% 2.15 5,842 - 2 
Burundi                52,701  0.89% 4.38 10,816 - 2 
Thailand                52,619  0.88% 6.41 36,622 5,836 1,774 
World          5,954,091  100.00% 1.45 7,232 898 726 

Note: These figures are for broad country comparison and have not been used in the specific analysis in this chapter. 
a FAOSTAT (2017). b Mekonnen and Hoekstra (2011). 
 

Jeffries et al. (2012) excluded grey water in their estimation of the tea water footprint. Their rationale 

for this was that, in their study, which was a comparative analysis between the Water Footprint approach and 

LCA, the latter appears to have been unable to address water quality issues in a way that fell within the scope 

of the work. As a result, grey water was excluded altogether. Given this, as will be detailed in what follows, 

where possible the data in Jeffries et al. (2012) has been supplemented with data from the Water Stat database 

(Mekonnen and Hoekstra, 2011) to re-introduce volumes of grey water which remain of interest in this 

context. 

2.2. Volumetric Data – Blue and Green Water Consumption and Grey Water Degradation 

Using the standard nomenclature utilised in the Water Footprint Assessment Manual (Hoekstra et al., 2011), 

four components constitute the water footprint of tea. Each of these components may be associated with blue, 

green and grey water burdens.4 The four components are:  

1. The supply chain water footprint directly associated with inputs – this refers to the water footprint 

of the ingredients (e.g. tea) and other inputs (e.g. packaging) that go into making the product.  

                                                           
4 In practice, green water is only linked to agriculture and forestry.  
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2. The operational footprint directly associated inputs – this refers to the volume of water either 

consumed or polluted during the production and processing of tea at stages 2 (Manchester) and 3 

(Brussels).  

3. The supply chain overhead water footprint – this refers to the water footprint of the materials used 

in the factories at stages 2 and 3 that cannot be associated with one particular product. For 

example, this might include the water footprint of the paper and energy used in the factories, as 

well as the concrete used to build the factories. 

4. The operational overhead water footprint – this refers to the water used in supporting activities in 

the factories at stages 2 and 3 that again cannot be fully linked to the production of a specific 

product. For example, this would include the water used to flush toilets and for cleaning and 

hygiene.  

In addition to the above, given that there is a consumer use phase associated with drinking tea, the 

end-use water footprint is also estimated. 

2.2.1. Supply chain water footprint directly associated with inputs 

The primary ingredient in the production of a 50-gram box of tea is black tea, the raw material and 

process water footprints associated with which are detailed in Table 2 for each of the four locations at Stage 4. 

As referred to above, the data from Jeffries et al. (2012) on the raw material water footprint of tea has been 

substituted for data from Mekonnen and Hoekstra (2011). This substitution has been done to include the 

volumes of grey water that correspond to the tea crop. The grey water footprint calculated by Mekonnen and 

Hoekstra (2011) refers to the volumes of water necessary to dilute the nitrogen fertiliser applied during tea 

cultivation. 

Table 2 
The water footprint of black tea  
Location Water footprint m3/tonne of raw material a Process water requirement m3/tonne b 

 Green Blue Grey Total Green Blue Grey Total 

Kenya (Kericho) 4,117 5 94 4,216 0 0.12 0 0.12 
Kenya (Nyeri) 3,721 4 72 3,797 0 0.12 0 0.12 

Indonesia (Agrabinta) 11,354 0 277 11,631 0 0.12 0 0.12 
India (Kangra district) 4,116 741 285 5,141 0 0.12 0 0.12 

a Mekonnen and Hoekstra (2011). b Estimate derived from process water requirement and product fraction listed in Jeffries 
et al. (2012). As mentioned above, grey water was excluded by Jeffries et al. (2012), and as a result, is not included in the 
process water requirement here. 
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While Jeffries et al. (2012) do not explicitly record the percentage that black tea, from each of the 

four locations at Stage 4 constitutes of the end product (i.e. the blend of tea in the end product), it is possible 

to extrapolate this information as shown in Table 3.5  

Table 3 
Composition of tea in the end-product 
Kenya (Kericho) Kenya (Nyeri) Indonesia (Agrabinta) India (Kangra district) 

67% 7% 17% 10% 

Note: Extrapolated from Jeffries et al. (2012). 
 

In addition to tea, Jeffries et al. (2012) also estimate the water footprint associated with packaging 

inputs (tea bag materials and other packaging). For one box of tea, the associated water footprint was 

estimated at 29.6 litres, the vast majority of which is green water. Given that Jeffries et al. (2012) were not 

able to define a specific location for the generic inputs that comprise packaging, it is assumed here that the 

associated water burden falls at the packing factory in Belgium. 

2.2.2. Operational water footprint directly associated with inputs 

Data for the operational water footprint (0.005 litres/50g tea) has been sourced from Jeffries et al. 

(2012). However, Jeffries et al. (2012) did not report how this water footprint component breaks down 

between the two factory stages, i.e. stages 2 and 3. Therefore, it has been assumed here that this component is 

split evenly between the two factory locations (i.e. Manchester and Brussels).  

2.2.3. Supply chain and operational overhead water footprints 

Data for the supply chain (1.6 litres/50g tea) and operational (0.003 litres/50g tea) overhead water 

footprints have again been sourced from Jeffries et al. (2012). However, Jeffries et al. (2012) were not 

specific about how these footprint components break down between stages 2 and 3. Therefore, it has again 

been assumed that these components split evenly between the two factory locations (i.e. Manchester and 

Brussels).  

The supply chain overhead water footprint, like the water footprint associated with packaging inputs, 

is non-geographically specific given that it is comprised of generic items bought and sold on world markets.6 

                                                           
5 The extrapolated percentages accord with the limited information that Jeffries et al. (2012) do refer to regarding the tea 
blend as they mention that tea from India represents approximately 10%. 
6 Jeffries et al. (2012) accounted for the building materials (concrete and steel), paper and energy used in the factories at 
stages 2 and 3 of the supply chain. 
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Consequently, in this context, it is assumed that the water use associated with the supply chain overhead 

footprint occurs in the factory locations at stages 2 and 3. 

2.2.4. The end-use water footprint 

Jeffries et al. (2012) estimate that the water footprint linked to the consumption of tea is 

approximately 5 litres per 50g box, all of which is blue water. This volume is comprised of 2.2 litres of water 

associated with tea consumption, and 2.8 litres associated with the electricity used to boil the water.7  

2.2.5. Out of scope 

Since grey water was excluded in the Jeffries et al. (2012) study, visibility over degradative water 

volumes is consequently limited here. However, by sourcing data from Mekonnen and Hoekstra (2011) on the 

water use during crop cultivation at Stage 4, this has been rectified for the stage in the supply chain that 

accounts for the greatest use of water resources (approximately 90% of total green and blue water is 

associated with Stage 4). In addition, while the operational and operational overhead water footprint data 

associated with stages 2 and 3 excludes grey water volumes, given the advanced nature of the countries 

concerned (i.e. the UK and Belgium), it seems reasonable to assume that any wastewater would be returned 

via the sewerage network to a treatment plant. If so, grey water associated with these two footprint 

components would be zero. Furthermore, the tea packing and blending processes at stages 2 and 3, with which 

the operational and operational overhead footprints are associated, both consume negligible volumes of water, 

and the packing and blending of tea are not processes that give rise to water-borne pollutants.  

However, both the water footprint associated with packaging inputs and the supply chain overhead 

footprint may have an associated grey water footprint. Given their small size in volume terms though, lack of 

visibility on the grey water associated with these components is a recognised limitation in this context. 

2.3. The Water Footprint of One Tonne of Tea 

Table 4 sets out the total water footprint for one tonne of tea as a finished good (20,000 boxes). As 

mentioned, the water footprint of one tonne of tea is based on linear aggregation of the water footprint of one 

                                                           
7 The water use allocated to tea consumption assumes that 35% of ingested water evaporates through breathing and 
perspiration. The remaining water is assumed to be returned to the same basin that it was extracted from thus constituting 
a non-consumptive use (Jeffries et al., 2012). Based on a typical 250g box of tea containing 80 bags that has been consulted 
here for reference, a 50g box would contain 16 bags and therefore account for approximately 137.5 ml per bag (i.e. 2,200 
ml/16 bags). 
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box of tea. Table 4 also shows how the components of the water footprint are allocated between the four 

supply chain stages shown in Figure 1. 

Table 4 
The water footprint of one tonne of tea as a finished good (20,000 boxes) (m3) 
Supply 
chain 
stage 

Location Description Water footprint 
component 

Green Blue Grey Total % of 
total 

4 a Kenya (Kericho) Tea cultivation and 
processing 

Supply chain 2,743.5 3.28 62.54 2,809.32 45.0 

4 a Kenya (Nyeri) Tea cultivation and 
processing 

Supply chain 247.95 0.24 4.79 252.98 4.1 

4 a Indonesia (Agrabinta) Tea cultivation and 
processing 

Supply chain 1,891.64 0.02 46.16 1,937.82 31.1 

4 a India (Kangra district) Tea cultivation and 
processing 

Supply chain 413.03 74.37 28.60 516 8.3 

3 b UK (Manchester) Blending Supply chain 
overhead 

9 7 0 16 0.26 

3 b UK (Manchester) Blending Operational 0 0.05 0 0.05 >0.1 
3 b UK (Manchester) Blending Operational 

overhead 
0 0.03 0 0.03 >0.1 

2 c Belgium (Brussels) Packing (Packaging) Supply chain 580 12 0 592 9.5 
2 b Belgium (Brussels) Packing Supply chain 

overhead 
9 7 0 16 0.26 

2 b Belgium (Brussels) Packing Operational 0 0.05 0 0.05 >0.1 
2 b Belgium (Brussels) Packing Operational 

overhead 
0 0.03 0 0.03 >0.1 

1 d Belgium (Brussels) Tea consumption End use 0 100 0 100 1.6 

Total    5,894.12 204.07 142.09 6,240.28 100 
a Mekonnen and Hoekstra (2011). b Jeffries et al. (2012). As referred to above, this assumes that the supply chain overhead, 
operational and operational overhead water footprints are split evenly between the production facilities in Manchester 
(Stage 3) and Brussels (Stage 2). c Jeffries et al. (2012). As referred to above, this assumes that the water burden associated 
with packaging inputs is located in Brussels. d Jeffries et al. (2012). As referred to above, this assumes that tea consumption 
occurs in Brussels. 
 

As shown in Table 4, and as recognised by Jeffries et al. (2012), nearly 90% of the volumetric water 

footprint of tea is attributable to the tea crop at Stage 4. Indeed, in absolute terms based on total volume data, 

tea cultivation in Kericho (45%) and Agrabinta (31.1%) appear to be the areas of greatest water impact. 

Alternatively, if the consumption of limited global blue water resources is the most important criterion, then 

the water used in Kangra district (95.5% of blue water consumption at Stage 4 and 36.4% of blue water 

consumption across stages 1 to 4), and during the consumer use phase at Stage 1 (49% of blue consumption 

across stages 1 to 4), appear to be the areas of greatest concern. However, this analysis is based solely on the 

volumes of water in the supply chain and does not take account of the economic value of these volumes and 

how this varies by use and by geography. Therefore, we now introduce a new perspective that looks to 

estimate the economic value of virtual water along the supply chain, before comparing the utility of this 

approach with alternative methods for assessing virtual water in Section 4. 
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3. The Economic Water Footprint of Tea 

In this section, we begin by outlining the unit values (i.e. denominated in volumetric terms) that have 

been assigned to each stage of the supply chain. We then go on to estimate the economic value of the virtual 

water employed along the tea supply chain. 

3.1. Unit Values Assigned at Each Stage of the Supply Chain 

The values utilised here have all been drawn from Lowe et al. (2018b) who undertook a detailed 

review of the unit values of water that have been published and referenced in specialist environmental 

valuation databases. These databases included The Environmental Valuation Reference Inventory (EVRI), 

ValueBase SWE, Envalue, The New Zealand Non-Market Valuation Database, and The Economics of 

Ecosystems and Biodiversity (TEEB) Valuation Database.  The reference sections of those papers found were 

also searched for additional relevant material. The focus of the review encompassed off-stream applications 

(agriculture/irrigation, industry and municipal) and several in-stream functions that are also impacted when 

water is withdrawn and then consumed or degraded (recreation, waste assimilation and wildlife habitat). Table 

5 summarises the 706 unit value estimates that were collated from 120 sources. All estimates were 

standardised in 2014 USD using World bank PPP exchange rates for GDP and the Implicit Price Deflator for 

GDP from the Bureau for Economic Analysis (BEA, 2016; World Bank, 2016). The estimates include 

capitalised asset and non-capitalised asset (or per period) values, all of which have adopted a private 

accounting stance. 

Table 5 
Unit values recorded in Lowe et al. (2018b) by category 

 Agriculture Industry Municipal Waste assimilation Wildlife habitat Recreation 

No. of estimates a 365 131 106 13 42 49 

No. of countries a 22 7 15 1 1 1 

Median value USA 
2014 $/Acre Foot b  

$65.02  $21.31 d $91.96 $2.05 $55.61 $13.32 

Median value ROW 
2014 $/Acre Foot c 

$148.44 $618.09 d $482.83 - - - 

Note: a Value estimates include per period and capitalised asset values. b Median per period value of those recorded in the 
USA. c Median per period value of those recorded in the Rest of the World (ROW). d Excludes values that have been 
estimated by the residual value, added value and cost of intake approaches as these are no longer seen as appropriate for 
valuing industrial water usage. 
 

The water values are applied here using benefit (value) transfer which involves deploying values that 

have been estimated in one context (the study site), to a new context (the policy site; in this case the locations 



Running head: COMPARING THE ECONOMIC VALUE  13 

 

 

 

of each supply chain stage) utilising a range of approaches (Bergstrom and Taylor, 2006; Richardson et al., 

2015; Rosenberger and Loomis, 2003; Wilson and Hoehn, 2006). Only the values associated with off-stream 

extractive uses (agriculture, industry and municipal) were found to be available in great enough numbers for 

any meaningful benefit transfer exercise. Therefore, only the direct use value of water in the supply chain is 

considered here, using the specific benefit transfer techniques for each category of water use as set out in what 

follows. Indirect use values and passive-use values as they are referred to within a Total Economic Value 

framework, are not included (Pearce and Turner, 1990). 

3.1.1. Blue water 

The direct use values attributed to blue water at each of the four stages of the tea supply chain will be 

considered below, starting with Stage 1 and the blue water that is consumed during tea consumption. 

3.1.1.1. Consumer use phase (Stage 1) 

The water used in the consumer use phase is split between tea consumption (44%) and the water 

associated with the electricity that is needed to boil the kettle (56%). A standard two-part formula for a simple 

household demand function has been utilised here to value the tap water used in the home to consume tea (i.e. 

the 44%). The first part of the formula derives the value of treated water delivered to the home; the second 

part estimates the net consumer surplus that is equivalent to the value of raw water in the stream. The two 

parts of the formula are repeated directly below (Young and Loomis, 2014). In conjunction with the inputs in 

Table 6, an at-site value of $4.38 (part 1) and an at-source value of $0.36 (part 2) were estimated, both per 

cubic metre.  

Part 1 𝑉 = [(𝑃 𝑥 𝑄11𝐸) / (1 − 1𝐸)]  ∗  [(𝑄11−1𝐸)  − (𝑄21−1𝑒)]       [1] 

Part 2 𝐶𝑆 = 𝑉 − [(𝑃1)(𝑄1 −  𝑄2)] Where: E = Elasticity P = Price Q = Quantity   [2] 
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Table 6 
Residential (tap) water value – Demand function inputs 

Input Value Source 

Q1 96.3 litres per person per day  
(10% reduction on Q2). 

 

Q2 107 litres per person per day; 
39 m3 per annum. 

Environment Agency (2008) 

Price (2014 USD) 4.02 a Global Water Intelligence (2016) 
Price elasticity estimate -0.62 Vanhille (2012) 

At-site value  (2014 USD per m3) 4.38  
At-source value (2014 USD per m3) 0.36  

Note: a Assumes two people per household and monthly billing (marginal rate falls into the > 6 cubic metre block tariff 
charged in Brussels). 
 

3.1.1.2. Industrial water use (stages 2 and 3) 

The water used by industry in Manchester and Brussels in the direct operations of each factory (i.e. 

not the operational overhead or the supply chain overhead water footprints), has been valued with reference to 

two sources highlighted in Lowe et al. (2018b). There it was argued that Wang and Lall (2002) and Bruneau 

(2007) provide the most robust and appropriate estimates of the value of water consumed in a wide variety of 

industries, from what is a limited pool of research on the value of water as an intermediate input to industry. 

Table 7 shows the values that Wang and Lall (2002) and Bruneau (2007) have derived specifically for water 

that is consumed by the food industry. In what follows, the average of the two values shown in Table 7 

($2.39) will be utilised.  

No value will be assigned to the operational overhead and supply chain overhead water footprints here 

or the water footprint associated with packaging inputs. In all three cases, this is because these categories 

encompass too much variation for an appropriate value to be transferred. For example, the supply chain 

overhead water footprint is made up of a variety of goods and services (including as mentioned earlier, 

building materials, paper and energy) used in the Manchester and Brussels factories that cannot be directly 

associated with one final product. However, neither the supply chain overhead water footprint nor the water 

footprint associated with packaging inputs are geographically specific. Therefore, they will never be a relevant 

change variable when comparing water values in different regions. In addition, the operational overhead water 

footprint represents less than 1% of the total water footprint of tea.  

 

 

 



Running head: COMPARING THE ECONOMIC VALUE  15 

 

 

 

Table 7 
Food industry values used in the tea case study 

Supply chain location 
at stages 2 and 3 
(Policy site) 

Source Method Value 
type 

Water volume 
measure 

Original 
value m3 

(currency) 

2014 $/m3 

UK and Belgium Wang & 
Lall (2002) 

Production 
function 

MV Consumption 2.57 (Yuan) 1.87 

UK and Belgium Bruneau 
(2007) 

Alternative 
cost 

AV Consumption 2.5 (CAD) 2.92 

      2.39 
(Average) 

Note: MV = Marginal Value. AV = Average Value. 

 
3.1.1.3. Agricultural water use (Stage 4) 

Table 8 sets out the values that have been drawn from the detailed literature search presented in Lowe 

et al. (2018b) that returned 365 estimates of the value of irrigation water in different locations. In the case of 

Kenya, the values are for irrigation water in the Kerio Basin, which is proximate to both Nyeri and Kericho. 

For Indonesia, the values employed are for irrigation in East Java, which is contiguous to West Java where 

Agrabinta is located. Similarly, in India, the irrigation water values utilised are for the region of Haryana in 

the north of the country, which is contiguous to Himachal Pradesh where the Kangra district is located. All of 

the values in Table 8 represent water applied or diverted as none were available for water that is consumed. As 

such, they represent a lower bound estimate of the value of water consumed at each location.  

Unlike stages 1 to 3 in the supply chain that each have a single location, there are three locations for 

Stage 4. Consequently, the relative value between Stage 4 locations becomes important if the analysis is to 

compare the impacts of water use at each location. As a result, the values presented in Table 8 have been 

selected because, as far as possible, they are comparing a common scenario. For instance, all of the values in 

Table 8 have been estimated using the farm crop budget approach (FCB) (or a derivative of this) which yields 

an average value per unit of water. However, while every care has been taken to ensure a consistent 

comparison, Table 8 shows that there are exceptions vis-à-vis volumetric measure, water source and whether 

the value is an at-site or at-source measure. More broadly, each of the estimates is also sensitive to the exact 

crop and, for example, the precise components used in the FCB approach, many of which are not fully 

discernible in the respective sources.  

As such, the values in Table 8 should be considered indicative only; although they represent the best 

data available, they are relatively few in number and would need to be investigated using fully consistent 



Running head: COMPARING THE ECONOMIC VALUE  16 

 

 

 

primary valuation techniques in each location if a policy-relevant action was contingent on them. This 

requirement is particularly true if the results were to be generalized beyond the local scale, as is the intention 

here. Finally, while tea is not a low valued crop, estimates for higher valued crops in each location were not 

available. Therefore, the values for low valued field crops in Table 8 again represent a lower bound value in 

this context 

3.1.2. Grey water 

It is assumed here that the unit value of grey water degradation is equal to the unit value of blue water 

consumption. This assumption has been made because: 1) grey water refers to the volume of blue water that is 

necessary to assimilate pollution, and 2) as with water consumption, we assume that when water is degraded it 

is no longer available for off-stream functions at a particular point in space and time. We recognise that this 

assumption may not hold for the grey water produced in agriculture as run-off can still have a positive 

fertilisation effect. However, agricultural run-off can be polluted with, for example, pesticides and metals. In 

addition, there is the potential for run-off to lead to the mistimed or excessive application of fertiliser. 

Nonetheless, treating grey water as, in effect an opportunity cost, is a means of generating an upper bound 

estimate of the value of grey water. 

3.1.3. Green water 

Green water in this context is not rainwater as such but that portion of rainwater that is 

evapotranspired by the tea crop during its growth phases, or in other words, it is the volume of rainwater that 

is usefully absorbed by the crop. As such, following the method set out in Lowe et al. (2018b), it was 

anticipated that values for artificial irrigation water consumed by the crop would be used as a proxy for the 

value of green water. Alternatively, if these were not available, then the at-source value of artificially applied 

irrigation water could be utilised as a lower bound value instead. Making use of either of these measures 

implicitly assumes that water is equally productive at each stage of the crop growth cycle, an assumption that 

may not hold for all crops and all climates. However, neither of these approaches were able to produce 

realistic estimates of the value of green water consumed in tea cultivation. As a result, green water will not be 

assigned an economic value in what follows, and this will be addressed directly in Section 5.3 when the 

limitations of the research are discussed. 
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Table 8 
Agricultural values used in the tea case study 
Supply chain location 
at Stage 4 (Policy site) 

Source Method Value 
type 

At-site/ 
at-source 

Long 
run/short 
run 

Water  
volume 
measure 

Crop value Original value 
m3 

(currency) 

2014 
$/m3 

Study location 
(Study site) 

Kenya (Kericho and 
Nyeri) 

Kiprop et al. 
(2015) 

Farm crop 
budget 

AV At-site Short Application Low (millet) 4.3 (Kenyan 
Shilling) 

0.11 Kenya (Kerio 
Basin) 

Kenya (Kericho and 
Nyeri) 

Kiprop et al. 
(2015) 

Farm crop 
budget 

AV At-site Short Application Low 
(sorghum) 

11.28 (Kenyan 
Shilling) 

0.30 Kenya (Kerio 
Basin) 

Kenya (Kericho and 
Nyeri) 

Kiprop et al. 
(2015) 

Farm crop 
budget 

AV At-site Short Application Low (maize) 14.87 (Kenyan 
Shilling) 

0.40 Kenya (Kerio 
Basin) 

AVERAGE         0.27  

Indonesia 
(Agrabinta) 

Rodgers & 
Hellegers 
(2005) 

Farm crop 
budget 

AV At-site Unclear Application Low (rice) 0.02 – 0.05 
(USD) 

0.03 – 
0.07 

Indonesia (Brantas 
Basin - East Java) 

Indonesia 
(Agrabinta) 

Rodgers & 
Hellegers 
(2005) 

Farm crop 
budget 

AV At-site Unclear Application Low (maize) 0.08 – 0.11 
(USD) 

0.11 – 
0.15 

Indonesia (Brantas 
Basin - East Java) 

AVERAGE         0.09  

India 
(Kangra district) 

Rogers et al. 
(1998) 

Yield 
comparison a 

AV At-site Short Diversion Low (rice and 
wheat) 

0.019 
(USD) 

0.03 Northern India 
(Haryana) 

India 
(Kangra district) 

Hellegers & 
Perry (2004) 

Farm crop 
budget 

AV At-source Short Application Rice 0.025 
(USD) 

0.03 Northern India 
(Haryana) 

India 
(Kangra district) 

Hellegers & 
Perry (2004) 

Farm crop 
budget 

AV At-source Short Application Rice b 0.02 
(USD) 

0.02 Northern India 
(Haryana) 

India 
(Kangra district) 

Hellegers & 
Perry (2004) 

Farm crop 
budget 

AV At-source Short Application Wheat  0.132 
(USD) 

0.16 Northern India 
(Haryana) 

India 
(Kangra district) 

Hellegers & 
Perry (2004) 

Farm crop 
budget 

AV At-source Short Application Wheat b 0.127 
(USD) 

0.16 Northern India 
(Haryana) 

AVERAGE         0.08  

Note: AV = Average Value. Values converted from local currency to 2014 USD using World Bank PPP exchange rates for GDP and the BEA Implicit Price Deflator for GDP 
(BEA, 2016; World Bank, 2016). a Also known as the change in net rents approach.b Groundwater.  
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3.2. The Total Value of Blue Water in the Supply Chain 

Figure 2 sets out the unit values assigned to blue water consumption at each stage along the tea supply 

chain, and the value of the specific volume of blue water used at each stage. For each of the four locations at 

Stage 4, an average of those values recorded in each location has been utilised (Table 8). However, Section 5 

will undertake several sensitivity analyses to take account of the range of values on display in Table 8 and 

what is an unknown level of transfer error at each Stage 4 location. 

 

Figure 2. Blue water values assigned to each stage of the tea supply chain. Note: 1) values for stages 2 and 3 
refer to the operational water footprint only, and 2) value for Stage 1 refers to the 2.2 litres of water associated 
with tea consumption in the home. 
 

As shown in Table 9, 96.4% of the total value of blue water consumed in the supply chain occurs 

during the consumer use phase (Stage 1). This is despite the fact that Stage 1 only accounts for approximately 

36.1% of the volume of blue water that has been subject to valuation (i.e. not including those blue water 

volumes set out in Section 3.1 that were excluded). This disparity is primarily driven by the comparatively 

high at-site unit value assigned to treated municipal water at Stage 1, and it ensures that while 61% of the total 

volume of blue water use occurs in India, this only accounts for 3% of the total value.  

Looking at Stage 4 in isolation, Kericho accounts for 4.2% of the volume of irrigation water 

consumed. However, this volume represents 12.8% of total value given the relatively high unit value assigned 
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to irrigation water in Kenya by comparison to Indonesia and India. Similarly, irrigation water used in India 

accounts for 95.5% by volume but only 86.2% by value given that the unit value in India is the lowest of those 

on display. These results are beginning to suggest the differences highlighted by taking a value-based 

perspective.  

The total direct use value of blue water consumed in the production of one tonne of tea is $199.87, or, 

using the nominal exchange rate in mid 2019 (1 USD = 0.79 GBP), approximately £157.  

Table 9 
Blue water value and volume distribution in the tea supply chain 
Stage 
(location) 

Volume of 
blue water 
(m3) 

Unit value 
(2014 $/m3) 

Value of blue 
water consumed 
(2014 $) 

% of total 
blue water 
volume a 

% of total 
blue water 
value 

% of Stage 
1 volume 

% of 
Stage 1 
value 

4 (Kenya – Kericho) 3.28 0.27 0.89 2.7 0.4 4.2 12.8 
4 (Kenya – Nyeri) 0.24 0.27 0.06 0.2 <0.1 0.3 0.9 
4 (Indonesia) 0.02 0.09 0.00 <0.1 <0.1 <0.1 <0.1 
4 (India) 74.37 0.08 5.96 61.0 3.0 95.5 86.2 
3 (UK – Manchester) 0.05 2.39 0.12 <0.1 0.1   
2 (Belgium – Brussels) 0.05 2.39 0.12 <0.1 0.1   
1 (Belgium – Brussels) 
b 

44 4.38 192.72 36.1 96.4   

Total 122.01  199.87 100 100 100 100 

Note: a The percentage of blue water volume refers to the volumes of blue water that are subject to valuation and does not 
include those aspects of the supply chain described in Section 3.1 that are beyond the scope of the valuation exercise. b The 
water consumed at Stage 1 refers to the volume of water associated with tea consumption only; it does not include the 
water associated with the electricity used to boil the kettle (Section 2.2.4). 
 

3.3. The Total Value of Grey Water in the Supply Chain 

Figure 3 presents the value of grey water along the supply chain. This is based on the approach set out 

in Section 3.1.2, which involves utilising the unit value estimates derived for blue water consumption. As 

presented in Section 2.2, there is no grey water associated with stages 1 to 3 of the supply chain. 



Running head: COMPARING THE ECONOMIC VALUE  20 

 

 

 

 

Figure 3. Grey water values assigned to each stage of the tea supply chain. 
 

Table 10 shows the total value of the grey water in the tea supply chain and how this total breaks 

down by location. Owing to the disparities in unit values between locations that were noted above, grey water 

in Kericho represents 69.1% of total value but only 44% of total volume. Similarly, grey water in India 

represents 20.1% by volume but only 9.4% of total value. The total value of the grey water associated with 

one tonne of tea is $24, or, using the nominal exchange rate mentioned previously, approximately £19. 

Table 10 
Grey water value and volume distribution in the supply chain  

Stage  
(location) 

Volume of grey 
water (m3)  

Unit value 
(2014 $/m3) 

Value of grey 
water degraded 
(2014 $) 

% of total grey 
water volume 

% of total grey 
water value 

4 (Kenya – Kericho) 62.54 0.27 16.92 44.0 69.1 
4 (Kenya – Nyeri) 4.79 0.27 1.30 3.4 5.3 
4 (Indonesia) 46.16 0.09 3.99 32.5 16.3 
4 (India) 28.60 0.08 2.29 20.1 9.4 
Total 142.09  24.49 100 100 

 

3.4. The Total Value of Blue and Grey Water in the Supply Chain 

Table 11 sets out the total value associated with the water footprint of one tonne of tea as a finished 

good (20,000 50g boxes). As referred to, the scope of the valuation exercise excludes the operational overhead 

and supply chain overhead water footprints, together with the water associated with packaging and the 
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electricity used during tea consumption, all of which encompass too much variation to assign a meaningful 

economic value. In addition, as will be addressed in what follows, the large volumes of green water used in 

tea cultivation are similarly excluded. The total value of the blue and grey water consumed in the production 

of one tonne of tea is $224 or £176. Detailed data on the cost of other inputs into production is not readily 

available to contextualise this figure. However, in Sri Lanka (which is not part of the analysis here but is 

nevertheless a major tea producer) the cost of fertilizer and pest and disease control applications used in tea 

cultivation has been estimated at 24,790 Sri Lankan Rupees per tonne of tea (2017/8 figures) (AESD, 2019). 

Using the nominal exchange rate in mid-2019 (1 USD = 176.49 Rupees), this equates to approximately $140 

which is broadly comparable to the value of water employed along the supply chain. 

Table 11 
The total value of the blue and grey water used to produce one tonne of tea (finished goods) 

Water footprint component Value/cost USD 2014 Value/cost GBP 

Blue 200 157 
Grey 24 19 
Total value 224 176 

 
Table 12 shows how the total value of blue and grey water breaks down by supply chain stage. It is 

the high at-site unit value assigned to tap water at Stage 1, combined with the substantial volumes of blue 

water (44 m3 per tonne) that are consumed in the drinking of tea, which ensures that this stage accounts for 

86% of total value. Indeed, the value of water at Stage 1 obscures the differences in value between the 

multiple locations at Stage 4, imbalances in which highlight the real merit of an economic approach such as 

this and the geographical trade-offs that it enables. 

Table 12 
Total blue and grey water value by supply chain stage  

Stage (location) % of total blue and grey water value 

4 (Kenya – Kericho) Blue water <1 
4 (Kenya – Kericho) Grey water 8 
4 (Kenya – Nyeri) Blue water <1 
4 (Kenya – Nyeri) Grey water 1 
4 (Indonesia) Blue water <1 
4 (Indonesia) Grey water 2 
4 (India) Blue water 3 
4 (India) Grey water 1 
3 (UK) Blue water <1 
2 (Belgium) Blue water <1 
1 (Belgium)Blue water 86 
Total 100 
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4. Comparing Approaches – Water Footprint, Stress-Weighting, and Economic Valuation 

Geographical variations in economic value and the trade-offs that this facilitates become more 

pronounced if we ignore the blend of tea in the end product (Table 3) and concentrate on the economic value 

of a common quantity of tea cultivated in each Stage 4 location (Section 4.1). Doing so will then allow us to 

more easily compare the prescriptions suggested by an economic valuation approach with those suggested by 

the traditional water footprint and stress-weighted water footprint (Section 4.2). 

4.1. The Economic Value Associated with a Common Quantity of Tea 

Table 13 presents the value of the blue and grey water associated with a common quantity (one tonne) 

of tea cultivated in each Stage 4 location. This analysis is not based on the tea blend in Table 3 and does not 

include the water associated with stages 1 to 3.8  

Table 13 
Total value of the blue and grey water used to produce one tonne of tea in each location 

Stage 4 location Blue water 
(m3) a 

Grey water 
(m3) a 

Unit value 
(2014 $/m3) 

Total value 
of blue water 
(2014 $) 

Total value 
of grey water 
(2014 $) 

Total value 
of blue and 
grey water 
(2014 $) 

India 741  285 0.08 59.36 22.83 82.19 

Kenya - Kericho 5 94 0.27 1.35 25.43 26.78 
Indonesia 0  277 0.09 0 23.93 23.93 

Kenya - Nyeri 4 72 0.27 1.08 19.48 20.56 
a Mekonnen and Hoekstra (2011). 
 

Economic value with its foundations in the concept of Willingness to Pay (WTP) reflects the intensity 

of individuals’ preferences for water. Accordingly, economic theory suggests that efficient inter-sectoral water 

allocation would see the same unit of water flowing to the highest valued use. However, when the focus is on 

different drops of water as it is here, the prescription from welfare economics would seem to differ. Now, the 

optimum outcome would see tea being sourced from the Stage 4 location that exhibits the lowest, not highest, 

water value. Alternatively, given that economic values are no longer in evidence when water is consumed or 

degraded, they effectively represent costs, and therefore sourcing from the location with the lowest value 

would represent the optimal solution. In light of this, it is clear from Table 13 that while Kenya exhibits the 

highest unit value of blue and grey water ($0.27 per cubic metre), Nyeri accounts for the lowest volume of 

                                                           
8 Table 13 utilises the water volumes presented in Table 2, and the economic values assigned to blue and grey water 
volumes at Stage 4 that were introduced in Section 3.1. 
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blue and grey water consumed (76 m3) and thus the lowest overall value ($20.56) in volume adjusted terms. 

Nyeri, therefore, appears to be the optimal sourcing location, followed by Indonesia, Kericho, and then India 

as the least optimal sourcing location 

4.2. Comparing Economic Valuation with the Water Footprint and Stress-Weighted Approaches 

The Water Footprint advocated by the Water Footprint Network is traditionally associated with the 

identification of virtual water volumes. However, this approach can also take account of the vulnerability of 

local water systems using the water stress index, as well as the volumes of water consumed, to inform 

sourcing scenarios (Hoekstra et al., 2011). The water stress index measures the ratio of total annual water 

withdrawals in an area to total annual water availability, and it can be used to assess the impact of blue water 

usage in the supply chain and thus identify blue water hotspots. Following the approach set out in Jeffries et 

al. (2012), a hotspot occurs where “the blue water footprint of products is large and where water scarcity is 

high,” the latter being defined as where it exceeds a value of 0.6 (P.159). 

Table 14 sets out the water stress values for each of the sourcing locations at Stage 4 using data from 

the World Resources Institute (2013). Table 14 suggests that Kangra district in India is a potential hotspot 

given the fact it supplies 10% of the tea at Stage 4 and exhibits a water stress value of 0.75.  

Table 14 
Baseline Water Stress values for Stage 4 tea sourcing regions 

Country State/region Baseline water stress a % of tea sourced from 

India Kangra district 0.75 10 
Kenya – Nyeri Nyeri 0.12 7 
Indonesia Agrabinta 0.09 17 
Kenya – Kericho Kericho 0.04 67 

Note: a World Resources Institute (2013). 
 

From a stress-weighted water footprint perspective, Table 15 illustrates the combined blue and grey 

stress-weighted water footprint based on the water volume data in Table 13 and the Baseline Water Stress data 

shown in Table 14. India is again identified as a hotspot. Indeed, as summarised in Table 16, which sets out 

the sourcing preferences highlighted by the different approaches, India is consistently identified as the least 

optimal sourcing location across all of the approaches included here. However, by including economic value, 

it becomes possible to differentiate clearly between the remaining three locations, all of which exhibit similar 

levels of blue water scarcity (Table 14). Most tellingly in this respect, Indonesia is clearly a more favourable 

sourcing location from an economic perspective when compared Kericho (total value of blue and grey water 
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$23.93 versus $26.78), and this is despite the fact that the former pollutes and consumes nearly three times the 

volume of water when compared to the latter (277 m3 versus 99 m3). This insight again highlights the 

importance of taking the value of water and not just the volume of water into account, and it provides a 

different policy recommendation when compared to the other approaches outlined.  

Table 15 
Stress-weighted water footprint associated with one tonne of tea in each location 

Stage 4 location Blue water 
(m3) 

Grey water (m3) Total blue and 
grey water (m3) 

Baseline 
water stress 

Stress-weighted 
water footprint  
(m3 ecosystem-eq). 

India 741  285 1,026 0.75 769.5 
Indonesia 0  277 277 0.09 24.93 

Kenya - Nyeri 4 72 76 0.12 9.12 
Kenya - Kericho 5 94 99 0.04 3.96 

 
In addition, unlike the stress-weighted water footprint, an economic approach allows the cost savings 

that would be realised if tea was sourced from one location versus another to be identified. For example, this 

saving would amount to $61.63 if a tonne of tea was sourced from Nyeri as opposed to India ($82.19 - 

$20.56), ceteris paribus. Indeed, by placing water dependencies in economic terms, the resulting measure has 

the potential not just to address local impact, but also to drive the broader global water resource allocation 

decisions that have been the focus of the Water Footprint community if incentives such as these materialise. 

Similarly, differences in relative unit values between locations may also incentivise productive efficiencies. 

For example, the relatively low unit value in India could incentivise improvements in irrigation practice, the 

absece of which may explain the comparatively low unit value of water suggested here. An economic water 

footprint approach is also potentially more easily understood by the business community when compared to 

complex approaches based on LCA and stress weighting. If so, this would enable businesses to demonstrate 

responsible stewardship of the natural environment in a language with which they are more familiar. This 

common language would also enable easier comparisons with other location or sourcing decisions made by 

supply chain managers that will invariably be measured financially, and it it may enable a closer link to other 

emerging value-based environmental issues such as carbon credit costs. In addition, an economic water 

footprint approach may also be more intuitively understandable to audiences outside of the business world, a 

factor that was a key part of the widespread appeal and adoption of the initial volumetric Water Footprint 

concept. 
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Table 16 
Comparison between sustainability indicators 

 Water Footprint 
approach using 
volume data only 

Water Footprint 
approach including 
baseline water stress 

Stress-weighted 
water footprint 

Economic valuation 
approach 

Preference 1 Kenya (Nyeri) No clear prescription Kenya (Kericho) Kenya (Nyeri) 
Preference 2 Kenya (Kericho) No clear prescription Kenya (Nyeri) Indonesia 
Preference 3 Indonesia No clear prescription Indonesia Kenya (Kericho) 
Preference 4 India India India India 

 
This analysis is based on limited available evidence regarding the unit values that prevail in each 

geography. As a result, the standard convergent validity techniques that would usually be applied in benefit 

transfer exercises to estimate transfer error in each location are not feasible. Therefore, given the sensitivity of 

the conclusions to the precise unit values applied in each location, and the importance of the relative 

differences in unit values between locations, we now move on to sensitivity analysis to ascertain the degree of 

certainty around the conclusions drawn thus far. However, to understand the differences in unit values on 

display in Table 13 fully, entirely consistent primary valuation data would need to be gathered, as it would if 

any policy-relevant decision was contingent on the analysis presented. 

5. Sensitivity Analysis and Limitations 

Two sensitivities will be deployed here. The first looks at the transfer errors that would bring about 

convergence between the unit values in the three locations. The second will look at the volume adjusted 

values set out in Table 13 and estimate the increases in value that would be necessary in the lowest valued 

location (Nyeri, Kenya) for it to be comparable with the other volume adjusted values. As part of this second 

sensitivity, the likelihood that in-stream values in Nyeri, which are impacted when water is consumed and 

degraded, could account for this increase in overall value, will also be addressed.  

5.1. Sensitivity One 

Table 17 sets out the level of transfer error that would bring about convergence between the unit 

values at each location. For example, an 8% transfer error would mean that the Indian value was comparable 

with the Indonesian value, and a 238% transfer error would ensure that the Indian value was comparable with 

the Kenyan value. This is based on the standard formula for estimating transfer error as set out below, the only 

difference being that the observed and transferred values refer to separate locations (Czajkowski and Scasny, 

2010): 
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𝐸𝑇𝑅 = 
𝑊𝑇𝑃𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑 −𝑊𝑇𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑊𝑇𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑            [3] 

Table 17 
Transfer errors that would be necessary to bring about convergence between unit values in each location 

Country comparison 2014 $/m3  Difference in unit values 
$/m3  

Transfer error 

Kenya and India 0.27 0.19 238% 
Indonesia and Kenya 0.09 0.18 213% 
India and Indonesia 0.08 0.01 8% 

 

Czajkowski and Scasny (2010) suggest that the majority of transfer errors are in the 0-200% range. 

However, in this context, the potential for transfer error is magnified when comparing values across two 

countries, given that this level of error could potentially apply to one or both locations. Indeed, because of 

this, it is not possible to say with a high degree of certainty that the least optimal sourcing location from a unit 

value perspective would be Kenya. This is despite the fact that there would need to be transfer errors of 238% 

and 213% for the Kenyan unit value to converge with the unit values in India and Indonesia, respectively. Put 

another way, a 200% transfer error applied to the unit value in Kenya and India or Indonesia could see these 

values overlap and thus alter the conclusions drawn. Nonetheless, what we can say is that absent a sizeable 

error, the indications are that Kenya is not the optimal sourcing location from a unit value perspective. Indeed, 

referring back to the unit values in Table 8, while there was some overlap between the lower range Kenyan 

value and the upper range Indonesian value, on a like for like basis growing maize, the value in Kenya was 

noticeably greater than in Indonesia ($0.40 compared to $0.11 – 0.15).  

5.2. Sensitivity Two 

Sensitivity two looks at how much the 76 m3 of blue and grey water used in Nyeri (the location with 

the lowest volume adjusted value in Table 13) would have to increase by to be comparable with the other 

three locations analysed here. Table 18 (derived from Table 13) presents the difference in volume-adjusted 

value between Nyeri and each of the other locations (Column two). This difference is divided by 76 m3 

(Column three).  

Despite the fact that Indonesia utilises 201 m3 more blue and grey water than Nyeri  in the cultivation 

of a tonne of tea (Table 13), given the disparity in unit values, it would only require a small (16%) increase in 

the unit value in Nyeri for the volume adjusted value to be comparable with Indonesia. Again, this highlights 

the importance of taking into account values as well as volumes. Conversely, however, it would require a 
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300% increase, or $0.81 per cubic metre, for the volume-adjusted value in Nyeri to be comparable with India. 

Therefore, it seems reasonable to conclude here that India does not represent the optimum sourcing location in 

volume adjusted terms. Beyond this, Nyeri appears to be the optimum sourcing location form a volume-

adjusted perspective, but this is relatively sensitive to increases in unit values (a 16% increase would bring it 

in line with Indonesia while a 30% increase would bring it in line with Kericho). 

Table 18 
Sensitivity two – unit value increases necessary to bring Nyeri in line with other sourcing locations 

Location Difference in total value of  
blue and grey when compared to 
Nyeri (2014 $) 

Increase in unit value of 76 m3 
of blue and grey (2014 $) 

% increase 
in $0.27 unit 
value 

Indonesia 3.37 0.044 16% 
Kenya (Kericho) 6.22 0.082 30% 
India 61.63 0.810 300% 

 
In addition, the requisite unit value increases (Column three) can be compared with the instream value 

scale presented in Lowe et al. (2018b). This scale is based on the minimum, median and maximum combined 

waste assimilation, wildlife habitat and recreation values that were collated by Lowe et al. (2018b) from 

published sources. All of these in-stream values originated from the USA (and in particular the more arid parts 

of the southwest) which was the only country that has recorded these values to date. Indeed, this reflects the 

fact that the USA is at the forefront of environmental valuation and the unit valuation of water. The in-stream 

scale assumes that:  

1) The benefits that stem from the ability of water to assimilate waste and provide wildlife habitat 

and recreational opportunities are present at the same time. 

2) That the point of diversion is such that the values are all additional, both with each other and with 

the extractive use (in this case in agriculture). 9 

3) That there is no distance decay effect for recreational values.10  

For example, the maximum in-stream value on the scale is based on the highest recorded unit values 

for waste assimilation, wildlife habitat and recreation. The point of the scale is to indicate whether the 

                                                           
9 According to Brown (2004), off-stream economic values maybe additional to in-steam values provided that the latter are 
non-consumptive and dependent on the point of diversion, i.e. the point where water is diverted for off-stream use. 
10 The distance decay effect refers to means that people are more likely to be WTP for recreation the closer they are to the 
site in question (Hanley et al. 2003; Pate and Loomis, 1997). 
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presence of instream values in Nyeri, which would be impacted when water is extracted from the stream for 

consumption in agriculture, could potentially alter the conclusions reached. 

The instream value scale can be adjusted for relative incomes in Kenya using the formula set out by 

Czajkowski and Scasny (2010) which assumes an income elasticity of one: 𝑊𝑇𝑃𝑝𝑠 =  𝑊𝑇𝑃𝑠𝑠 (𝐼𝑝𝑠̅̅ ̅̅𝐼𝑠𝑠̿̿ ̿̿ ) 𝜀          [4] 

where WTPss is willingness to pay at the study site, WTPps is the willingness to pay estimate transferred to the 

policy site, and Iss and Ips are mean income levels at the study and policy sites. 𝜖 represents the income 

elasticity of willingness to pay between the mean income levels at the study and policy sites (Czajkowski and 

Scasny, 2010). The income data in Table 19 has been used to make this adjustment, and the resulting in-

stream value scale for Kenya is set out in Table 20. 

Table 19 
Relative income levels in Kenya 

Country GNI Per Capita a % of USA GNI Per Capita 

USA 52,308.38  100 
Kenya 2,157.94  4 

a  UNDP (2014). 
 
Table 20 
In-stream value scale Kenya ($/m3) 

Low 
 

Median 
 

High 

0.00002 0.002 0.025 

 
As shown, it is quite clear that the necessary increases in unit values in Nyeri that would be needed 

for the volume adjusted value to comparable with Indonesia, Kericho and India are far beyond the highest in-

stream values recorded to date (i.e. $0.044 m3, $0.082 m3 and $0.81 m3 are both greater than $0.025 m3).11 

Therefore, it seems reasonable to conclude that the presence of in-stream values in Nyeri, which would be 

impacted by water consumption and degradation, is unlikely to produce volume-adjusted values that exceed 

Indonesia, Kericho and India. However, this conclusion does not take into account in-stream values in 

Indonesia, Kericho and India, the presence of which would further widen the gulf in volume-adjusted value 

between the respective locations and Nyeri. 

                                                           
11 Technically, in-stream values would be additional to agricultural values which are net of extraction costs (i.e. the 
agricultural value is an at-source value). However, given that at-source agricultural values were not available here in all 
locations, the in-stream value scale is applied to at-site agricultural values on the assumption of minimal/similar extraction 
costs across Stage 4 sourcing locations. 



Running head: COMPARING THE ECONOMIC VALUE  29 

 

 

 

5.3. Limitations and Future Research Direction 

Several limitations are attached to the analysis described here. First, as conceived by the Water 

Footprint (and thus by the authors who provided secondary data on the volumes of water in the tea supply 

chain), grey water is a theoretical as opposed to real volume of water. To subject grey water to economic 

valuation, we have assumed that there is not more pollution than assimilative capacity in the receiving water 

bodies at each supply chain location. Liu et al. (2012) suggest that, broadly, excessive nitrogen and 

phosphorous discharges are more prevalent in the southern hemisphere, and that high general water pollution 

levels are to be found in tropical-subtropical areas. Therefore, this assumption may not hold for all three 

countries at Stage 4. However, in the absence of more specific data, and given the low level of spatiotemporal 

detail that the method here is adhering to, this is a recognised limitation in this context and one which would 

need to be addressed using primary valuation techniques should decision relevant values be required.  

Second, the economic valuation approach did not include the substantial volumes of green water 

consumed at each Stage 4 location. Green water was excluded because ultimately the value of water in crop 

cultivation is subject to a derived demand, i.e. a farmers WTP is dependent upon the income that is received 

for the crop. Therefore, any attempt to value the volumes of green water with reference to some measure of 

the value of artificial irrigation, produced value estimates that were far too large and therefore unrealistic. 

Furthermore, unlike grey water which could be viewed as an opportunity cost (i.e. the value that degraded 

water could have been put to if it had not been polluted), green water does not stem from a blue water source. 

Therefore, green water could not have been used for artificial irrigation if it had not been consumed, and thus, 

it cannot be treated as an opportunity cost.12 As a result, the economic valuation of green water is an 

outstanding research question of note here given the strategic significance of green water resources (Aldaya et 

al. 2010), a fact that is well illustrated by the sizable volumes consumed in the tea supply chain.  

Finally, given the importance of relative differences between unit values at Stage 4, and the 

constrained evidence base of prevailing values in each location, they would need to be confirmed using fully 

consistent primary valuation techniques at each Stage 4 location if decision relevant values were required. 

                                                           
12 Green water can be harvested. However, as Hoekstra at al. (2011) argue, rainwater harvesting mostly refers to “the 
collection of rain that otherwise would become run-off” (p.26). Given that harvesting will detract from run-off, Hoekstra 
et al. (2011) recommend considering harvested rainfall as blue water. 
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Indeed, the valuation of irrigation water across multiple regions using either primary valuation techniques or a 

more generalizable secondary data approach, also remain research questions of note for further investigation. 

So too does the value of water in industry and the in-stream value of water (Table 5). If this additional 

research were pursued, it would allow a values-based approach to be a more credible accompaniment to 

existing volumetric and stress-weighted water footprint approaches. By comparison, these existing approaches 

are not as constrained by a lack of appropriate data. 

6. Conclusion 

In conclusion, the water footprint of 20,000 50g boxes of tea representing one tonne of finished goods 

was estimated (6,240 m3) using secondary data sources. It was shown that 90% of this water footprint was 

associated with the tea crop at Stage 4. Indeed, in absolute volume terms alone, it was suggested that the 

cultivation of tea in Kericho (Kenya) and Agrabinta (Indonesia) appear to be the areas of greatest concern. 

However, Kangra district (India) and the water used during the consumer use phase at Stage 1 account for the 

largest share of blue water consumption in the supply chain. This analysis was not based on a like for like 

comparison, but rather, the blend of tea that is found in the end product.  

The total value of the blue and grey water used to produce one tonne of finished goods (i.e. 20,000 

boxes) was estimated at $224. The vast majority of this value (86%) was associated with the water that is used 

during tea consumption, given the higher unit values linked to treated municipal tap water. Again, however, 

this analysis was based on the blend of tea in the end product and therefore was not able to fully illuminate the 

trade-offs between the multiple Stage 4 locations that become apparent when an economic approach is 

adopted.  

For that reason, a like for like comparison of the value of blue and grey water used to cultivate a tonne 

of tea in each location was undertaken. This comparison showed that while Nyeri (Kenya) exhibits the highest 

blue water unit value (absent a transfer error in excess of 200%; Table 17), because it uses the least blue and 

grey water, in volume adjusted terms it accounts for the least total value of water. However, a 16% or 30% 

increase in the unit value in Nyeri would ensure that the volume-adjusted value was in line with Indonesia and 

Kericho (Kenya) respectively (Table 18). Given that it would require a 300% increase in the unit value in 
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Nyeri to bring volume-adjusted value in line with India, the principal overall conclusion seems to be that India 

likely represents least optimal sourcing location even though it has the lowest unit value. 

This conclusion accords with the volumetric analysis of the blue and grey water consumed and 

degraded in the production of a common quantity of tea at each Stage 4 location.  In addition, it accords with 

the analysis of blue water hotspots from the perspective of the Water Footprint and stress-weighted water 

footprint. Nonetheless, beneath this overall conclusion it was only by taking the economic value of water into 

account that it becomes apparent, for example, that Indonesia would clearly be a preferred sourcing location 

when compared to Kericho, despite the fact that the former pollutes and consumes nearly three times the 

volume of water when compared to the latter. Furthermore, it is only by estimating economic values that 

potential shadow value savings, ceteris paribus, can be revealed. Indeed, one of the principal benefits of the 

economic valuation approach is that businesses may well find it more intuitive than some of the alternative 

methods assessed. 

Clearly, the availability of additional empirical value estimates that can be used in approaches such as 

that described here would lead to greater confidence in the results arrived at which should be considered 

indicative only. However, as this case has shown, shifting to estimating the economic value of virtual water 

along the supply chain has the potential to provide additional insight into sustainable and responsible sourcing 

and supply chain management decisions. 
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