
This is a repository copy of A stochastic model for simulating ribosome kinetics in vivo.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/156267/

Version: Published Version

Article:

Dykeman, Eric Charles (2020) A stochastic model for simulating ribosome kinetics in vivo. 
PLoS Computational Biology. ISSN 1553-7358 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



RESEARCH ARTICLE

A stochastic model for simulating ribosome
kinetics in vivo

Eric Charles DykemanID
¤

Department of Mathematics, University of York, York, United Kingdom

¤ Current address: Department of Mathematics, University of York, York, United Kingdom
* eric.dykeman@york.ac.uk

Abstract

Computational modelling of in vivo protein synthesis is highly complicated, as it requires the

simulation of ribosomal movement over the entire transcriptome, as well as consideration of

the concentration effects from 40+ different types of tRNAs and numerous other protein fac-

tors. Here I report on the development of a stochastic model for protein translation that is

capable of simulating the dynamical process of in vivo protein synthesis in a prokaryotic cell

containing several thousand unique mRNA sequences, with explicit nucleotide information

for each, and report on a number of biological predictions which are beyond the scope of

existing models. In particular, I show that, when the complex network of concentration

dependent interactions between elongation factors, tRNAs, ribosomes, and other factors

required for protein synthesis are included in full detail, several biological phenomena, such

as the increasing peptide elongation rate with bacterial growth rate, are predicted as emer-

gent properties of the model. The stochastic model presented here demonstrates the impor-

tance of considering the translational process at this level of detail, and provides a platform

to interrogate various aspects of translation that are difficult to study in more coarse-grained

models.

Author summary

Biological processes that occur in the cell, such as protein synthesis by the ribosome, are

ideal examples of complex systems where the observed properties of the process depend

on the interactions between the various components which make up the system. In the

case of protein translation, the interplay between ribosomes, tRNAs, elongation, initiation

and recycling factors with the transcriptome results in several complex behaviours, such

as increasing protein chain elongation rate with increasing cellular growth rates. A key

question is how this complex phenomenon emerges from the interactions of the individ-

ual components. Here I develop a general computational method which takes into

account the complexity of the translational process and demonstrate how several biologi-

cal phenomena of translation emerge naturally as a result of modelling translation from a

more detailed view.
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Introduction

In cells, ribosomes are responsible for translation of protein from messenger RNA (mRNA),

which has been transcribed from the genomic DNA. At any given time, multiple mRNAs are

being transcribed by the polymerase machinery in response to cellular stresses and feedback

mechanisms. The full set of transcribed mRNAs in the cell represents its transcriptome, and

translation by the ribosomal machinery gives rise to its proteome. The dynamics of the tran-

scriptome, its response to cellular stresses, and its influences on protein synthesis, as well as

the overall proteome, are important for understanding how disease processes arise at the cellu-

lar level. Although there are many processes that can influence the dynamics of the proteome,

such as control of mRNA expression at the transcriptional level, it has been recognised that the

overall kinetics of translation by the ribosomal machinery can exert additional control on pro-

tein levels in the cell. Because translation by ribosomes involves many individual kinetic steps

and is influenced by the concentration of translational factors such as elongation and initiation

factors, which must be created during ribosomal translation of the mRNAs encoding them,

the dynamics of the translational process has complex interdependencies and feedback loops

making the accurate modeling of the process challenging.

In essence, translation is governed by the physics of molecular interactions and diffusion

processes, thus making it amenable to study using standard chemical kinetics and the mathe-

matics of the chemical master equation. Ideally, when constructing a chemical master equation

model of translation, one would like to account for as many of the individual biochemical reac-

tions in the translational process as possible that affect the overall efficiency of protein produc-

tion. Zur et al. [1] recently highlighted a list of seven features which they contend are required

to be included in a translational model, at a minimum, to provide a comprehensive picture of

translation in vivo. To date, development of kinetic models of the dynamics of ribosomes have

mainly focused on either (1) stochastic based methods [2–4], or (2) statistical approaches

which, roughly speaking, treat mRNAs as lattices with the ribosomes moving along the mRNA

lattice points according to certain hopping probabilities [5–7]. The ribosomes can be modeled

as occupying single lattice sites or as extended objects occupying multiple lattice sites [8].

Stochastic based methods have considered ribosomes moving along the mRNA in a sto-

chastic manner, with different levels of detail taken into account. For example, Chu and von

der Haar [3] have constructed a tool in Java which takes into account the movement of 200k

ribosomes on 60k mRNAs with sequence information for each, with positional information

on the mRNA encoded for each ribosome. Their model of translation in yeast [2] considers

the complex positioning of all the ribosomes on the mRNAs along with relative tRNA abun-

dances and the effects of codon bias and competition between the tRNAs for the A-aite of the

ribosome. However, they do not consider concentration effects from elongation factors such

as eEF1 eEF2 (Ef-Tu and Ef-Tu/Ef-Ts in bacterial systems), exchange of GDP for GTP on

these of elongation factors, nor the concentration and competition effects between charged

tRNAs for Ef-Tu and formation of TC, nor pre-mature termination on sense codons.

In the case of statistical based methods, these models are referred to as “totally asymmetric

simple exclusion processes” or TASEP models. These types of models are well established in

the literature and have been used to model aspects of the translational process since the 60’s

and 70’s. A comprehensive review of TASEP models (or its cousin the ribosome flow model—

RFM [9] which is a mean field approximation of the TASEP) and their current capabilites is

not feasible here, but can be found, along with an account of various other computational

models of translation, in [1, 10] with a discussion of the benefits and limitations of each. How-

ever, while RFM and TASEP models have been useful in considering some of the concentra-

tion dependencies on the translational process, such as from the inclusion of tRNAs or Ef-G
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[11, 12]; or have included some steps of the initiation process [13], or considered TASEP mod-

els with a mixture of a few mRNAs [14], it has been recently stated that there are “currently no

models that consider all the fundamental mRNA translational aspects at a cellular level” [1, 9].

In this work, I have followed what could be termed a “bottom-up” approach to the con-

struction of a translational kinetics model to be used for simulation of translation in a cell,

with the goal of fulfilling the seven features noted by Zur et al. [1]. This approach is based on

two underlying principles: (1) to encode into the model the current biochemical knowledge

on all of the ribosome reactions that occur at every stage (i.e. initiation, elongation, and ter-

mination), and (2) to minimially adjust experimentally measured kinetic parameters, when

required, such that the results of the model recapitulate features of the translational process

that have been either observed directly or deduced from experimental measurements in vivo.

A similar approach has been recently attempted by Matsuura et al. [15], where they created

an ordinary differential equation (ODE) model, solved in MATLAB, which simulates the

synthesis of a tri-peptide from a single mRNA species containing three codons. Their ODE

model contains a reported 968 reactions and 242 components, a large number considering

that only synthesis of a tri-peptide from a single mRNA type was considered. This highlights

the complexity of the number of states and reactions that need to be modelled when scaling

up to an entire cell with thousands of different mRNAs and tens of thousands of ribosomes,

and why models including all the biochemical reactions that can occur have been difficult to

develop.

Although a “bottom-up” approach has been attempted by Matsuura et al., there are a num-

ber of large differences between their model and the one I report here. First, the Matsuura

model focuses on simulating protein synthesis in an in vitro reconstituted protein synthesis

system, whereas I focus on modeling the translational process in vivo. Second, their approach

only simulates the synthesis on a single mRNA type with a single ribosome occupying the

mRNA at any one time. In contrast, I consider protein synthesis on thousands of mRNAs,

each with an explicit and potentially unique nucleotide sequence that are allowed to be in a

polysome state. Finally, although Matsuura et al. use experimentally measured kinetic rates,

they have not, to my knowledge, checked for robustness of the rates against experimental

observations of in vitro reconstituted protein translation systems. The last point is particularly

important to note since many experimental groups have had conflicting accounts over the

years of both the range of kinetic rates for certain reactions (most notably for GTP/GDP bind-

ing to Ef-G [16, 17]) and have also proposed different models for the kinetic events and their

order of occurrence on the ribosome. Moreover, Indrisiunaite et al. [18] has noted that many

of these rates can be sensitive to buffer conditions, making verification of the model by com-

paring with experimental observations critical. By testing the kinetic rates and reaction models

that have been proposed by experimental groups for the various stages of translation, I have

been able to confirm which of these result in a quasi-steady state of translation in vivo (please

see supporting information for full discussion). Although the model I report here is not defini-

tive and likely requires additional adjustments to the kinetic rates to better fit to experimental

observations, particularly premature termination and stop codon read through rates (see sup-

porting information), it does demonstrate that a whole cell model of translation, taking into

account all known protein factors and biochemical steps, is computable in a reasonable time.

Finally, by taking into account (1) the explicit nucleotide content of the full transcriptome, and

(2) all of the translational factors (e.g. Efs, RFs and tRNAs) and how their concentrations influ-

ence the translational process, the model reveals how several translational properties emerge

naturally from the model due to the complex network of the interacting components that are

obscured in more coarse-grained models, or models which neglected, e.g., exchange of GDP

for GTP on elongation factors [4].

Stochastic model of ribosome kinetics
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Results

Computational model of ribosome kinetics in vivo

Fig 1 illustrates the various kinetic steps of ribosome kinetics in vivo that has been imple-

mented in the stochastic model reported here. Highlighting the main features of the stochastic

model, it contains� 50 kinetic parameters for the initiation, elongation, and termination

stages of the ribosome, along with� 20 kinetic parameters which govern, for example, GTP/

GDP binding to GTPases such as Ef-G and Ef-Tu. It is capable of simulating translation on

thousands of unique mRNA sequences in a polysome arrangement, whose sequences are

explicitly taken into account, and is set-up to predict initiation rates based on mRNA second-

ary structure and sequence at both cognate and non-cognate start codons (see supporting

information). It also depends on the concentrations of:� 10 initiation, elongation, and recy-

cling factors; nucleotide tri and di-phosphates; 20 amino acids; and over 40 tRNAs. Premature

termination is accounted for in the model, along with mis-incorporation of non-cognate pep-

tides, and the occurrence of stop codon read-through events. Although a framework has been

set up for these advanced features in the code and the kinetic model for initiation and prema-

ture termination is based on the current best understanding of the biochemical steps involved,

more experimental/theoretical work on kinetic rates would be required to implement these

features in full. Moreover, as specific kinetic information for the aminoacylation of tRNAs

have only been examined for two of the 20 aminoacyl-tRNA synthases, the complex individual

kinetic steps are implemented in the model as a single reaction (dashed box in Fig 1A). It

should also be noted that the model currently assumes that the concentrations of amino acids

and nucleotide phosphates are constant, that mRNAs are not degraded or produced due to

transcription, and that the total number of ribosomes, initiation factors, elongation factors etc.

are constant. Thus, the model assumes a quasi-steady state for ribosome, mRNA, and elonga-

tion factor concentrations. This is a reasonable assumption for cells undergoing exponential

growth, as a constant supply of amino acids and GTP/ATP would be expected in such a sce-

nario. However, with minor modifications to the code, a more detailed model can be imple-

mented where such features were dynamic. A full description of the model, along with

justification for the kinetic rates based on experimental evidence, is given in the supporting

information.

To simulate the kinetic reactions listed in the supporting information, I implement an exact

Gillespie stochastic model [20] where individual reactions are randomly “fired”, one at a time,

according to the reaction propensity function

F ¼
XN

i¼1

XMi

j¼1

kij ¼
XN

i¼1

�i: ð1Þ

Here, i labels one of the NmRNAs, j labels one of theMi possible reactions for this mRNA,

and kij are the individual kinetic rates for each reaction, with ϕi denoting the sum of reactions

involving mRNA i only. Since an exact Gillespie model can take considerable time to simulate,

I am using a binary tree structure, with nodes representing the partial sums ϕi of the reactions

involving mRNA i, to compute F and identify reactions to fire at each step. The tree is searched

from the top node, choosing the branch which is greater than rF, with random r 2 [0, 1], until

a specific mRNA number η which satisfies
PZ

i¼1
�i > rF is identified. After firing of a specific

reaction in mRNA η, the reactions in this mRNA are updated and the same path through the

tree is re-traced, updating the sums accordingly. In this way, the total propensity F is updated

in log2(N) time following the approach used in a Gillepsie model of RNA kinetics involving

single base-paring reactions [21]. This technique amounts to a re-ordering of the reaction

Stochastic model of ribosome kinetics
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Fig 1. Diagram of the ribosome kinetic model. (A) Illustration of the reaction network that is simulated in the model. Aminoacylation of tRNAs
(dashed boxes) indicate an area where there is limited knowledge of the biochemical kinetics and additional experimental work is needed. (B)
Overview of the implementation steps. Specific mRNA sequences, and the concentration of ribosomes, are used as input parameters. The program
determines the quantities of elongation factors, etc. that are expected from the number of ribosomes based on experimental data [19]. Examples of
output data are shown in the final column.

https://doi.org/10.1371/journal.pcbi.1007618.g001
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propensities and, as noted by Cao et al. [22], results in a trajectory which will be statistically

equivalent to one that was formed by the standard Gillepsie algorithm. Full details of the

Log(N) binary tree method can be found in the supporting information of reference [21]. The

simulations reported in this work for the μ = 1.0 doublings/hour case take half a day to reach

103 seconds of simulation time on a single processor. Simulations at the higher growth rate μ =

2.5 take 3-4 days due to the larger number of ribosomes present and increased number of reac-

tions that need to occur to reach 103 seconds of simulation time. However, individual reactions

are implemented for both cases in log2(N) time. Thus, if a cell is doubling at a rate of once per

hour (μ = 1.0), then the kinetic model reported in this work can simulate the entire protein

production that takes place in a single cell during one complete cell cycle in roughly 30 hours

of computational time.

Validation of the model with experimental observations

To verify that the model recapitulates experimental observations of translation in Prokaryotes,

I have performed a simulation of translational kinetics in exponentially multiplying E. coli at

three different growth rates; μ = 0.7, μ = 1.0, and μ = 2.5 doublings per hour. Before simulating

these, a representative transcriptome must be constructed that mimics what could potentially

be observed in vivo. Each E. coli cell will have a temporaly dynamic transcriptome due to

expression of different genes in response to various environmental cues and/or being at differ-

ent stages of the cell cycle. Thus, an exact representation of the transcriptome of a single cell is

difficult to measure, since measurments will often be averaged over many cells. Moreover, [23]

have shown in a transcriptional time series measurement of the Lac operon using sm-FISH

that the numbers of mRNAs for the LacZ gene not only vary in response to intracellular lactose

concentration, but vary between cells following a geometric/Poisson distribution at low/high

gene expression levels.

Using these observations, I have constructed transcriptomes by selecting genes from the

E. coli proteome at random and assigning a number of mRNA copies for each gene sampled

according to the two types of probability distributions (geometric/Poisson). It should be noted

that the nucleotide sequence of the mRNAs do not match authentic E. colimRNAs, but instead

codons are chosen so that the codon biases match with the tRNA abundances in Table K in S1

Text (see Methods). This resulted in transcriptomes T07, T10, and T25 for use in the μ = 0.7,

1.0, and 2.5 growth rate simulations, respectively. Although the T07,T10 and T25 transcrip-

tomes are artificial, I will show in the next section (Biological Predictions of the model) that

without the adjustment to the codon bias of the transcriptome to match tRNA abundances (or

vis versa), translation efficiency is extremely poor.

The T07 transcriptome contains 650 mRNAs comprising Nnt = 0.56M nucleotides, while

the T10 and T25 transcriptomes contain a total of 1265 mRNAs with 1.2M nucleotides and

5151 mRNAs with 5.0M nucleotides (c.f. Table 1). The total nucleotides in each transcriptome

have been chosen to be roughly in line with experimental values from [19], which essentially

fixes, to within approximately 10%, the total number of mRNAs that have been used in the

simulations. In more concrete terms, the number of mRNAs that are used for the T07, T10,

and T25 transcritpomes are within 10% of the value determined experimentally. Simulations

were performed using the total number of elongation factors, tRNAs, etc. listed in Tables K-N

in S1 Text. Each of these factors are assumed to increase linearly with the number of ribosomes

in the cell following Bremer and Dennis [19]. Thus, users only need to specify the number of

ribosomes and the individual mRNA sequences for the simulation (see Fig 1B). Kinetic rates

were identical for all growth rates and are given in the supporting information. The volume of

an E. coli ranges from v = 0.83 to v = 1.12 μm3 for rates of μ = 1.3 to μ = 2.1 [19]. As this change

Stochastic model of ribosome kinetics
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in volume has negligible effect on the overall kinetic rates in a Gillepsie model, I have used an

average volume size of v = 1.0 μm3 for all simulations. Finally, although my model can theoreti-

cally compute the ribosome binding site (RBS) and the initiation rate for an mRNA based on

detailed knowledge of its 5’ UTR sequence and secondary structure, this feature requires addi-

tional experimental validation before it can be fully implemented. Thus, I have assumed for

now that ribosomes initiate on all mRNAs at the maximal rate, i.e. the situation where the 5’

UTR is unstructured and a Shine-Dalgarno sequence is present. This has an added benefit for

the testing/validation of the termination and recycling phases, which need to be fast enough to

process mRNAs which are maximally translated. This requires that the kinetics of the termina-

tion and recycling steps be such that substantial stalling or a full blown traffic jam does not

result on a maximally translating mRNA. Fixing mRNAs to the case of maximal initiation has

allowed for verification that my model does not result in in-efficient translation on maximally

translated mRNAs and has revealed that one particular experimental model of termination

was more consistent with this requirement than an alternative (see supporting information).

Fig 2 shows the percentage of ribosomes at different stages of the translation process, along

with the percentage of free 30S pre-initiation complex (30S:PIC) and free 50S, at the three

growth rates. The percentages are computed relative to the total 50S (or equivalently 30S)

subunits available. For all growth rates, roughly 15% of 50S ribosome subunits are free, while

the remaining βr = 85% are in one of the stages of translation. Specific values for intatition,

Table 1. Efficiency of translation for different transcriptomes.

Trans. N Nnt Cp % I % E % T % S % 50S

T25 5151 5.00 21.0 5.1 77.4 2.0 2.3 15.6

T10 1265 1.20 18.1 4.8 79.0 2.0 3.0 14.2

T07 650 0.56 15.0 4.9 78.4 2.1 4.3 14.6

T10a 1265 1.20 8.1 3.8 95.0 1.0 13.6 1.5

T10b 2040 1.24 17.7 7.9 81.7 3.4 5.0 7.9

T10c 2040 2.00 17.9 6.6 90.0 2.1 1.0 2.3

Values for each transcriptome (T25,T10,etc.) are obtained from an average over three separate simulations. Variables denote the following quantities: N—number of

mRNAs in the transcriptome, Nnt—total number of nucleotides in the transcriptome in millions, Cp—average protein chain elongation rate (aa/sec), (%I,%E,%T, and %

S)—Percentage of ribosomes (I)nitiating, (E)longating, (T)erminating, (S)talled, and %50S—Percentage of 50S ribosomal subunits that are free.

https://doi.org/10.1371/journal.pcbi.1007618.t001

Fig 2. Translational kinetics of ribosomes at different E. coli growth rates. Time courses for the percentage of ribosomes (compared with total ribosomal mass)
that are initiating (black), elongating (green), terminating (red), stalled (purple), or free 50S (blue) and free 30S:PIC (brown) are shown for growth rates of (A) μ =
0.7, (B) μ = 1.0, and (C) μ = 2.5 doublings per hour. The experimentally expected ratio of ribosome in elongating complexes (70S:EC—green line) to total ribosome
is 0.80–0.85 for all growth rates [19], which matches with the model prediction. Time courses represent an average of three separate simulations.

https://doi.org/10.1371/journal.pcbi.1007618.g002

Stochastic model of ribosome kinetics
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elongation, and terminaition are listed in Table 1. The percentage of elongating ribosomes,

which are stalled, is given in the %S column. Although the βr value is consistent with Bremer

and Dennis [19], I have found that it has a complex dependence on at least four factors: (1) the

total number of initiation sites, (2) the total number of nucleotides across the transcriptome,

(3) the different lengths of the open reading frames and their relative abundance in the tran-

scriptome, and (4) the initiation rates of the ribosome on all mRNAs. Finally, Fig 3 shows the

computed peptide chain elongation rates (Cp) for all growth rates. As can be seen in Fig 3, the

average Cp value is roughly 15 codons per second at the growth rate μ = 0.7, 18 codons per sec-

ond at 1.0, while it is 21 codons per second at μ = 2.5. These values compare extremely well

with the expected rates of 15,18 and 22 codons per second, respectively, reported in Bremer

and Dennis [19, 24].

Biological predictions of the model

Elongation rate increases with cellular growth rate. As can be seen in Fig 3, Cp decreases

as the growth rate decreases, even though all simulations use exactly the same kinetic rates for

the elongation reactions. Previous models such as in Rudorf [25] reported on the use of differ-

ent kinetic rates for the elongation phase of the ribosome in order to enforce the observed Cp

values, while the stochastic framework used in Vieira et al. [4] found that there was no increase

in Cp with increasing growth rates. Here, the difference in peptide chain elongation rates arises

from the complex interdependence of the various translational factors, i.e it is an emergent

property of the model. One might hypothesize that the decrease in Cp that follows a reduction

in the growth rate arises solely from the drop in concentration of the tRNAs and elongation

factors, as these are directly associated with the elongation kinetics of the ribosome. This is

incorrect, however, as the Cp value, as well as the overall translational kinetics of the ribosome,

are robust to attempts of increasing the protein chain elongation rate by optimizing the con-

centrations of a few translational factors. To demonstrate this, I have performed simulations at

the growth rate of μ = 0.7 doublings per hour with the same number of ribosomes and same

transcriptome as the T07 simulations shown in Fig 2A, but have doubled the number of certain

components as follows. When only tRNAs and the elongation factors Ef-Tu, Ef-Ts, and Ef-G

are doubled, Cp = 15.1, but with the additional consequence that there were twice as many 70S

elongating ribosomes stalled on mRNAs (due to insufficient recycling factors). Doubling only

Fig 3. Peptide chain elongation rates at different E. coli growth rates. The peptide chain elongation rates (Cp) in
amino acids per second are shown for the simulations at growth rates μ = 0.7,1.0, and 2.5 doublings per hour. Running
averages of Cp over 1000 seperate protein syntheisis events are given by the red curves and reveal an average peptide
chain elongation of Cp = 15,18, and 21 amino acids per second for μ = 0.7,1.0, and 2.5 doublings per hour, respectively.
All model predictions of the peptide elongation rates match experimental estimates of [24].

https://doi.org/10.1371/journal.pcbi.1007618.g003
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the number of Ef-Tu, Ef-Ts, or recycling factors resulted in values of Cp = 16.0, 15.5, and 15.6,

respectively. Finally, choosing different random transcriptomes (by sampling different genes)

also had no effect on Cp. Only when all tRNAs, EFs and RFs doubled in unison did Cp increase

demonstrating how the peptide chain elongation rate is an emergent property of the model.

Elongation rate depends on tRNA abundance and codon bias of the transcriptome.

Although the translational kinetics of the ribosome are robust to alterations of the translational

factors, it is very sensitive to the abundance of tRNAs relative to the codon bias in the tran-

scriptome. Dong et al. have previously measured tRNAmolar abundances from E. coli at dif-

ferent growth rates using two-dimensional electrophoresis (c.f. Table 5 in [26]). Additonally,

they estimated codon usage in the transcriptome at different growth rates using coding

sequences from Genbank and previous measurements from [27] on the abundance of proteins

at different growth rates (c.f. Table 3 in [26]). Using the Genbank and Pedersen data, Dong

gives a codon usage frequency for AAA as 4.9% at μ = 1.0. However, the tRNA cognate to

AAA represents only 1.5% of the total molar mass of tRNA that they measured. Hence the

codon usage reported by Dong, based on the Pederson and Genbank data, does not exactly

match the tRNA profile that they measured. To illustrate the dramatic effects that this mis-

matching between tRNA abundance and codon usage in the transcriptome can have on trans-

lation efficiency, I have constructed transcriptome T10a, which was adapted from T10 so as

to have identical numbers of mRNAs with identical reading frame lengths for each. However,

the codons in T10a have been altered so as to have the same codon biases as the Pederson and

Genbank data reported in Table 3 of [26] i.e. T10a has a codon bias reflecting the wild-type E.

coli transcriptome. However, while the codon bias in transcriptome T10a reflects what was

observed in the experiments of Pedersen et al. [27] for wild-type E. coli, the demand on

tRNAs that this codon usage implies will notmatch the relative tRNA abundances from Dong

et al. used in the simulation.

Simulation of translation using T10a following the same procedure as T10 reveals that elon-

gation is substantially slowed, with an average elongation rate of Cp = 8.1 codons per second

when averaged over the entire transcriptome and a substantial 13% of ribosomes stalled (c.f.

Table 1). As can be seen in Fig 4, the resulting ratios of tRNAs in free ternary complex (TC)

for the T10a simulation varies across tRNA species much more then the T10 simulation, with

some tRNA species only having 10% of their total number in free TC. This mismatch between

the tRNA abundance and the codon bias of the transcriptome results in several tRNA species

having very few of their total numbers available in free TC, resulting in increased decoding

times at codons dependent on these tRNAs. However, in contrast with transcriptomes T07,

T10, and T25, which have codon biases which match tRNA abundances, the percentage of

tRNAs in free TC is roughly uniform across all tRNA species illustrating how the quantities of

tRNAs match their rate of usage by translating ribosomes in these cases.

The results for the T10a transcriptomes are similar to a previous Markov model study by

Rudorf et al. [28] which showed that tRNA abundances in free TC become skewed, relative

to the total tRNA concentration, as a result of mismatches between the tRNAs and the fre-

quency of codon usage in the mRNAs. Table 2 compares the ratio of tRNAs in free TC to

the total amount of that tRNA for the transcriptome T10a (green data in Fig 3) with that of

Rudorf et al. [28]. As can be seen from the table, there are similar effects on the tRNA abun-

dances between T10a and those reported in Rudorf et al. [28]—e.g. the largest tRNA abun-

dances are in tRNAs-Arg2,Arg3,Arg4, and tRNA-Arg5 while the least is in tRNA-Lys.

However, there are some differences, and these are likely due to two factors. First in

Rudorf and Lipowsky’s model, Ef-Tu does not have a reaction for GTP/GDP mediated

exchange by Ef-Ts, where as in my model this is present (c.f. Fig 1A). This is probably the

largest contribution to the difference as roughly 21% of Ef-Tu is in complex with GDP or

Stochastic model of ribosome kinetics
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Ef-Ts (at μ = 1.0) in my model, and therefore unable to bind charged tRNAs to form free

TC. Second, the effects of stalling are accounted for in this work, which can slow the time to

release tRNAs which decode rare codons, thereby further decreasing their abundance in free

TC. This effect can be illustrated in Fig 5 which shows my models predicted average decode

times for each codon (in aa/sec), along with stalling frequencies, for each of the 61 sense

codons. As can be seen, small effects of codon biases can dramatically alter the codon decod-

ing times producing a feedback on the abundance of tRNAs in free TC, effecting the overall

translation properties of the transcriptome.

The source of the slow average translation of the T10a transcriptome is due to the additional

reactions governing GTP/GDP exchange on Ef-Tu and the binding of aminocyl-tRNAs to Ef-

Tu:GTP to form free TC. These reactions create a situation where aminoacyl-tRNAs must

compete for available Ef-Tu:GTP to form free TC. Underused aminoacyl-tRNAs will have an

advantage in formation of TC over that of overused ones, resulting in a surplus of underused

tRNAs in free TC. Thus, situations where the relative abundances of tRNAs do not match

their demand implied by the codon bias of the transcriptome will result in shifts in the amount

of tRNA available in free TC (as can be seen in Fig 4 for T10a). To further demonstrate the

dramatic difference in translational behaviour that can be observed when all reactions are

accounted for, I have performed a simulation where reactions governing the binding of Ef-Tu

to newly charged tRNAs are turned off and tRNAs are imediately returned to free TC follow-

ing ejection from an elongating ribosome. This is the same assumption used by Vieria et al. [4]

and assumption 3 in Zouridis et al. [29]. Neglecting these reactions results in average transla-

tion rates of Cp = 18.4 aa/sec for T10 and Cp = 17.7 aa/sec for T10a, in contrast to the less

efficient Cp = 8.1 aa/sec average translation that results for transcriptome T10a when these

Fig 4. Percentage of each tRNA in free ternary complex. For each tRNA listed in Table K in S1 Text, the percentage of the tRNA that is in free ternary complex
(TC) is computed by taking the ratio of the amount of the tRNA in free TC to the total amount of the tRNA. The average ratio for each tRNA (over the last 100
seconds of the translational simulation) is shown for for the T07 (black), T10 (red), and T25 (blue and T10a (green) transcriptomes. The tRNAs are ordered from
lowest percentage to highest for each simulation separately.

https://doi.org/10.1371/journal.pcbi.1007618.g004
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Table 2. Concentration of tRNAx in free ternary complex.

x T10 T10A Rudorf

Ala1B 0.3812 0.2862 0.5611

Ala2 0.3776 0.1945 0.4935

Arg2 0.3769 0.5187 0.6801

Arg3 0.3713 0.8276 0.8551

Arg4 0.3826 0.8439 0.8863

Arg5 0.3832 0.8791 0.9006

Asn 0.3737 0.1043 0.4229

Asp1 0.3789 0.3186 0.5356

Cys 0.3825 0.7182 0.8068

Gln1 0.3726 0.6055 0.7520

Gln2 0.3858 0.1511 0.4409

Glu2 0.3765 0.4833 0.6505

Gly1 0.4385 0.8315 0.8806

Gly2 0.3135 0.7791 0.8512

Gly3 0.3722 0.4287 0.6423

His 0.3844 0.1006 0.4258

Ile1 0.3771 0.1003 0.6288

Ile2 0.3799 0.8720 0.8253

Leu1 0.3901 0.5593 0.7177

Leu2 0.3818 0.6342 0.7524

Leu3 0.2783 0.5201 0.6870

Leu4 0.4099 0.8267 0.8680

Leu5 0.2920 0.6998 0.8058

Lys 0.3778 0.0631 0.4149

Metm 0.3885 0.0903 0.4742

Phe 0.3655 0.0735 0.4731

Pro1 0.4454 0.1629 0.5897

Pro2 0.3807 0.6345 0.7566

Pro3 0.2633 0.1034 0.4504

Ser1 0.3327 0.5772 0.7239

Ser2 0.5335 0.7890 0.8632

Ser3 0.3801 0.5844 0.7240

Ser5 0.4295 0.3518 0.5749

Thr1 0.3818 0.1736 0.4444

Thr2 0.5028 0.7457 0.8199

Thr3 0.3818 0.1736 0.4470

Thr4 0.2964 0.4357 0.6307

Trp 0.3829 0.6220 0.7641

Tyr1 0.3794 0.5025 0.6666

Tyr2 0.3794 0.5025 0.6666

Val1 0.3597 0.4052 0.5835

Val2 0.4151 0.4695 0.6494

The ratio of the concentration of tRNAx in free ternary complex relative to the total concentration of tRNAx at

growth rate μ = 1.0 is shown. Data for Rudorf computed from the 2-1-2 model at growth rate μ = 1.07 in

supplementary tables S4 and S5 [28].

https://doi.org/10.1371/journal.pcbi.1007618.t002
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reactions are accounted for. Similarly, increasing Ef-Tu (and Ef-Ts) concentrations by 25%,

50% and 75% results in Cp values for T10a of 12.1, 14.2 and 15.1, respectively, reducing the

effects of competition amongst the charged tRNAs for Ef-Tu:GTP as it becomes increasingly

abundant. Both of these results are in close agreement with recent models of Rudorf et al. [28,

30] which have also taken into account the effects of competition amongst newly charged

tRNAs for Ef-Tu:GTP and the effects of codon bias on the overall translational process.

Ribosomal density on mRNAs is transcriptome dependent. While the tRNA abundance

relative to codon usage in the mRNAs appears to have a strong effect on translational effi-

ciency, the length distribution of the mRNAs and their overall quantity control the average

ribosomal density over the whole transcriptome (assuming the case of a fixed amount of ribo-

somal subunits). To illustrate this phenomenon, I have constructed two additional transcrip-

tomes, T10b and T10c. The former, T10b, has essentially the same nucleotide content as T10

(1.24M nt in total), but is biased to short mRNA lengths between approximately 600 and 900

Fig 5. Predicted codon decoding times and stalling frequency. The average codon decoding times a stalling frequencies for each sense codon is calculated from
the 215M individual decoding events that occur over the entire transcriptome in 1000s of simulation time. Blue and red bars indicate the T10 and T10a
transcriptomes, respectively. Stalling events are computed as the frequency of ribosome stalling that occurs at the given codon.

https://doi.org/10.1371/journal.pcbi.1007618.g005
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nucleotides. This results in transcriptome T10b, which has roughly the same total number of

nucleotides as T10, but a higher number of overall mRNAs at 2040. The latter, T10c, has the

same number of mRNAs as T10b, but has no bias in the length selection, and thus has a similar

distribution of lengths as T10. Hence, T10c has both higher total nucleotide content (2.0M in

this case) and more mRNAs overall compared with T10. To calculate the ribosomal density, I

first calculate the average nucleotide distance between ribosomes following [19]

dr ¼
Nnt

brN50

; ð2Þ

where Nnt is the total number of nucleotides in the transcriptome, βr is the ribosome activity,

and N50 is the total number of 50S ribosome subunits available. A density value is computed

from ρ = 1/dr, which is equal to the number of ribosomes per nucleotide. Note that dr has a

minimal value, corresponding to the ribosomal footprint, indicating the maximal density of

ribosomes that is physically possible. It should be noted that estimates for the ribosomal foot-

print vary from 10 to 14 codons [1, 31]. My model allocates a defined extended footprint (8

codons 5’ of the P site and 6 codons 3’ of it) for the ribosome in contact in the mRNA, follow-

ing RNAase protection assays discussed in Berkhout et al. [31].

Table 1 shows the results for T10b and T10c using the same settings for rates and numbers

of tRNAs, etc., as T10. Because initiation occurs at the maximal rate on all mRNAs and a con-

sistent spacing between the first and second ribosomes is achieved on average in the simula-

tions, one might assume that the average number of nucleotides per ribosome should only

depend on the total nucleotide content, as assumed in [19]. However, as Table 1 shows, this is

not the case as the overall center-center ribosome distance for T10b is dr = 86.5, while for T10

it is dr = 92.9, indicating a higher density of ribosomes in the T10b transcriptome. The increase

in density results in more ribosomes being in a stalled state, with 5% of ribosomes now stalled

compared with 3% in T10. Very interestingly, this increased stalling has only a tiny impact on

the overall average elongation rate, with Cp = 17.7 for T10b, compared with Cp = 18.1 for T10.

Thus, although there are more ribosomes stalled at any one time on the mRNAs, these must

occur randomly and transiently so that any stalled ribosomes quickly begin moving again

before causing additional ribosomes to stall behind them, building into a full traffic jam.

Finally, simulating the transcriptome T10c, which has an increase in both the number of

mRNAs and total number of nucleotides when compared with T10, it can be observed that the

average distance between ribosomes is approximately dr = 135.9, indicating a smaller ribosome

density in T10c even though the ribosome activity is near 98%.

Simulations using E. colimRNAs. Although the transcriptomes T07,T10, and T25 all

reproduce expected features of the translational processes in vivo that have been highligetd in

Bremer and Dennis [19], they are artificial transcritpomes which have codon biases that are

not what would be observed in E. Coli. Thus, the question naturally arises as to the ability of

the model to reproduce translational dynamics on real mRNA/transcriptome information. To

probe this question, I have created transcriptomes T07wt, T10wt and T25wt which have near

identical nucleotide and mRNA numbers as the artificial T07,T10, and T25 transcriptomes,

but the mRNAs in these transcriptomes have been taken from the predicted open reading

frames (ORFs) of E. Coli K12 strain MG1655 (accession code U00096). Table 3 reports on the

average translational elongation rates using the tRNA abundances measured by Dong et al.

[26], and compares with simulations using the alternative tRNA abundances shown in Table 4.

The tRNA abundances in Table 4 represent one possible theoretical solution to the tRNA/

codon usage matching problem, i.e. the identification of the relative tRNA abundances such

that the percentage of each tRNA out of the total matches the usage frequency of the codon(s)

Stochastic model of ribosome kinetics
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that it decodes for. It is important to note that, due to cross recognition of codons by multiple

tRNAs, there are multiple solutions to this problem, and therefore a more optimal solution

may exist.

As can be seen in Table 3, using the experimentally measured tRNA abundances from

Dong et al. [26] results in extremely poor translation (Cp� 6.0 aa/sec) for all of the growth

rates. However, by using a tRNA bias which matches the codon frequency in the ORFs of E.

Coli, we can see that translation efficiency is dramatically improved for the T25wt and T10wt

transcriptomes, while the T07wt transcriptome still suffers from poor transcription. Upon

examination of the quasi-steady state distribution of tRNAs in free TC for the T07wt simula-

tion, the tRNAs Arg4 and Arg5 which decode the ultra-rare arginine codons AGA and AGG

have essentially zero tRNAs in free TC. This suggests that a minimal threshold of tRNAs may

be important for ensuring efficient cycling through the recharging process, and additional

constraints on tRNA abundances may exist.

Although using the tRNA abundance in Table 4 which matches the codon bias of the

mRNAs improves translation in the wt transcriptomes, the translation dynamics do not match

the experimental observations of Bremer and Dennis as well as the artificial transcriptome

with tRNA abundances from Dong et al. [26]. There are many possible explanations for this,

along with potential ways to tune the rates/concentrations to achieve a better fit to experiment

for the wild-type transcriptomes. First, it may be that an alternative tRNA distribution which

also matches the codon bias, is more efficient, or that the tRNAs need to slightly deviate from

the codon bias for other unknown reasons. Second, it could be that the kinetic rates for the

elongation process, which were optimized for the Dong tRNA abundances by Rudorf et al.

[25] need re-calibrated, or other kinetic rates, such as those for aminoacyl-tRNA recharging,

need altering. Third, there may be some known/unknown reactions for elongation or tRNA

recharging that need to be accounted for in the model. Fourth, the concentrations of elonga-

tion factors such as Ef-Tu may be too low as increasing Ef-Tu increased the translational rates

for T10a. Finally, there may be a combined tRNA and kinetic rate optimization which must

be done in tandum, along with potentially other factors, to get a good fit of the wild-type tran-

scriptomes to the experimental translational data of Bremer and Dennis [19].

Discussion

In this work, I have developed a stochastic model of ribosome kinetics based on the [20] simu-

lation algorithm which is capable of simulating translation on thousands of unique mRNAs

Table 3. Efficiency of translation for wild-type E. Coli transcriptomes.

Trans. tRNA N Nnt Cp % I % E % T % S % 50S

T25wt Dong 5154 5.01 6.0 2.1 97.2 0.6 33.3 0.6

T10wt Dong 1259 1.20 4.8 2.3 96.9 0.6 33.2 1.2

T07wt Dong 646 0.56 0.2 0.1 66.9 0.1 15.9 31.6

T25wt Tab.4 5154 5.01 17.4 4.8 90.0 1.6 17.3 3.3

T10wt Tab.4 1259 1.20 14.9 4.5 88.6 1.8 17.1 5.8

T07wt Tab.4 646 0.56 0.2 0.1 56.6 0.1 16.6 43.5

Values for each transcriptome (T25wt,T10wt,T07wt) are obtained from an average over three separate simulations. The tRNA column denotes the tRNA bias used in the

simulation, either the tRNA abundances measured from Dong et al., or the inferred tRNA abundance based on the codon bias from the E. Coli ORFs (Table 4).

Variables denote the following quantities: N—number of mRNAs in the transcriptome, Nnt—total number of nucleotides in the transcriptome in millions, Cp—average

protein chain elongation rate (aa/sec), (%I,%E,%T, and %S)—Percentage of ribosomes (I)nitiating, (E)longating, (T)erminating, (S)talled, and %50S—Percentage of 50S

ribosomal subunits that are free.

https://doi.org/10.1371/journal.pcbi.1007618.t003
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Table 4. A theoretical estimate for the number of tRNAx in E. Coli. K12.

x μ = 0.70 μ = 1.07 μ = 2.50

Ala1 4718 9437 37748

Ala2 1745 3491 13964

Arg2 3177 6354 25416

Arg3 366 733 2932

Arg4 138 276 1104

Arg5 76 153 612

Asn 2666 5333 21332

Asp1 3488 6977 27908

Cys 792 1584 6336

Gln1 1047 2094 8376

Gln2 1972 3945 15780

Glu2 3917 7834 31336

Gly1 474 949 3796

Gly2 815 1631 6524

Gly3 3709 7418 29672

His 1541 3083 12332

Ile1 3794 7588 30352

Ile2 289 579 2316

Leu1 1870 3740 14960

Leu2 1509 3019 12076

Leu3 2010 4020 16080

Leu4 621 1243 4972

Leu5 1251 2502 10008

Lys 2992 5985 23940

Metm 1701 3403 13612

Phe 2645 5290 21160

Pro1 943 1887 7548

Pro2 503 1007 4028

Pro3 1567 3135 12540

Ser1 1091 2182 8728

Ser2 398 796 3184

Ser3 1687 3374 13496

Ser5 760 1520 6080

Thr1 767 1535 6140

Thr2 686 1373 5492

Thr3 767 1535 6140

Thr4 1440 2880 11520

Trp 1040 2080 8320

Tyr1 964 1929 7716

Tyr2 964 1929 7716

Val1 2988 5977 23908

Val2 1816 3632 14528

One possible solution for the number of tRNAs that would be observed in E. Coli K12 substrain MG1655 (accession

code U00096) if it is assumed that tRNA abundances match the codon bias in the predicted ORFs.

https://doi.org/10.1371/journal.pcbi.1007618.t004
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with an explicit nucleotide sequence in an in vivo context. The model incorporates a number

of important biophysical properties of the translational process simultaneously and accounts

for different codon translation rates, which will in turn depend on tRNA abundance and usage

by other mRNAs. Moreover, it accounts for the effects of individual ribosomes competing for

the translation factors and a polysomal state of multiple ribosomes to be bound simultaneously

on the mRNAs, while also taking into account the excluded volume of the ribosomes and the

formation and resolution of traffic jams. The computational code is set up for the prediction of

initiation rates on mRNAs based on sequence and secondary structure around the start codon,

presenting an opportunity in the near future for experiment and theory to elucidate the impact

of sequence on translation initiation.

As demonstrated above, my translational models predictions for ribosomal activity βr for a
given growth rate and mRNA nucletide content are consistent with experimental observations

by [19] for E. coli. In addition, the increasing peptide chain elongation rates with increasing

growth rates are consistent with experiment over at least three different growth rates [24].

However, unlike in [25], only a single set of kinetic parameters are needed for the elongation

reactions in order to reproduce this phenomenon. Indeed, the translational kinetics model

reported here displays classic features of a complex dynamical system, where properties

emerge from the complex interactions of all the components. The peptide chain elongation

rate is a clear example of this phenomenon, as increasing Cp values emerge naturally as a result

of the changes to the complex dynamics of all of the translational components that occur at

increasing concentrations. Attempts to increase Cp values by increasing the concentration of

only one or a few components of the system had no effect, further illustrating the complexity

of the translational process. This is in direct contrast to Vieira et al. [4], who have not seen this

effect using a stochastic framework model of translation. This is likely due to the lack of bind-

ing reactions governing the formation of free TC as well as missing termination steps involving

the recycling factors. This shows the importance for including these reactions in translational

models.

However, one of the factors which seems to have a strong influence on the translational

dynamics was the composition of the transcriptome, both in its codon bias relative to tRNA

concentrations and its length and total nucleotide content. The ultra sensitivity of the transla-

tional process on the tRNA abundance relative to codon bias has also been noted by Rudorf

et al. when Ef-Tu and TC formation reactions have been accounted for in their translational

models [28, 30]. However, preliminary work on reproducing the observed translational

dynamics with wild-type E. Coli transcriptomes using mRNAs from predicted ORFs showed

that, while matching of the tRNA abundances to codon bias enhanced translational efficiency

to values closer to what is expected experimentally, additional optimization of the parameters

or the overall model is needed.

The implication of the results for tRNA abundances and their effects on translational effi-

cency, as also discussed in Rudorf et al. [28], are that changes to the transcriptomes codon bias

from over expression of particular mRNAs (such as lacz) due to cellular responses to the envi-

ronment could potentially result in alterations to the elongation rates of other mRNAs due to

redistribution of tRNAs in free TC. In cell free protein syntehsis applications, the results show

a potential need for researchers to carefully tune tRNA concentrations to the demand implied

by the transcriptomes codon usage to maximize protein synthesis. These observations points

to a need to consider translational kinetics from a more holistic view, where the effects of

translation due to the presence of a heterogeneous population mRNAs need to be considered.

Moreover, the simulations with T10, T10a, T10b, and T10c, illustrate how ribosome density is

likely controlled by a complex set of factors which include the overall number of ribosomes,

mRNAs, as well as the lengths of the mRNAs and their relative abundances and ribosomal
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initiation rates. As Bremer and Dennis have reported, observed ribosomal activity βr is roughly
constant across the different growth rates of E. coli and the corresponding mRNA nucleotide

content reported is approximately 1.0M, 2.0M, and 4.6M nucleotides for growth rates of μ =

0.7, 1.0, and 2.5 doublings per hour, respectively [19]. Although this is slightly different from

the values of 0.56M, 1.2M and 5.0M nucleotides used here, the discrepancy is likely due to

mRNAs having varying initiation rates and expression levels in reality, while here all mRNAs

have been arbitrarily fixed to have maximal initiation rate. Taking into account different initia-

tion rates for mRNAs will likely also result in the average distance between ribosomes being

more in line with experimental measurements, which Bremer and Dennis compute to be

roughly dr = 160 for μ = 1.0, compared with the value of dr = 93 I have computed here. How-

ever, adjustments to the transcriptome, and to some of the kinetic parameters for the initiation

stage of translation, would require knowledge on the initiation rates for all mRNAs in the tran-

scriptome, something beyond the scope of this initial work. Despite this, the translational

model used here has elucidated a number of unexpected effects due to the composition of the

transcriptome.

The model I developed opens up numerous possibilities for linking experimental mea-

surements with theoretical predictions and for testing the physical feasibility of models that

have been postulated based on experimental observations. Indeed, through testing and tun-

ing of this model to recapitulate experimental observations, I found a number of experimen-

tally hypothesised models were unable to result in a steady state of protein synthesis (see

Supporting Information for discussion). Finally, it can also help in the development of sim-

plified models through the choice of better model parameters. For instance, the observations

from this more complex model can help guide TASEP models to consider additional fea-

tures, such as dynamic initiation times, which may be critical for modeling specific features

of the translational process.

Methods

Model construction and parametrization

Explicit details on the construction of the model, along with justification of the kinetic rates

and concentrations of the translational factors, are based on a large background of experimen-

tal literature and full details can be found in the supporting information. Software and tran-

scriptome data used in the simulations can be downloaded from http://www-users.york.ac.uk/

*ecd502/ or requested from the author via email.

Construction of the transcriptome

The transcriptomes used in the simulations were constructed using the known E. coli prote-

ome, which was obtained from the uniprot database https://www.uniprot.org/proteomes/

UP000000625. This database lists the number of amino acids in each of the 4353 identified

proteins in the E. coli K12 strain, along with an amino acid sequence for the protein. In order

to achieve a maximal translation rate of 22 codons per second at the highest growth rates,

codon usage frequency in the mRNAs must match the abundances of the tRNAs which can

decode them. Hence, the individual amino acid sequences were ignored and codons for the

mRNAs were chosen according to the relative abundance of tRNAs in Table K in S1 Text,

while preserving the reading frame length for each gene. For tRNAs such as tRNA-Lys, which

is cognate to codons AAA and AAG, it is assumed that the number of tRNAs (4360 at μ = 1.0)

implies an equal frequency usage of 2180 for both codons. Summing these contributions to the

codons over all tRNAs and normalizing gives the frequency of codon usage, which is then sam-

pled to construct representative mRNAs for each gene in the uniprot database.
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To construct a transcriptome, individual mRNAs corresponding to a single gene are

selected at random, and the number of copies for the mRNA is assigned into either a high

(probability 5%), intermediate (probability 35%), or low (probability 60%) expression category.

Copy numbers (k) for each mRNA are then determined by sampling from either a Poisson dis-

tribution, p(k) = e−λλk/k!, for the high expression (λ = 6.8), or a geometric distribution, p(k) =

(1 − λ)kλ, for the intermediate (λ = 0.58) and low (λ = 0.93) expression categories. Genes and

their corresponding mRNA sequences are selected, one at a time, until a total nucleotide con-

tent and/or total number of mRNAs is achieved.
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