
This is a repository copy of Efficient Resource Allocation in Cooperative Co-Evolution for 
Large-Scale Global Optimization.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156240/

Version: Accepted Version

Article:

Yang, M, Omidvar, MN orcid.org/0000-0003-1944-4624, Li, C et al. (4 more authors) 
(2017) Efficient Resource Allocation in Cooperative Co-Evolution for Large-Scale Global 
Optimization. IEEE Transactions on Evolutionary Computation, 21 (4). pp. 493-505. ISSN 
1089-778X 

https://doi.org/10.1109/tevc.2016.2627581

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Ef�cient Resource Allocation in Cooperative
Co-evolution for Large-scale Global Optimization
Ming Yang, Mohammad Nabi Omidvar, Changhe Li, Member, IEEE, Xiaodong Li, Senior Member, IEEE,

Zhihua Cai, Borhan Kazimipour, and Xin Yao, Fellow, IEEE

Abstract�Cooperative Co-evolution (CC) is an explicit means
of problem decomposition in multi-population evolutionary al-
gorithms for solving large-scale optimization problems. For
CC, subpopulations representing subcomponents of a large-scale
optimization problem co-evolve, and are likely to have different
contributions to the improvement of the overall objective value
of the original problem. Hence it makes sense that more com-
putational resources should be allocated to the subpopulations

with greater contributions. In this paper, we study how to
allocate computational resources in this context and subsequently
propose a new CC framework named CCFR to ef�ciently allocate
computational resources among the subpopulations according to
their contributions to the improvement of the best objective value.
Our experimental results and analysis suggest that CCFR can
make ef�cient use of computational resources and is a highly
competitive CC framework for solving large-scale optimization
problems.

Index Terms�Cooperative co-evolution, resource allocation,
problem decomposition, large-scale global optimization.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) have achieved a great

success on solving many optimization problems [1].

However, they often lose their ef�cacy as the dimensionality
of a problem increases [2]. Many real-world problems involve

a large number of decision variables, e.g., the shape design

problem in the �eld of airfoil design where thousands of
variables are required to represent the complex shape of

an aircraft wing [3]. This sort of large-scale optimization

problems poses a serious challenge to existing EAs.

A natural approach to solving the high-dimensional op-

timization problems is to employ the divide-and-conquer

strategy [4]�[6], which decomposes a large-scale optimiza-
tion problem into a set of smaller and simpler subproblems.

These subproblems can be solved separately. The fully sep-

arable large-scale optimization problems, where there is no

interdependence among decision variables, can be solved by

optimizing each variable independently [7]. At the other end of

The work was supported in part by the National Natural Science Foun-
dation of China (Grant Nos. 61305086, 61673355, 61673354, 61329302 and
61305079) and EPSRC (Grant No. EP/K001523/1).
M. Yang, C. Li and Z. Cai are with the School of Computer Sci-

ence, China University of Geosciences, Wuhan, 430074, China (e-mail:
yangming0702@gmail.com, changhe.lw@gmail.com, zhcai@cug.edu.cn).
M. N. Omidvar and X. Yao are with the Centre of Excellence for

Research in Computational Intelligence and Applications, School of Computer
Science, University of Birmingham, Birmingham B15 2TT, U.K. (e-mail:
m.omidvar@cs.bham.ac.uk, x.yao@cs.bham.ac.uk).
X. Li and B. Kazimipour are with the School of Computer Science and In-

formation Technology, RMIT University, Melbourne, VIC 3001, Australia (e-
mail: xiaodong.li@rmit.edu.au, borhan.kazimipour@rmit.edu.au).

the spectrum, the fully nonseparable large-scale optimization

problems, where there is interdependence between any pair

of variables, would need to be solved by optimizing all

the variables together. However, most real-world problems

fall somewhere between these two extremes, i.e., only some

variables are independent or interdependent among each other

[8]. For such partially separable problems, there are usually

several clusters of interdependent variables. Cooperative Co-

evolution (CC) [7] is an explicit means of problem decompo-

sition in EAs. For CC, there is a set of subpopulations each

of which is responsible for optimizing a subset of variables

(i.e., a subcomponent). Through the cooperative co-evolution

of these subpopulations, CC can produce a complete solution

by combining the individuals from different subpopulations.

Given a �xed computational budget, the performance of
CC may be impacted by how the computational resource is

allocated among subpopulations [9]. For CC, different subpop-

ulations are likely to make different amounts of contributions

to the improvement of the best overall objective value (i.e.,

the objective value of the best overall solution consisting

of the best individuals from these subpopulations). To be

more computationally ef�cient, more computational resources
should be allocated to the subpopulations that make greater

contributions. It is shown in [9] that for imbalanced problems,

where different subpopulations have unequal contributions to

the overall objective value, a contribution-based cooperative

co-evolution (CBCC) outperforms the traditional CC. How-

ever, for CBCC, the contribution information is accumulated

from the beginning of the evolutionary process. CBCC relies

much on the contribution information in the early stage of

the evolutionary process, hence it may respond too slowly or

even incorrectly to the local changes of the overall objective

value. Since the contributions of subpopulations may change

over time, it makes sense that the resource allocation should

be done adaptively in real-time.

In this paper, we study how to allocate computational

resources among subpopulations and propose a new CC frame-

work, which can adaptively allocate computational resources

to each subpopulation according to its dynamic contributions

to the improvement of the best overall objective value. This

new CC framework differs from existing CC frameworks in

the following two aspects.

1) This new CC framework can examine whether a sub-

population is stagnant. To save computational resources,

the stagnant subpopulations are excluded from evolution

(see Sect. III-A).

2) In this new CC framework, the contribution of a subpop-



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

ulation is updated dynamically. In each cycle, only the

subpopulation with the greatest contribution is selected

to undergo evolution (see Sect. III-B).

The remainder of this paper is organized as follows. Sect.

II presents an overview of CC. Sect. III introduces our new

CC framework. Sect. IV describes the experimental setup and

presents the experimental results and analysis. Finally, Sect.

V provides the concluding remarks.

II. RELATED WORK

In the literature of genetic algorithms (GAs), the interde-

pendence between decision variables of a problem is known

as linkage [10] or epistasis [11]. The performance of a CC al-

gorithm are greatly impacted by the interdependence between

variables [7], [12]. Variable grouping methods aiming to group

interdependent variables into the same subcomponent being

optimized play a key role in overcoming such a problem [13].

It is shown in [14] that if all the subcomponents are separable,

the overall solution to the original problem is the combination

of the respective solutions to all the subproblems. Here, we

review CC mainly in the context of large-scale optimization.

In the original cooperatively co-evolutionary genetic algo-

rithm (CCGA) proposed by Potter and De Jong [7], a D-
dimensional problem is decomposed into D one-dimensional

subproblems. CCGA then solves the subproblems using an

evolutionary optimizer in a round-robin fashion. The experi-

mental results in [7] show that the original CC cannot perform

well on nonseparable functions, i.e., functions with interde-

pendent variables, such as Griewank and Rosenbrock. Liu et

al. [2] applied CC to fast evolutionary programming to solve

large-scale optimization problems with up to 1000 dimensions.

Van den Bergh and Engelbrecht [15] applied CC to particle

swarm optimization (PSO) [16] and proposed a cooperatively

co-evolutionary PSO algorithm, namely CPSO, which divides

a D-dimensional problem into k s-dimensional subproblems
for some s � D. Shi et al. [17] adopted differential evolution
(DE) [18] into CC, with decision variables split into two equal-

sized subcomponents. Obviously, this decomposition strategy

would not perform well on the problems with a very high

dimensionality.

Yang et al. [13] proposed a random variable grouping

method and applied it to CC. Unlike CPSO which relies

on a �xed variable grouping from the start to the end of

optimization, the random grouping method proposed by Yang

et al. randomly shuf�es all the decision variables into k s-
dimensional subcomponents in each co-evolutionary cycle. It

is shown in [13] that this random grouping strategy is effective

in grouping two interacting variables into one subcomponent

for several cycles. The DE algorithm with this random group-

ing strategy, namely DECC-G, performs well on a set of large-

scale optimization problems with up to 1000 dimensions [13].

The aforementioned grouping strategies use a pre-speci�ed
and �xed subcomponent size for decomposition. Therefore,
a user needs to specify a value for either k or s before
using these decomposition strategies, which may be dif�cult
in practice. In addition, the performance of CC can be highly

dependent on these speci�ed values.

Adapting the subcomponent size can potentially improve

the performance of CC [19]. Yang et al. [20] proposed a

multilevel cooperatively co-evolutionary (MLCC) algorithm.

MLCC uses a set of possible values of s for decomposition
instead of a �xed subcomponent size. The performance of each
subcomponent size used during the evolutionary process is

measured according to the improvement of the best overall ob-

jective value. The subcomponent size with better performance

would be selected in the next co-evolutionary cycle with a

higher probability. Further enhancing the CCPSO algorithm

[21] with an improved random variable grouping strategy, Li

and Yao [22] proposed CCPSO2 to solve a set of large-scale

optimization problems with up to 2000 dimensions.

Random grouping is ineffective when the number of inter-

acting variables is greater than �ve [19]. It is shown in [23]
that a non-random method, namely delta grouping, is superior

to random grouping on most of the CEC2010�s benchmark
functions [24]. The delta grouping method uses the average

difference of a certain variable during optimization to detect

interacting variables. The variables with a similar difference

value are considered to be possible interacting variables.

However, this assumption may not always hold. For example,

the delta grouping method cannot perform well when there is

more than one subcomponent [23].

A given problem may be decomposed in an automatic

way without knowing in advance its underlying structure, as

suggested in [25]. In the beginning of the co-evolutionary

process, all the variables are optimized separately by different

subpopulations. A counter is used in [25] to compute the

probability of grouping two variables together. If two vari-

ables in a randomly chosen individual can improve the best

individual further, the counter is increased. At the end of each

co-evolutionary cycle, the two variables with the maximum

counter are grouped together. The subpopulations correspond-

ing to the two variables are merged into one subpopulation.

The CC with variable interaction learning (CCVIL) algorithm

proposed by Chen et al. [26] adopts a two-stage approach. In

the �rst stage, CCVIL detects the interaction between variables
as done in [25] to complete the decomposition task. In the

second stage, CCVIL optimizes these decomposed groups in

the fashion of the traditional CC [7].

Tezuka et al. [27] proposed the linkage identi�cation by
nonlinearity check for real-coded GAs (LINC-R). If the

difference of function values with respect to a variable is

independent on the difference of function values with respect

to another variable, the two variables are separable. Omidvar et

al. [28] provided a theoretical study of LINC-R and proposed

a new method for detecting interacting variables, namely

differential grouping (DG). DG can identify the interacting

variables with a high accuracy. It is shown in [28] that CC

with DG performs well on a set of large-scale optimization

problems with up to 1000 dimensions.

For separable decision variables, it is shown in [29] that

optimizing each variable separately may not be the best way

for solving large-scale optimization problems. A more ef�cient
approach is to group the separable variables into several

groups. However, it may be dif�cult to determine the optimal
group size.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

When dealing with the partially separable problems, it is

possible that there is imbalance between the contributions of

different subpopulations to the improvement of the overall

objective value. The round-robin strategy in the classic CC

is no longer effective in handling this sort of problems since

it allocates an equal amount of computational resources to

each subpopulation, without considering the unequal contri-

butions of the subpopulations. To overcome this problem, a

contribution-based CC (CBCC) was proposed in [9] to allocate

computational resources among the subpopulations based on

their contributions to the improvement of the best overall

objective value. CBCC emphasizes the contributions in the

early stage of the evolutionary process. As a result, it may

allocate most computational resources to the subpopulation

whose initial contribution is greater but then drops after

some iterations. For the two variants of CBCC (CBCC1 and

CBCC2), the experimental results in [30] show that CBCC1

is much less sensitive to the imbalance between the contri-

butions of subpopulations and the decomposition accuracy

than CBCC2. CBCC1 and CBCC2 are unable to adaptively

respond to the dynamic contributions of subpopulations during

optimization.

III. THE PROPOSED CC FRAMEWORK

A new cooperatively co-evolutionary framework (CCFR) is

presented in this section. CCFR aims at allocating computa-

tional resources intelligently among subpopulations according

to the dynamic contributions of subpopulations to the improve-

ment of the best overall objective value. Note that, CCFR

adopts a two-stage approach like DECC-DG [28]. In the �rst
stage, the decomposition is formed using a decomposition

method; in the second stage, the resulting groups are optimized

separately while the decomposition is kept �xed.

A. Saving Computation on Stagnant Subpopulations

CC makes subpopulations evolve using an evolutionary

optimizer in a round-robin fashion. For the subcomponents that

are easy to optimize, a small number of iterations are enough

for the corresponding subpopulations to enter a stagnant state,

where these subpopulations do not make contributions to the

improvement of the best overall objective value. In such a

case, no computational resources would be allocated to these

stagnant subpopulations. This will allow the CC algorithms to

save some computational cost.

Suppose Ci denotes the i-th subcomponent after decompo-
sition. For the subpopulation corresponding to Ci at the G-
th generation, in order to check whether the subpopulation is

stagnant, the mean and standard deviation of individuals� gene
values in dimension j (j ∈ Ci) can be calculated as follows:

mj,G =
1

N

N
�

t=1

xt,j,G, (1)

stdj,G =

�

�

�

�

1

N

N
�

t=1

(xt,j,G −mj,G)2, (2)

where N is the subpopulation size and xt,j,G is the j-th
gene value of individual xt,G. xt,G = (xt,1,G, ..., xt,D,G). If
the distribution of a population, i.e., the mean and standard

deviation of individuals� gene values in dimension j, remains
unchanged for several successive generations, this population

is considered to be stagnant in this dimension [31]. Based on

this strategy, we propose the following method for checking

whether a subpopulation is stagnant in all dimensions.

βj,G =

⎧

⎨

⎩

1 if mj,G = mj,G−1 and

stdj,G = stdj,G−1 (3a)

0 otherwise, (3b)

where βj,G denotes whether the values of mj,G and stdj,G
remain unchanged from the last generation in dimension j,
and note that βj,0 = 0. γG denotes the number of dimensions
where βj,G = 1:

γG =
�

j∈Ci

βj,G. (4)

If the subpopulation does not change (i.e., no better individuals

are generated), γG = Di, where Di is the dimensionality

of subcomponent Ci. ηG denotes the number of successive

generations where γG = Di:

ηG =

	

ηG−1 + 1 if γG = Di (5a)

0 otherwise, (5b)

and note that η0 = 0. ρG is a �ag to denote whether the
subpopulation is stagnant at the G-th generation, and the value
of ρG is calculated as follows:

ρG =

	

1 if ηG ≥ U (6a)

0 otherwise, (6b)

where U is an integer with the value equal to Di. Our

experimental results show that the larger the subcomponent

size is, the more generations its corresponding subpopulation

takes to enter a stagnant state. According to the sensitivity

study of U (provided in Sect. I in the supplementary material

listed in the appendix), we use U = Di. If the distribution

of a subpopulation remains unchanged for several successive

generations (i.e., ηG ≥ U ), ρG is set to one to indicate that

the subpopulation is likely to stop evolution.

Some existing methods consider a population to be stagnant

if the improvement of the best �tness value [32], [33] or
the difference between the individuals [34], [35] is very

small, even though the population still slowly converges to

an optimum. Guo et al. [36], [37] considered an individual to

be stagnant when the individual�s �tness cannot be improved
over several successive generations. This method is ineffective

for problems with a plateau �tness landscape (e.g., the Step
function [38]), where the �tness value of an individual does not
change, while the values of the individual�s decision variables
change. Yang et al. [39] considered a population to be stagnant

when the average distance among the individuals remains

unchanged for several successive generations. However, it is

possible that the distribution of the entire population changes

(e.g., all the individuals vary with the same shift). In such a

case, Yang�s method may incorrectly classify the population as
a stagnant one. Compared with the above stagnation detection



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

methods, our proposed method is more accurate in identifying

a stagnant population according to the mean and standard

deviation of individuals� gene values.
For the subpopulations where ρG = 1, we exclude them

from the co-evolutionary cycles, which means the stagnant

subpopulations will not undergo evolution in the subsequent

co-evolutionary cycles.

B. Resource Allocation Based on Contribution

The probability matching (PM) and the adaptive pursuit

(AP) algorithms [40] learn the optimal resource allocation

among operators. These probability-based methods would al-

locate resources to the ineffective operators with a minimum

probability. Based on the upper con�dence bound (UCB)
algorithm [41], Li et al. [42] proposed a method for allo-

cating resources among operators, where the operator with

the maximum relative �tness improvement is selected to take
part in the evolutionary process [43], [44]. These methods

based on relative �tness improvements allocate resources to
the items (e.g., the converging items) whose absolute �tness
improvements are very small but their relative �tness improve-
ments are relatively large. In [45], the average absolute �tness
improvements are used in determining resource allocation.

Rainville et al. [46] proposed a resource allocation for CC

based on binary rewards. A subpopulation is assigned a reward

of one if the overall objective value becomes better, and

zero otherwise. However, these rewards cannot re�ect the real
magnitudes of the improvements of the objective value. In

this section, we propose a resource allocation strategy for

CC based on the absolute improvements of the best overall

objective value. Unlike the average absolute improvements

in [45], our proposed method gives more consideration of

resource allocation to the recent improvements of the overall

objective value.

For a subpopulation (Pi), when Pi �nishes evolution in a
cycle, we calculate its contribution according to the improve-

ment of the best overall objective value:

ΔFi =
ΔF̂i +





f(x̂best)− f(xbest)






2
, (7)

where f(x̂best) and f(xbest) are the best overall objective
values before and after Pi undergoes evolution in this cycle,

respectively, and ΔF̂i is the last contribution of Pi. The initial

value ofΔFi is zero. Eq. (7) smoothly updatesΔFi by averag-

ing the last contribution (i.e.,ΔF̂i) and the current contribution

(i.e., |f(x̂best) − f(xbest)|) to the improvement of the best
overall objective value. The more recent |f(x̂best)− f(xbest)|
is, the greater the effect of |f(x̂best)−f(xbest)| on the value of
ΔFi is. The effects of the early contributions on ΔFi become

smaller and smaller as the co-evolution progresses.

During the �rst co-evolutionary cycle, the subpopulations
undergo evolution one by one. The values of ΔFi for all

the subpopulations are computed at the end of the �rst cycle.
In the subsequent co-evolutionary cycles, we select only the

subpopulation with the largest value of ΔFi to undergo

evolution. The value of ΔFi is updated according to Eq. (7)

at the end of each co-evolutionary cycle. The larger the value

P1 P2 P3 P1 P2 P3
...

1st cycle 2nd cycle ...

(a) The traditional CC

P1 P2 P3 P2

1st cycle 2nd cycle 3rd cycle

P1

5th cycle

P2

P2P3P2

6th cycle

...

...

P2

4th cycle

(b) CBCC2

2nd

P2

cycle

...

...

P1 P2

1st cycle

P3 P1

5th
cycle

P2

3rd
cycle

P1

4th
cycle

(c) CCFR

Fig. 1. The computational resource allocation in CC, CBCC2 and CCFR,
where the circle size indicates the amount of contributions computed by the
algorithms and the dotted circle indicates that the subpopulation is stagnant.

of ΔFi is, the higher chance Pi has to undergo evolution in

the future. If a subpopulation is stagnant according to Eq.

(6), we set its contribution (ΔFi) to zero. Therefore, the

stagnant subpopulation will be excluded from the subsequent

co-evolutionary cycles. When the values of ΔFi are equal for

all the subpopulations, we restart the process from the �rst
co-evolutionary cycle. The advantage of doing so is that the

subpopulation which is considered to be stagnant by mistake

can resume its evolution. The above process is repeated until

a termination criterion is met.

CBCC [9] can also allocate computational resources among

the subpopulations according to their contributions to the

improvement of the best overall objective value. The important

difference between CCFR and CBCC is that CCFR responds

faster to the recent changes of the overall objective value

than CBCC. For CCFR, the contribution is updated smoothly

by averaging the last and current contributions, whereas for

CBCC, the contribution is accumulated from the beginning of

the evolutionary process. Furthermore, CBCC does not take

stagnant subpopulations into account.

Fig. 1 illustrates the computational resource allocation in

the traditional CC [7], CBCC2 [9] (a variant of CBCC) and

CCFR. The round-robin fashion in the traditional CC equally

allocates computational resources among all subpopulations

without considering the different contributions of the subpop-

ulations (see Fig. 1a). The traditional CC always allocates

computational resources to stagnant subpopulations (e.g., P3 in

Fig. 1a), which is clearly wasteful. For CBCC, the contribution

of each subpopulation is accumulated from the beginning of

the evolutionary process, as shown in Fig. 1b, where different

circle sizes suggest the different amounts of the contributions

of the subpopulations. CBCC2 allocates most computational

resources to the subpopulation with the greatest accumulated

contribution. In the second and third cycles, CBCC2 selects

subpopulation P2 with the greatest accumulated contribution

to undergo evolution. From the second cycle, the contribution



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

Algorithm 1 DECC

/*Suppose C = {C1, . . . , CM} is a decomposition and P =
{x1, . . . ,xN} is a population.*/

1: xbest ← argmin
x∈P

f(x);

2: for k ← 1 to cycles do
3: for i ← 1 to M do

4: Pi ←
�

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

�

;
5: Pi ←Optimizer(xbest, Pi,GEs);
6:

�

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

�

← Pi;
7: xbest ← argmin

x∈P

f(x);

8: end for

9: end for

of P2 in one cycle (i.e., the change of circle size) is small. Even

in the case that P2 has been stagnant, CBCC2 still deems P2

makes the greatest contribution and allocates computational

resources to P2 (e.g., the sixth cycle in Fig. 1b). CBCC2

allocates computational resources to stagnant subpopulations

P2 and P3. CCFR computes the contributions by averaging the

last and current contributions at the end of each cycle. In Fig.

1c, it can be seen that for P2, the circle size becomes smaller

and smaller as the evolution progresses. The contribution that

P2 makes in the third cycle is relatively small. CCFR will

select a subpopulation between P1 and P3 to undergo evolution

in the next cycle. Although the last contribution of P3 is

greater than the one of P1, CCFR selects P1 to undergo

evolution in the fourth cycle. This is because P3 is stagnant

and has been excluded from the cycles. The �gure indicates
that given an equal amount of computational resources, CCFR

can potentially obtain better solutions than the traditional CC

and CBCC2.

C. The Best Overall Solution

Many cooperatively co-evolutionary algorithms [9], [13],

[20], [28] adopt the CC framework similar to DECC (see Algo-

rithm 1). In the co-evolutionary cycles, the best overall solution

to the original problem is updated at the integrated-population

level (see Step 7 in Algorithm 1). Take the following two-

dimensional Sphere function as an example:

f(x) = x2
1 + x2

2.

This function is additively separable [47]. Its ideal decompo-

sition is C =
�

C1, C2

�

=
�

{x1}, {x2}
�

.

Suppose population P at a certain generation is as follows:

f=40 6 2

f=58 7 3

f=41 5 4 ,

P

where the current best overall solution xbest = (6,2) is shown
in bold and italic font. Suppose that the evolutionary process

(Steps 4 to 7 in Algorithm 1) for subpopulation P1 is as

follows:
P1 P1

f=40 6 2 f=20 4 2

→

f=20 4 2

f=53 7 2 → · · · → f=40 6 2 f=45 6 3

f=29 5 2 evolution f=13 3 2 f=25 3 4 ,

P

which produces an updated xbest = (4,2). Suppose that the

evolutionary process for subpopulation P2 is as follows:

P2 P2

f=20 4 2 f=17 4 1

→

f=17 4 1

f=25 4 3 → · · · → f=16 4 0 f=36 6 0

f=32 4 4 evolution f=25 4 3 f=18 3 3 ,

P

which similarly produces an updated xbest = (4,1). When this
co-evolutionary cycle ends, all the possible combinations of

the individuals from different subpopulations are (4,1), (4,0),

(4,3), (6,1), (6,0), (6,3), (3,1), (3,0) and (3,3). Each combi-

nation is an overall solution to the original problem. Among

all the combinations, the best overall solution is (3,0). For

a population with population size N and M subpopulations,

the number of the combinations is NM . We improve the

CC framework shown in Algorithm 1 through updating xbest

in the following way. In the case that the subcomponents

corresponding to theM subpopulations are separable between

each other, xbest obtained by the improved CC framework is

the best overall solution from the NM combinations.

According to the de�nition of separability [24], [47]:

argmin
x

f(x) =



argmin
x1

f(x1, . . .), . . . , argmin
xM

f(. . . ,xM )
�

, (8)

for a separable function f(x) with M independent subcom-

ponents, the following equation holds:

argmin
x∈Z

f(x) =



argmin
x1∈P1

f(x1, . . .), . . . , argmin
xM∈PM

f(. . . ,xM )
�

, (9)

where Z is the set of all the possible combinations of the

individuals from P1, . . . , PM . Eq. (9) simply states that if the

subcomponents are separable, the combination of the best solu-

tion from each subpopulation must be the best overall solution

from Z to the original problem. When a decomposition is

formed, we set the best overall solution xbest as follows:

xbest =



argmin
x1∈P1

f(x1,x
P1

best
), . . . , argmin

xM∈PM

f(xM ,x
PM

best
)
�

, (10)

where x
Pi

best =
�

x | x ∈ xbest, x /∈ Pi

�

, which consists

of xbest with the dimensions of Pi removed. xbest is a

concatenation of all best solutions from theM subpopulations

(P1, . . . , PM ), as constructed in [48]. In Algorithm 1, Step 5

is changed as follows:

(Pi,xbest) ← Optimizer(xbest, Pi,GEs),

where xbest is updated at the end of the co-evolutionary

process for each subpopulation, and Step 7 is removed. The

above co-evolutionary example changes as follows:
P1 P1

f=40 6 2 f=20 4 2

f=53 7 2 → · · · → f=40 6 2

f=29 5 2 evolution f=13 3 2 ,

which produces an updated xbest = (3,2), and
P2 P2

f=13 3 2 f=10 3 1

f=18 3 3 → · · · → f=9 3 0

f=25 3 4 evolution f=18 3 3 ,

which similarly produces an updated xbest = (3,0). From the

above evolutionary process, it can be seen that xbest is always

updated as the best overall solution during evolution. Note

that, if there is interdependence between subcomponents, xbest

obtained by the above modi�ed evolutionary process may not
be the best overall solution.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

Algorithm 2 CCFR

1: Generate a decomposition C = {C1, . . . , CM};
2: Generate a uniform random population P ={x1, . . ., xN};
3: Compute xbest ← argmin

x∈P

f(x);

4: Set the value of xbest using Eq. (10);
5: ΔFi ← 0, Gi ← 0, i = 1, 2, . . . ,M ;
6: while the termination criterion is not met do
7: For each subpopulation, reset η (see Eq. (5)) to 0;
8: for i ← 1 to M do

9: x̂best ← xbest;
10: Pi ←

�

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

�

;
11: (Pi,xbest, ρGi

, Gi) ← Optimizer(xbest, Pi,GEs , Gi);
12:

�

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

�

← Pi;

13: ΔFi ←
�

ΔFi + |f(x̂best)− f(xbest)|
�

/2;
14: if ρGi

equals 1 then
15: ΔFi ← 0;
16: end if

17: end for
18: while min(ΔFi|i = 1, . . . ,M) �= max(ΔFi|i = 1, . . . ,M) do
19: i ← the index of the maximum ΔFi;
20: x̂best ← xbest;
21: Pi ←

�

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

�

;
22: (Pi,xbest, ρGi

, Gi) ← Optimizer(xbest, Pi,GEs , Gi);
23:

�

xt,j | xt,j ∈ P, t = 1, . . . , N, j ∈ Ci

�

← Pi;

24: ΔFi ←
�

ΔFi + |f(x̂best)− f(xbest)|
�

/2;
25: if ρGi

equals 1 then
26: ΔFi ← 0;
27: end if

28: end while

29: end while

D. CCFR

According to the dynamic contributions of subpopulations

to the improvement of the best overall objective value, CCFR

allocates computational resources among subpopulations. In

case of a subpopulation being stagnant, no computational

resources are allocated to that subpopulation.

Algorithm 2 summarizes the proposed CCFR. Steps 8 to

17 compute the contribution (i.e., the value of ΔFi) of each

subpopulation. Steps 18 to 28 select the subpopulation with

the greatest contribution to undergo evolution and update its

contribution when the evolution ends. When all the subpopu-

lations make an equal contribution, CCFR goes to Steps 8 to

17 to reset the contribution of each subpopulation. The above

process is repeated until a termination criterion is met. Steps

11 and 22 invoke the evolutionary process for a subpopulation,

which is shown in Algorithm 3.

In Algorithm 3, a subpopulation undergoes evolution for

a pre-speci�ed number of generations, i.e., GEs . Steps 15

to 18 check whether a subpopulation is stagnant. If the

subpopulation is identi�ed as a stagnant one, CCFR will stop
the subpopulation evolving. In Algorithm 3, the best overall

solution xbest is updated when a better solution is found. In

the end, xbest is returned to Algorithm 2.

Compared with the traditional CC, CCFR needs extra com-

putation to initialize the best overall solution before the co-

evolutionary cycles begin (Step 4 in Algorithm 2), and the

computational complexity is O(M ·N). CCFR also needs extra
computation to check whether a subpopulation is stagnant at

each generation (Step 15 in Algorithm 3), and the computa-

tional complexity is O(Di ·N).

Algorithm 3 (Pi, xbest, ρG, G) ← Optimizer(xbest, Pi,GEs , G0)

1: G ← G0;

2: For x ∈ Pi, evaluate
�

x,x
Pi

best

�

;
3: while G < G0 +GEs do
4: for x ∈ Pi do

5: x̂←Reproduction(x); /*evolutionary process*/

6: Evaluate
�

x̂,xPi

best

�

;

7: if
�

x̂,xPi

best

�

is better than
�

x,xPi

best

�

then /*evaluation*/

8: x ← x̂;
9: end if
10: if

�

x̂,xPi

best

�

is better than xbest then

11: xbest ←
�

x̂,xPi

best

�

;
12: end if

13: end for

14: G ← G+ 1;
15: Compute ρG using Eq. (6);
16: if ρG equals 1 then
17: Terminate the algorithm and return;
18: end if

19: end while

IV. EXPERIMENTAL STUDIES

A set of 35 test instances with 1000 dimensions proposed in

the IEEE CEC�2010 and CEC�2013 special sessions on large-
scale global optimization were used to study the performance

of CCFR. The detailed description of these test instances is

given in [24], [47]. Compared with the CEC�2010 functions,
the CEC�2013 functions have four new characteristics: nonuni-
form subcomponent sizes, imbalance in the contributions of

subcomponents, functions with overlapping subcomponents,

and new transformations to the base functions.

In the experimental studies, CCFR is compared with seven

CC algorithms (DECC-G [13], MLCC [49], DECC-D [23],

DECC-DML [23], DECC [28], CBCC1 [9] and CBCC2 [9])

and two memetic algorithms (MA-SW-Chains [50] and MOS-

CEC2013 [51]). The two memetic algorithms were ranked

the �rst in the IEEE CEC�2010 and CEC�2013 competitions
on large-scale global optimization, respectively. We set the

maximum number of �tness evaluations toMaxFEs = 3×106

as the termination criterion, as suggested in [24]. For the

competitors of CCFR, the parameters were set to the values as

used in their publications. To make a fair comparison, CCFR

and the other CC algorithms under comparison adopt the same

settings of the following parameters.

1) The subcomponent optimizer is SaNSDE [52], a variant

of differential evolution (DE) [18]. The population size

of SaNSDE was set to 50.

2) The pre-speci�ed number of the evolutionary genera-
tions, i.e., GEs in Algorithm 3, was set to 100.

A. Behavior of CCFR

In this section, the behavior of CCFR is studied. The

grouping of variables is an ideal decomposition, which was

done manually using the prior knowledge of the benchmark

functions.

Fig. 2 shows the activation of the subpopulations in a

single run on two CEC�2013 functions (f8 and f10), which
have 20 separable subcomponents. The contributions of all

the subpopulations were computed in the �rst co-evolutionary
cycle. For f8, because the third subcomponent has the largest



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

Co-evolutionary Cycles

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501 521 541 561 575

T
h
e
 I
n
d
ic

e
s
 o

f 
S

u
b
p
o
p
u
la

ti
o
n
s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

(a) f8

Co-evolutionary Cycles

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241

T
h
e
 i
n
d
ic

e
s
 o

f 
S

u
b
p
o
p
u
la

ti
o
n
s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

(b) f10

Fig. 2. The activation of subpopulations in a run on two selected CEC�2013 functions for CCFR-I, where the �lled circle point denotes that the subpopulation
undergoes evolution in the corresponding co-evolutionary cycle.

The Indices of Subcomponents

1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920

W
e
ig

h
t 
V

a
lu

e

10-5

100

105

1010

f9f8 f10 f11

(a) The weight values of subcomponents

The Indices of Subpopulations

1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920

U
s
e
d
 F

u
n
c
ti
o
n
 E

v
a
lu

a
ti
o
n
s

103

104

105

106

107

f8 f9 f10 f11

(b) The box plot of the function evaluations used by each subpopulation to optimize its corresponding subcomponent over 25 independent runs, where
the circle point show the mean number of function evaluations used by each subpopulation over 25 independent runs.

Fig. 3. The computational resource allocation among the subpopulations in CCFR-I on four selected CEC�2013 functions.

weight value [47], the corresponding subpopulation (i.e., P3)

has the largest contribution to the improvement of the best

overall objective value. In Fig. 2a, it can be seen that after

the �rst cycle, P3 underwent evolution in the subsequent

successive cycles. The contribution of P3 became smaller and

smaller as the evolution progressed. In the 21st cycle, P5,

whose corresponding subcomponent has the second largest

weight value, underwent evolution. From Fig. 2a, two obser-

vations can be made: 1) the subpopulations undergo evolution

alternately; 2) most computational resources are spent on

P3 and P5, whose corresponding subcomponents have the

largest and second largest weight values, respectively. For f8,
according to the dynamic contributions of the subpopulations,

CCFR can adaptively allocate computational resources among

the subpopulations.

For f10, it can be seen in Fig. 2b that P12, whose cor-

responding subcomponent has the largest weight value [47],

underwent evolution in several successive cycles. Because

SaNSDE, the optimizer used by CCFR, was not able to solve

this function effectively, P12 was stagnant. The distribution of

P12 remained unchanged for several successive generations. In

the fourth cycle, CCFR considered P12 to be stagnant accord-

ing to Eq. (6) and excluded it from the subsequent cycles. In

the 152nd cycle, all the subpopulations were stagnant. The co-

evolution restarted from the �rst cycle. All the subpopulations
underwent evolution one by one.

Fig. 3 shows the resource allocation in CCFR-I on four

CEC�2013 functions (f8�f11), which have 20 separable sub-



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

TABLE I
THE AVERAGE FITNESS VALUES ± STANDARD DEVIATIONS ON THE

CEC�2010 AND CEC�2013 FUNCTIONS OVER 25 INDEPENDENT RUNS.
THE SIGNIFICANTLY BETTER RESULTS ARE IN BOLD FONT (WILCOXON

RANK SUM TEST WITH HOLM p-VALUE CORRECTION, α=0.05).R+ , R−

AND p-VALUE ARE OBTAINED THROUGH MULTIPLE-PROBLEM ANALYSIS

BY THE WILCOXON TEST BETWEEN CCFR-I AND ITS COMPETITORS.

CEC�2010 Functions

F CCFR-I CBCC1-I CBCC2-I CC-I

f1 1.2e-05±4.9e-06 9.9e+06±1.3e+07↑ 9.9e+06±1.3e+07↑ 3.5e+11±2.0e+10↑
f2 2.7e+01±5.2e+00 4.7e+03±4.8e+02↑ 4.7e+03±4.8e+02↑ 9.4e+03±2.1e+02↑
f3 4.6e+00±4.6e-01 1.2e+01±3.7e-01↑ 1.2e+01±3.7e-01↑ 2.0e+01±4.4e-02↑

f4 8.3e+10±6.2e+10 6.0e+10±4.4e+10 9.9e+10±2.7e+10↑ 3.4e+14±7.5e+13↑
f5 7.2e+07±1.3e+07 6.8e+07±1.0e+07 6.7e+07±9.1e+06 4.9e+08±2.4e+07↑
f6 7.7e+05±7.1e+05 1.3e+06±6.4e+05↑ 1.3e+06±6.8e+05↑ 1.1e+07±7.5e+05↑
f7 1.5e-03±2.5e-04 5.9e+04±9.3e+03↑ 8.4e+04±1.9e+04↑ 7.7e+10±9.6e+09↑
f8 3.2e+05±1.1e+06 8.6e+05±1.6e+06↑ 1.0e+06±1.7e+06↑ 1.8e+14±9.3e+13↑

f9 9.4e+06±1.2e+06 1.7e+07±2.1e+07 2.8e+09±1.8e+09↑ 9.4e+08±7.1e+07↑
f10 1.4e+03±1.0e+02 3.0e+03±1.7e+02↑ 4.5e+03±6.6e+02↑ 4.8e+03±6.7e+01↑
f11 1.0e+01±2.7e+00 2.2e+01±3.2e+00↑ 2.4e+01±2.7e+00↑ 4.1e+01±1.5e+00↑
f12 1.2e+00±4.6e+00 1.8e+04±6.5e+03↑ 2.5e+04±7.3e+03↑ 4.9e+05±3.4e+04↑
f13 3.2e+02±9.9e+01 1.9e+04±6.3e+03↑ 2.8e+04±5.4e+03↑ 1.5e+07±4.1e+06↑

f14 2.5e+07±2.9e+06 2.8e+07±2.1e+06↑ 9.5e+09±5.2e+08↑ 2.7e+07±2.1e+06↑
f15 2.8e+03±1.3e+02 4.0e+03±1.5e+02↑ 4.2e+03±1.6e+02↑ 4.0e+03±1.6e+02↑
f16 2.0e+01±2.6e+00 1.9e+01±3.2e+00 2.0e+01±3.4e+00 2.0e+01±4.0e+00
f17 9.8e+00±1.1e+01 3.5e+01±4.9e+01↑ 1.4e+02±4.4e+01↑ 2.2e+01±3.7e+01↑
f18 1.1e+03±1.8e+02 1.1e+03±1.8e+02 1.4e+03±1.9e+02↑ 1.0e+03±1.7e+02

f19 1.2e+06±9.5e+04 1.2e+06±9.5e+04 1.2e+06±9.5e+04 1.2e+06±9.5e+04
f20 1.0e+09±9.0e+08 1.0e+09±9.0e+08 1.0e+09±9.0e+08 1.0e+09±9.0e+08

R+ � 167.0 194.0 204.0

R− � 43.0 16.0 6.0
p-value � 2.06e-02 8.92e-04 2.19e-04

CEC�2013 Functions

F CCFR-I CBCC1-I CBCC2-I CC-I

f1 1.3e-05±3.2e-06 1.4e+07±3.6e+07↑ 1.4e+07±3.6e+07↑ 3.7e+11±1.5e+10↑
f2 5.5e-01±1.5e+00 2.1e+04±9.9e+02↑ 2.1e+04±9.9e+02↑ 8.5e+04±5.1e+03↑
f3 2.0e+01±3.1e-07 2.1e+01±1.1e-02↑ 2.1e+01±1.1e-02↑ 2.1e+01±9.1e-03↑

f4 4.5e+07±1.7e+07 1.6e+08±6.0e+07↑ 6.6e+10±5.6e+09↑ 1.7e+12±4.8e+11↑
f5 2.5e+06±2.7e+05 2.5e+06±4.2e+05 2.4e+06±4.5e+05 1.2e+07±6.9e+05↑
f6 1.1e+06±1.2e+03 1.1e+06±1.9e+03↓ 1.1e+06±1.7e+03↓ 1.1e+06±1.6e+03↑
f7 8.6e+06±1.9e+07 1.9e+07±2.4e+07↑ 9.6e+07±3.7e+08↑ 4.2e+09±1.1e+09↑

f8 9.6e+09±1.6e+10 2.0e+13±2.8e+13↑ 1.0e+12±1.3e+11↑ 4.7e+13±2.8e+13↑
f9 1.9e+08±2.8e+07 2.5e+08±3.8e+07↑ 2.2e+08±2.8e+07↑ 2.9e+08±5.2e+07↑
f10 9.5e+07±1.9e+05 9.4e+07±2.8e+05↓ 9.4e+07±2.3e+05↓ 9.4e+07±2.9e+05↓
f11 3.3e+08±3.2e+08 3.0e+09±1.0e+10↑ 4.9e+10±9.5e+10↑ 2.2e+09±8.4e+09↑

f12 6.0e+08±7.1e+08 6.1e+08±7.1e+08 6.1e+08±7.1e+08 6.1e+08±7.1e+08
f13 9.3e+08±5.3e+08 9.5e+08±5.4e+08 9.5e+08±5.4e+08 9.5e+08±5.4e+08
f14 2.1e+09±2.1e+09 2.2e+09±2.1e+09 2.2e+09±2.1e+09 2.2e+09±2.1e+09

f15 8.2e+06±3.3e+06 8.3e+06±3.3e+06 8.3e+06±3.3e+06 8.3e+06±3.3e+06

R+ � 109.0 107.0 115.0

R− � 11.0 13.0 5.0
p-value � 3.36e-03 5.37e-03 6.10e-04

The symbols ↑ and ↓ denote that the CCFR-I algorithm performs signi�cantly better than and worse
than this algorithm by the Wilcoxon rank sum test at the signi�cance level of 0.05, respectively.

components. The weight values of the subcomponents are

signi�cantly different (see Fig. 3a), which results in the
signi�cantly different contributions of the subpopulations to
the improvement of the best overall objective value. It can

be seen in Fig 3 that for f8�f11 except f10, the larger the
weight value of a subcomponent is, the more resources its

corresponding subpopulation uses for evolution. As discussed

before, the optimizer used in CCFR was not able to solve

f10 effectively, so all the subpopulations were stagnant after
some cycles. All the subpopulations then underwent evolution

one by one. Therefore, for f10, the computational resources
allocated to different subpopulations do not differ greatly (see

Fig. 3b).

B. Comparison Between CCFR and Other CC Frameworks

CCFR is compared with two variants of CBCC (CBCC1

and CBCC2) [9] and the traditional CC [7] in this section.

The grouping of variables for CCFR-I, CBCC-I and CC-I is

an ideal decomposition, which was done manually using the

0.5 1 1.5 2 2.5 3

x 10
6

10
−5

10
0

10
5

10
10

Function Evaluations

M
e
a
n
 V

a
lu

e
 o

f 
B

e
s
t

CCFR−I

CBCC1−I

CBCC2−I

CC−I

(a) f1

0.5 1 1.5 2 2.5 3

x 10
6

10
0

10
2

10
4

10
6

10
8

Function Evaluations

M
e
a
n
 V

a
lu

e
 o

f 
B

e
s
t

CCFR−I

CBCC1−I

CBCC2−I

CC−I

(b) f12

Fig. 4. The average convergence on two selected CEC�2010 functions over
25 independent runs.

prior knowledge of the functions. All the function evaluations

are used for optimization. The only difference between CCFR-

I, CBCC-I and CC-I is the cooperatively co-evolutionary

frameworks they employ. Table I summarizes the results of

CCFR-I, CBCC1-I, CBCC2-I and CC-I.

1) Comparison on the IEEE CEC�2010 Functions: The
results show that CCFR-I performs signi�cantly better than
the other peer algorithms on 13 out of 20 functions. CCFR-

I outperforms the other peer algorithms on all the separable

functions (f1�f3) and most of the partially separable func-
tions (f4�f18). For the partially separable functions on which
CCFR-I performs worse, the differences between the results of

CCFR-I and the other peer algorithms are not signi�cant. For
the functions on which CCFR-I performs better, the differences

are signi�cant, especially for f7, f12, f13 and f17. For the
nonseparable functions (f19 and f20), all the variables are
grouped into one subcomponent and are optimized together,

hence there is no issue of computational resource allocation.

CCFR, CBCC and CC have similar performance on the

nonseparable functions.

Fig. 4 shows the convergence of four CC algorithms. f1
is a fully separable function in which each variable has a

weight value. These weight values grow as the indices of the

variables increase. f12 is a partially separable function with
10 nonseparable subcomponents and 500 separable variables.

CC cannot save computational resources on stagnant sub-

populations. As can be seen in Fig. 4, the convergence speed

of CC-I is very slow. In contrast, CCFR can stop stagnant

subpopulations from evolving. As a result, CCFR spends much

less computational resources on the separable variables and

converges faster than CC-I. In the beginning of the evolution-

ary process, CCFR-I converges slowly. This is because CCFR-

I optimizes all the subcomponents including the separable

variables one by one in the �rst co-evolutionary cycle. When
the �rst cycle ends (about 2.5×106 function evaluations for f1;
about 1.3 × 106 function evaluations for f12), CCFR-I starts
to select the subpopulation with the greatest contribution to

undergo evolution, hence the convergence speed of CCFR-I

increases. CBCC groups all the separable variables into one

subcomponent and all the separable variables are optimized

together [28], which loses the power of the divide-and-conquer

strategy of CC. In Fig. 4a, it can be seen that CBCC1-

I and CBCC2-I converge slowly on f1. The best overall
objective value of f1 drops sharply when CCFR-I completes
the �rst co-evolutionary cycle. For f12, CCFR-I converges



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10
3

10
4

10
5

10
6

10
7

 

U
s
e

d
 F

u
n

c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

The Indices of Subpopulations

 CBCC1-I

 CBCC2-I

 CC-I

Fig. 5. The average function evaluations used by each subpopulation to optimize its corresponding subcomponent on a CEC�2013 function (f8) over 25
independent runs.

faster than CBCC1-I and CBCC2-I (see Fig. 4b). CBCC

allocates computational resources among subpopulations ac-

cording to the accumulated contributions. Emphasizing the

recent contributions, CCFR adapts the computational resource

allocation to the real-time contributions of subpopulations

better than CBCC. The experimental results in a single run

on f12 showed that for the third subpopulation, CBCC1-I and
CBCC2-I used about 5×105 and 1×106 function evaluations
to improve the best overall objective value by 6.9 × 105.
CCFR-I used about 1.9×105 function evaluations to make the
improvement of 6.9 × 105. When the real-time contribution
of the third subpopulation was relatively small, CBCC still

allocated computational resources to the subpopulation, while

CCFR allocated resources to some other subpopulation which

made a relatively great real-time contribution.

2) Comparison on the IEEE CEC�2013 Functions: To
further investigate the effect of imbalance, CCFR-I, CBCC-

I and CC-I were tested on the CEC�2013 functions. The
results show that CCFR-I signi�cantly outperforms the other
peer algorithms on 8 out of 15 functions. CCFR-I performs

signi�cantly much better than the other peer algorithms on all
the separable functions (f1�f3) and most of the partially sep-
arable functions (f4�f11). There are no signi�cant differences
between CCFR, CBCC and CC on nonseparable functions

f12�f15. For the partially separable functions on which CCFR-
I performs worse, the differences between the results of CCFR-

I and the other peer algorithms are not signi�cant. For the
functions on which CCFR-I performs better, the differences

are signi�cant, especially for f4, f7, f8 and f11, where CCFR-
I outperforms the other peer algorithms by several orders of

magnitude.

Fig. 5 shows the average function evaluations used by each

subpopulation to optimize its corresponding subcomponent for

CBCC1-I, CBCC2-I and CC-I on f8 over 25 independent
runs. For f8, the weight values of the subcomponents are
signi�cantly different (see Fig. 3a). It can be seen in Fig.
5 that CC-I allocates equal computational resources to all

the subpopulations. CBCC1-I and CBCC2-I allocate equal

computational resources to all the subpopulations except the

third one (P3). In the beginning of the evolutionary process,

P3 makes the greatest contribution. Therefore, CBCC1-I and

CBCC2-I allocate more computational resources to P3. In

the subsequent co-evolutionary cycles, the contribution of P3

in one cycle drops, but CBCC1-I and CBCC2-I still deem

P3 makes the greatest contribution and allocate resources to

P3 rather than some other subpopulation which makes the

greatest real-time contribution. In contrast, CCFR-I allocates

TABLE II
AVERAGE RANKINGS ON THE CEC�2010 AND CEC�2013 FUNCTIONS

(FRIEDMAN TEST). THE BEST RESULT IS IN BOLD FONT.

CCFR-I CBCC1-I CBCC2-I CC-I p-value

Average Ranking 1.4000 2.3714 2.8286 3.4000 1.15e-10

TABLE III
THE AVERAGE FITNESS VALUES ± STANDARD DEVIATIONS ON FOUR

PARTIALLY SEPARABLE CEC�2013 FUNCTIONS (f8�f11) OVER 25
INDEPENDENT RUNS. THE SIGNIFICANTLY BETTER RESULTS ARE IN BOLD
FONT (WILCOXON RANK SUM TEST WITH HOLM p-VALUE CORRECTION,

α=0.05).R+ , R− AND p-VALUE HAVE SIMILAR MEANINGS AS IN
TABLE I.

F CCFR-I ICBCC1-I ICBCC2-I ICC-I

f8 9.6e+09±1.6e+10 1.9e+13±2.7e+13↑ 9.9e+11±1.3e+11↑ 4.7e+13±2.6e+13↑
f9 1.9e+08±2.8e+07 2.5e+08±3.8e+07↑ 2.2e+08±2.9e+07↑ 2.8e+08±5.4e+07↑
f10 9.5e+07±1.9e+05 9.5e+07±2.8e+05↓ 9.5e+07±3.1e+05↓ 9.5e+07±2.8e+05
f11 3.3e+08±3.2e+08 5.2e+08±4.6e+08 7.9e+09±1.2e+10↑ 1.8e+09±6.1e+09↑

R+ � 9.0 9.0 9.0

R− � 1.0 1.0 1.0
p-value � 2.50e-01 2.50e-01 2.50e-01

The symbols ↑ and ↓ have similar meanings as in Table I.

computational resources to P5 with the greatest real-time

contribution when the real-time contribution of P3 is small.

Allocating more computational resources to the subpopulation

with the greatest contribution increases the probability of

making a greater improvement of the best overall objective

value. In short, for f8, the result of CCFR-I is signi�cantly
better than those of CBCC1-I, CBCC2-I and CC-I (see Table

I).

The average ranking of CCFR-I is the best among the four

CC algorithms on the CEC�2010 and CEC�2013 functions (see
Table II). The results in this section show that CCFR can make

better use of computational resources than CBCC and CC on

both the CEC�2010 and CEC�2013 functions.
In order to show the effect of the contribution-based re-

source allocation (see Sect. III-B) on the overall performance

of CCFR, we compared CCFR-I with ICBCC2-I, ICBCC1-

I and ICC-I, which are the improved CBCC1-I, CBCC2-I

and CC-I, respectively. ICBCC2-I, ICBCC1-I and ICC-I adopt

the components of CCFR (see Sect. III-A to Sect. III-C)

except for the contribution-based resource allocation. Table

III summarizes the results on partially separable CEC�2013
functions f8�f11. The comparison between the results in Table
I and Table III shows that the components of CCFR proposed

in Sect. III-A and Sect. III-C improve the performance of

CBCC1-I, CBCC2-I and CC-I on the four CEC�2013 functions
(f8�f11). However, CCFR-I still outperforms the other CC
algorithms on most of the four functions due to the better



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

TABLE IV
THE AVERAGE FITNESS VALUES ± STANDARD DEVIATIONS ON THE

CEC�2010 AND CEC�2013 FUNCTIONS OVER 25 INDEPENDENT RUNS.
THE SIGNIFICANTLY BETTER RESULTS ARE IN BOLD FONT (WILCOXON

RANK SUM TEST WITH HOLM p-VALUE CORRECTION, α=0.05).R+ , R−

AND p-VALUE HAVE SIMILAR MEANINGS AS IN TABLE I.

CEC�2010 Functions

F CCFR-IDG2 DECC-G MLCC DECC-D DECC-DML

f1 2e-5±7e-6 4e-7±1e-7↓ 8e-7±4e-7↓ 1e-22±9e-21↓ 3e-7±9e-7↓
f2 1.7e2±9e0 1.3e3±3e1↑ 3e-3±5e-3↓ 6.5e1±4e1↓ 1.0e1±2e1↓
f3 1.2e1±4e-1 1.1e0±4e-1↓ 1e-2±3e-2↓ 2.3e0±2e-1↓ 3e-1±7e-1↓

f4 1e11±8e10 2e13±5e12↑ 1e14±4e13↑ 3e12±9e11↑ 1e14±2e14↑
f5 9.2e7±2e7 2.5e8±7e7↑ 5.0e8±1e8↑ 2.9e8±1e8↑ 5.0e8±1e8↑
f6 6.8e5±7e5 5.3e6±1e6↑ 1.9e7±2e6↑ 5.9e6±5e6↑ 1.7e7±6e6↑
f7 2e-3±3e-4 8.1e8±5e8↑ 5e10±2e10↑ 1.5e5±2e5↑ 3e10±5e10↑
f8 3.2e5±1e6 6.8e7±3e7↑ 8.2e8±2e8↑ 1.3e8±1e8↑ 3e10±7e10↑

f9 1.3e7±2e6 4.5e8±5e7↑ 1.7e9±2e8↑ 1.0e8±9e6↑ 1.0e9±1e9↑
f10 1.8e3±1e2 1.1e4±4e2↑ 5.2e3±2e3↑ 4.1e3±1e3↑ 4.3e3±2e3↑
f11 2.0e1±3e0 2.6e1±1e0↑ 2.0e2±2e0↑ 1.0e2±1e2↑ 1.9e2±3e1↑
f12 2.0e1±2e1 9.9e4±1e4↑ 8.7e5±1e5↑ 9.1e3±1e3↑ 4.8e5±5e5↑
f13 5.3e2±1e2 5.3e3±3e3↑ 3.2e4±3e4↑ 5.4e3±3e3↑ 8.6e4±2e5↑

f14 3.1e7±3e6 9.8e8±8e7↑ 3.6e9±5e8↑ 3.0e8±2e7↑ 2.2e9±2e9↑
f15 3.2e3±2e2 1.2e4±7e2↑ 1.2e4±2e3↑ 1.3e4±2e2↑ 1.1e4±3e3↑
f16 2.0e1±3e0 6.9e1±5e0↑ 4.0e2±3e0↑ 2.0e2±2e2↑ 3.6e2±1e2↑
f17 6.7e1±9e1 3.1e5±2e4↑ 1.8e6±2e5↑ 7.5e4±5e3↑ 9.7e5±1e6↑
f18 1.4e3±2e2 3.5e4±1e4↑ 1.1e5±3e4↑ 1.4e4±1e4↑ 7.8e4±2e5↑

f19 1.3e6±1e5 1.1e6±6e4↓ 3.0e6±4e5↑ 1.6e6±1e6 2.7e6±3e6↑
f20 2.0e9±2e9 4.5e3±8e2↓ 1.8e5±2e5↓ 2.3e3±2e2↓ 5.4e3±1e4↓

R+ � 176.0 187.0 184.0 188.0

R− � 34.0 23.0 26.0 22.0
p-value � 8.03e-03 2.20e-03 3.19e-03 1.94e-03

CEC�2013 Functions

F CCFR-IDG2 DECC-G MLCC DECC-D DECC-DML

f1 2e-5±5e-6 3e-6±2e-6↓ 1e-6±6e-7↓ 1e-17±1e-17↓ 7e-8±3e-7↓
f2 3.6e2±2e1 1.3e3±3e1↑ 2e-2±4e-2↓ 7.1e1±3e1↓ 4.9e0±2e1↓
f3 2.1e1±1e-2 2.0e1±7e-3↓ 2.0e1±9e-4↓ 2.0e1±2e-3↓ 2.0e1±2e-2↓

f4 9.6e7±4e7 2e11±1e11↑ 2e12±8e11↑ 3e10±2e10↑ 1e12±1e12↑
f5 2.8e6±3e5 8.6e6±1e6↑ 1.9e7±5e6↑ 6.1e6±2e6↑ 1.9e7±8e6↑
f6 1.1e6±1e3 1.1e6±1e3↓ 1.1e6±3e3↓ 1.1e6±2e3↓ 1.0e6±5e3↓
f7 2.0e7±3e7 1.0e9±5e8↑ 8.4e9±4e9↑ 9.0e7±4e7↑ 3.7e9±5e9↑

f8 7e10±1e11 9e15±4e15↑ 8e16±4e16↑ 2e14±9e13↑ 5e16±8e16↑
f9 1.9e8±3e7 6.1e8±1e8↑ 1.2e9±3e8↑ 5.1e8±1e8↑ 1.2e9±4e8↑
f10 9.5e7±2e5 9.3e7±5e5↓ 9.3e7±5e5↓ 9.3e7±6e5↓ 9.3e7±6e5↓
f11 4e8±3e8 2e11±9e10↑ 1e12±5e11↑ 9e8±5e8↑ 6e11±7e11↑

f12 1.6e9±2e9 4.4e3±7e2↓ 8.8e4±3e4↓ 2.3e3±2e2↓ 5.2e3±1e4↓
f13 1.2e9±6e8 9.6e9±3e9↑ 5e10±1e10↑ 1.7e9±5e8↑ 2e10±2e10↑
f14 3.4e9±3e9 2e11±5e10↑ 9e11±4e11↑ 7.4e9±9e9 2e11±5e11↑

f15 9.8e6±4e6 1.2e7±1e6↑ 3.7e8±3e8↑ 6.9e6±7e5↓ 3e10±1e11↑

R+ � 98.0 96.0 87.0 97.0

R− � 22.0 24.0 33.0 23.0
p-value � 3.02e-02 4.13e-02 1.35e-01 3.53e-02

The symbols ↑ and ↓ have similar meanings as in Table I.

contribution-based resource allocation.

The scalability study of CCFR-I on the block-rotated ellip-

soid function [53] is provided in Sect. II in the supplementary

material listed in the appendix. The results show that for

CCFR-I, the number of function evaluations increases linearly

as the dimensionality of the function and the number of

subcomponents increase. CBCC1-I, CBCC2-I and CC-I have

similar performance to CCFR-I, but for CCFR-I, as the dimen-

sionality of the function and the number of subcomponents

increase, the number of function evaluations increases less

rapidly than the other three CC algorithms.

C. CCFR with IDG2

The experimental results of CCFR with groupings (provided

in Sect. III in the supplementary material listed in the ap-

pendix) show that a high grouping accuracy can improve the

performance of CCFR, especially for nonseparable variables.

In this section, the performance of CCFR-IDG2 is pre-

sented. IDG2 [54], which is an improved variant of differential

grouping (DG) [28], is able to group interacting variables

TABLE V
AVERAGE RANKINGS ON THE CEC�2010 AND CEC�2013 FUNCTIONS

(FRIEDMAN TEST). THE BEST RESULT IS IN BOLD FONT.

CCFR-IDG2 DECC-G MLCC DECC-D DECC-DML p-value

Average Ranking 2.1429 3.0286 4.0000 2.3143 3.5143 5.66e-07

with a very high accuracy and correctly identify the indi-

rect interaction between decision variables. CCFR-IDG2 is

compared with seven CC algorithms (DECC-G [13], MLCC

[49], DECC-D [23], DECC-DML [23], DECC [28], CBCC1

[9] and CBCC2 [9]) and two memetic algorithms (MA-SW-

Chains [50] and MOS-CEC2013 [51]). It is shown in [55] that

the two memetic algorithms are competitive for solving large-

scale optimization problems. Note that, for the algorithms with

IDG2, the function evaluations spent on groupings are counted

as part of the computational budget.

Table IV summarizes the results of CCFR-IDG2, DECC-

G, MLCC, DECC-D and DECC-DML. CCFR-IDG2 performs

signi�cantly better than the other peer algorithms by several
orders of magnitude on all the CEC�2010 partially separable
functions (f4�f18) and most of the CEC�2013 partially separa-
ble functions (f4�f11). This indicates that an ef�cient grouping
method and an ef�cient resource allocation strategy can help
CCFR achieve competitive performance. The average ranking

of CCFR-IDG2 is the best among the �ve CC algorithms on
the CEC�2010 and CEC�2013 functions (see Table V).
CCFR is compared with CBCC1, CBCC2 and DECC, which

adopt two grouping methods (i.e., DG [28] and IDG2 [54]).

The detailed results and analysis are provided in Sect. III in

the supplementary material listed in the appendix. For IDG2,

the comparison results are similar to the comparison results

between CCFR-I and its competitors (CBCC1-I, CBCC2-I and

CC-I) in Sect. IV-B. The results show that CCFR-IDG2 per-

forms signi�cantly better than CBCC1-IDG2, CBCC2-IDG2
and DECC-IDG2 on most of the fully separable and partially

separable functions. The overall performance of CCFR-DG is

also better than CBCC1-DG, CBCC2-DG and DECC-DG on

the CEC�2010 and CEC�2013 functions. The algorithms with
IDG2 perform better than the ones with DG. This is because

IDG2 is able to identify interdependence between variables

with higher accuracies.

The comparison between CCFR-IDG2 and the two memetic

algorithms (MA-SW-Chains and MOS-CEC2013) is provided

in Sect. IV in the supplementary material listed in the ap-

pendix. The experimental results show that the overall per-

formance of CCFR-IDG2 is worse than MA-SW-Chains and

MOS-CEC2013 on the CEC�2013 functions. However, when
we replace SaNSDE with another optimizer (i.e., CMAES

[56]), the performance of CCFR-IDG2 is improved. Over-

all, CCFR-IDG2 with CMAES performs better than MA-

SW-Chains and MOS-CEC2013 on both the CEC�2010 and
CEC�2013 functions.

V. CONCLUSION

In this paper, we presented a new CC framework named

CCFR for tackling large-scale global optimization problems.

CCFR aims to make ef�cient use of computational resources



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

among subpopulations. Unlike the traditional CC where the

computational resources are equally allocated among sub-

populations and CBCC where the computational resources

are allocated according to the accumulated contributions of

subpopulations from the beginning of the evolutionary process,

CCFR allocates resources to subpopulations according to the

average value of the previous and real-time contributions

of the subpopulations. The CEC�2010 and CEC�2013 large-
scale benchmark functions were selected to evaluate the per-

formance of CCFR. From our experimental results, several

conclusions can be drawn.

Firstly, CCFR can detect stagnant subpopulations and save

computational cost on stagnant subpopulations. Secondly, ac-

cording to the previous and real-time contributions of sub-

populations to the improvement of the best overall objective

value, CCFR can make a more ef�cient computational resource
allocation among subpopulations and obtain better solutions

than the other peer CC frameworks. Finally, the performance

of CCFR depends on the performance of grouping methods.

Grouping the interacting decision variables with a high accu-

racy can improve the performance of CCFR. CCFR with an

improved differential grouping method outperforms the other

peer CC algorithms on the CEC�2010 and CEC�2013 large-
scale benchmark functions.

In the future, we are planning to investigate the potential

of using the racing algorithm [57] and reinforcement learning

[58] for allocating computational resources among subpopu-

lations.

APPENDIX

SUPPLEMENTARY MATERIAL AVAILABLE ON THE WEB

The experiments in the supplementary material consist of

the following parts.

1) The sensitivity study of the parameter U of CCFR.

2) The scalability study of CCFR.

3) The performance of CCFR with DG and IDG2.

4) The comparison between CCFR-IDG2 and non-CC al-

gorithms.

The supplementary material is available at http:

//ymzhongzhong.github.io/documents/CCFR-supplement.pdf.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Bahar Salehi at Dept.

of Computing and Information Systems, University of Mel-

bourne, for carefully proofreading this paper.

REFERENCES

[1] R. Sarker, M. Mohammadian, and X. Yao, Eds., Evolutionary Optimiza-
tion. Springer US, 2002.

[2] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, �Scaling up fast evolutionary
programming with cooperative coevolution,� in IEEE Congress on
Evolutionary Computation, 2001, pp. 1101�1108.

[3] A. Vicini and D. Quagliarella, �Airfoil and wing design through hybrid
optimization strategies,� AIAA journal, vol. 37, no. 5, pp. 634�641, 1999.

[4] G. B. Dantzig and P. Wolfe, �Decomposition principle for linear pro-
grams,� Operations Research, vol. 8, no. 1, pp. 101�111, 1960.

[5] A. Griewank and P. Toint, �Partitioned variable metric updates for large
structured optimization problems,� Numerische Mathematik, vol. 39,
no. 1, pp. 119�137, 1982.

[6] M. Z. Ali, N. H. Awad, and P. N. Suganthan, �Multi-population
differential evolution with balanced ensemble of mutation strategies for
large-scale global optimization,� Applied Soft Computing, vol. 33, pp.
304�327, 2015.

[7] M. A. Potter and K. A. D. Jong, �A cooperative coevolutionary approach
to function optimization,� in Parallel Problem Solving from Nature,
1994, pp. 249�257.

[8] P. L. Toint, �Test problems for partially separable optimization and
results for the routine PSPMIN,� The University of Namur, Department
of Mathematics, Belgium, Tech. Rep., 1983.

[9] M. N. Omidvar, X. Li, and X. Yao, �Smart use of computational
resources based on contribution for cooperative co-evolutionary algo-
rithms,� in Genetic and Evolutionary Computation Conference, 2011,
pp. 1115�1122.

[10] Y. Chen, T.-L. Yu, K. Sastry, and D. E. Goldberg, �A survey of linkage
learning techniques in genetic and evolutionary algorithms,� University
of Illinois at Urbana-Champaign, Urbana IL, Tech. Rep., 2007.

[11] T. Weise, R. Chiong, and K. Tang, �Evolutionary optimization: Pitfalls
and booby traps,� Journal of Computer Science and Technology, vol. 27,
no. 5, pp. 907�936, 2012.

[12] R. Salomon, �Re-evaluating genetic algorithm performance under co-
ordinate rotation of benchmark functions. a survey of some theoretical
and practical aspects of genetic algorithms,� Biosystems, vol. 39, no. 3,
pp. 263 � 278, 1996.

[13] Z. Yang, K. Tang, and X. Yao, �Large scale evolutionary optimization
using cooperative coevolution,� Information Sciences, vol. 178, no. 15,
pp. 2985�2999, 2008.

[14] Y. Mei, M. Omidvar, X. Li, and X. Yao, �A competitive divide-and-
conquer algorithm for unconstrained large-scale black-box optimiza-
tion,� ACM Trans. Math. Softw., vol. 42, no. 2, pp. 13:1�13:24, 2016.

[15] F. Van den Bergh and A. P. Engelbrecht, �A cooperative approach
to particle swarm optimization,� IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 225�239, 2004.

[16] J. Kennedy and R. Eberhart, �Particle swarm optimization,� in Neural
Networks, IEEE International Conference on, 1995, pp. 1942�1948.

[17] Y. Shi, H. Teng, and Z. Li, �Cooperative co-evolutionary differential
evolution for function optimization,� in Advances in natural computa-
tion. Springer, 2005, pp. 1080�1088.

[18] R. Storn and K. Price, �Differential evolution�a simple and ef�cient
heuristic for global optimization over continuous spaces,� Journal of
global optimization, vol. 11, no. 4, pp. 341�359, 1997.

[19] M. Omidvar, X. Li, Z. Yang, and X. Yao, �Cooperative co-evolution
for large scale optimization through more frequent random grouping,�
in IEEE Congress on Evolutionary Computation, 2010, pp. 1�8.

[20] Z. Yang, K. Tang, and X. Yao, �Multilevel cooperative coevolution for
large scale optimization,� in IEEE Congress on Evolutionary Computa-
tion, 2008, pp. 1663�1670.

[21] X. Li and X. Yao, �Tackling high dimensional nonseparable optimiza-
tion problems by cooperatively coevolving particle swarms,� in IEEE
Congress on Evolutionary Computation, 2009, pp. 1546�1553.

[22] ��, �Cooperatively coevolving particle swarms for large scale opti-
mization,� IEEE Transactions on Evolutionary Computation, vol. 16,
no. 2, pp. 210�224, 2012.

[23] M. N. Omidvar, X. Li, and X. Yao, �Cooperative co-evolution with delta
grouping for large scale non-separable function optimization,� in IEEE
Congress on Evolutionary Computation, 2010, pp. 1�8.

[24] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, �Benchmark
functions for the CEC�2010 special session and competition on large-
scale global optimization,� Nature Inspired Computation and Applica-
tions Laboratory, Tech. Rep., 2010.

[25] K. Weicker and N. Weicker, �On the improvement of coevolutionary
optimizers by learning variable interdependencies,� in IEEE Congress
on Evolutionary Computation, 1999, pp. 1627�1632.

[26] W. Chen, T. Weise, Z. Yang, and K. Tang, �Large-scale global optimiza-
tion using cooperative coevolution with variable interaction learning,� in
Parallel Problem Solving from Nature, 2010, vol. 6239, pp. 300�309.

[27] M. Tezuka, M. Munetomo, and K. Akama, �Linkage identi�cation by
nonlinearity check for real-coded genetic algorithms,� in Conference on
Genetic and Evolutionary Computation, 2004, vol. 3103, pp. 222�233.

[28] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, �Cooperative co-evolution
with differential grouping for large scale optimization,� IEEE Transac-
tions on Evolutionary Computation, vol. 18, no. 3, pp. 378�393, 2014.

[29] M. N. Omidvar, Y. Mei, and X. Li, �Effective decomposition of large-
scale separable continuous functions for cooperative co-evolutionary
algorithms,� in IEEE Congress on Evolutionary Computation, 2014, pp.
1305�1312.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

[30] B. Kazimipour, M. N. Omidvar, X. Li, and A. Qin, �A sensitivity analysis
of contribution-based cooperative co-evolutionary algorithms,� in IEEE
Congress on Evolutionary Computation, 2015, pp. 1�8.

[31] M. Yang, C. Li, Z. Cai, and J. Guan, �Differential evolution with
auto-enhanced population diversity,� IEEE Transactions on Cybernetics,
vol. 45, no. 2, pp. 302�315, 2015.

[32] F. Peng, K. Tang, G. Chen, and X. Yao, �Multi-start jade with knowledge
transfer for numerical optimization,� in IEEE Congress on Evolutionary
Computation, 2009, pp. 1889�1895.

[33] Y.-l. Li and J. Zhang, �A new differential evolution algorithm with
dynamic population partition and local restart,� in Genetic and Evo-
lutionary Computation Conference, 2011, pp. 1085�1092.

[34] M. Vasile, E. Minisci, and M. Locatelli, �An in�ationary differential evo-
lution algorithm for space trajectory optimization,� IEEE Transactions
on Evolutionary Computation, vol. 15, no. 2, pp. 267�281, 2011.

[35] M. Zhabitsky and E. Zhabitskaya, �Asynchronous differential evolution
with adaptive correlation matrix,� in Genetic and Evolutionary Compu-
tation Conference, 2013, pp. 455�462.

[36] S.-M. Guo, C.-C. Yang, P.-H. Hsu, and J.-H. Tsai, �Improving differ-
ential evolution with a successful-parent-selecting framework,� IEEE
Transactions on Evolutionary Computation, vol. 19, no. 5, pp. 717�730,
2015.

[37] S.-M. Guo, J.-H. Tsai, C.-C. Yang, and P.-H. Hsu, �A self-optimization
approach for l-shade incorporated with eigenvector-based crossover and
successful-parent-selecting framework on cec 2015 benchmark set,� in
IEEE Congress on Evolutionary Computation, 2015, pp. 1003�1010.

[38] X. Yao, Y. Liu, and G. Lin, �Evolutionary programming made faster,�
IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82�
102, 1999.

[39] M. Yang, Z. Cai, C. Li, and J. Guan, �An improved adaptive differ-
ential evolution algorithm with population adaptation,� in Genetic and
Evolutionary Computation Conference, 2013, pp. 145�152.

[40] D. Thierens, �Adaptive strategies for operator allocation,� in Parameter
Setting in Evolutionary Algorithms, ser. Studies in Computational Intel-
ligence, F. Lobo, C. F. Lima, and Z. Michalewicz, Eds. Springer Berlin
Heidelberg, 2007, vol. 54, pp. 77�90.

[41] P. Auer, N. Cesa-Bianchi, and P. Fischer, �Finite-time analysis of the
multiarmed bandit problem,� Machine Learning, vol. 47, no. 2-3, pp.
235�256, 2002.

[42] K. Li, A. Fialho, S. Kwong, and Q. Zhang, �Adaptive operator selection
with bandits for a multiobjective evolutionary algorithm based on de-
composition,� IEEE Transactions on Evolutionary Computation, vol. 18,
no. 1, pp. 114�130, 2014.

[43] Q. Zhang, W. Liu, and H. Li, �The performance of a new version of
moea/d on cec09 unconstrained mop test instances,� in IEEE Congress
on Evolutionary Computation, 2009, pp. 203�208.

[44] A. Zhou and Q. Zhang, �Are all the subproblems equally important?
resource allocation in decomposition-based multiobjective evolutionary
algorithms,� IEEE Transactions on Evolutionary Computation, vol. 20,
no. 1, pp. 52�64, 2016.

[45] A. Fialho, M. Schoenauer, and M. Sebag, �Analysis of adaptive operator
selection techniques on the royal road and long k-path problems,� in
Genetic and Evolutionary Computation Conference, 2009, pp. 779�786.

[46] F.-M. De Rainville, M. Sebag, C. Gagné, M. Schoenauer, and D. Lauren-
deau, �Sustainable cooperative coevolution with a multi-armed bandit,�
in Genetic and Evolutionary Computation Conference, 2013, pp. 1517�
1524.

[47] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, �Benchmark
functions for the CEC�2013 special session and competition on large
scale global optimization,� Evolutionary Computation and Machine
Learning Group, RMIT University, Australia, Tech. Rep., 2013.

[48] F. van den Bergh and A. P. Engelbrecht, �A cooperative approach
to particle swarm optimization,� IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 225�239, 2004.

[49] Z. Yang, K. Tang, and X. Yao, �Multilevel cooperative coevolution for
large scale optimization,� in IEEE Congress on Evolutionary Computa-
tion, 2008, pp. 1663�1670.

[50] D. Molina, M. Lozano, and F. Herrera, �MA-SW-Chains: Memetic
algorithm based on local search chains for large scale continuous global
optimization,� in IEEE Congress on Evolutionary Computation, 2010,
pp. 1�8.

[51] A. LaTorre, S. Muelas, and J.-M. Pena, �Large scale global optimiza-
tion: Experimental results with mos-based hybrid algorithms,� in IEEE
Congress on Evolutionary Computation, 2013, pp. 2742�2749.

[52] Z. Yang, K. Tang, and X. Yao, �Self-adaptive differential evolution with
neighborhood search,� in IEEE Congress on Evolutionary Computation,
2008, pp. 1110�1116.

[53] R. Ros and N. Hansen, �A simple modi�cation in cma-es achieving
linear time and space complexity,� in Parallel Problem Solving from
Nature, 2008, pp. 296�305.

[54] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, �IDG: A
faster and more accurate differential grouping algorithm,� University
of Birmingham, School of Computer Science, Tech. Rep. CSR-15-
04, September 2015. [Online]. Available: ftp://ftp.cs.bham.ac.uk/pub/
tech-reports/2015/CSR-15-04.pdf

[55] A. LaTorre, S. Muelas, and J.-M. Pe�na, �A comprehensive comparison
of large scale global optimizers,� Information Sciences, vol. 316, pp.
517�549, 2015.

[56] N. Hansen, S. D. Müller, and P. Koumoutsakos, �Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (cma-es),� Evol. Comput., vol. 11, no. 1, pp. 1�18,
2003.

[57] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, �A racing
algorithm for con�guring metaheuristics,� in Genetic and Evolutionary
Computation Conference, 2002, pp. 11�18.

[58] J. Schmidhuber, �A general method for multi-agent reinforcement learn-
ing in unrestricted environments,� in Evolutionary computation: theroy
and applications, X. Yao, Ed. World Scienti�c, 1999, pp. 81�123.



1

Supplementary File of �Ef�cient Resource
Allocation in Cooperative Co-evolution for

Large-scale Global Optimization�
Ming Yang, Mohammad Nabi Omidvar, Changhe Li, Member, IEEE, Xiaodong Li, Senior Member, IEEE,

Zhihua Cai, Borhan Kazimipour, and Xin Yao, Fellow, IEEE

CONTENTS

I Sensitivity Study of the Parameter U of CCFR 2

II Scalability Study of CCFR 2

III Performance of CCFR with DG and IDG2 3

IV Comparison Between CCFR-IDG2 and Non-CC Algorithms 4

References 6

The work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61305086, 61673355, 61673354, 61329302 and 61305079)
and EPSRC (Grant No. EP/K001523/1).
M. Yang, C. Li and Z. Cai are with the School of Computer Science, China University of Geosciences, Wuhan, 430074, China (e-mail: yang-

ming0702@gmail.com, changhe.lw@gmail.com, zhcai@cug.edu.cn).
M. N. Omidvar and X. Yao are with the Centre of Excellence for Research in Computational Intelligence and Applications, School of Computer Science,

University of Birmingham, Birmingham B15 2TT, U.K. (e-mail: m.omidvar@cs.bham.ac.uk, x.yao@cs.bham.ac.uk).
X. Li and B. Kazimipour are with the School of Computer Science and Information Technology, RMIT University, Melbourne, VIC 3001, Australia (e-mail:

xiaodong.li@rmit.edu.au, borhan.kazimipour@rmit.edu.au).



2

TABLE I: The average �tness values ± standard deviations on the CEC�2010 and CEC�2013 functions over 25 independent
runs. The signi�cantly better results are in bold font (Wilcoxon rank sum test with Holm p-value correction, α=0.05). R+, R−

and p-value are obtained through multiple-problem analysis by the Wilcoxon test between CCFR-I (U=Di) and its competitors.

CEC�2010 Functions
F CCFR-I (U = Di) CCFR-I (U = 2Di) CCFR-I (U = 10Di)

f1 1.20e-05±4.89e-06 1.31e-05±5.19e-06 1.68e-05±6.54e-06↑
f2 2.75e+01±5.25e+00 5.13e+01±5.04e+00↑ 1.52e+02±7.22e+00↑
f3 4.56e+00±4.63e-01 5.56e+00±4.63e-01↑ 8.10e+00±4.65e-01↑

f4 8.33e+10±6.16e+10 8.69e+10±4.68e+10 1.06e+11±4.31e+10↑
f5 7.23e+07±1.32e+07 7.32e+07±1.22e+07 9.12e+07±1.74e+07↑
f6 7.74e+05±7.15e+05 7.83e+05±8.28e+05 7.28e+05±8.51e+05
f7 1.49e-03±2.47e-04 1.66e-03±2.78e-04↑ 2.14e-03±3.90e-04↑
f8 3.19e+05±1.08e+06 6.38e+05±1.46e+06 9.57e+05±1.70e+06↑

f9 9.38e+06±1.18e+06 8.81e+06±1.05e+06 1.05e+07±1.44e+06↑
f10 1.41e+03±1.01e+02 1.42e+03±7.83e+01 1.61e+03±1.10e+02↑
f11 1.03e+01±2.71e+00 9.72e+00±2.11e+00 1.00e+01±2.59e+00
f12 1.17e+00±4.57e+00 4.72e+00±1.75e+01↑ 7.49e+00±2.30e+01↑
f13 3.18e+02±9.91e+01 3.25e+02±1.01e+02 4.03e+02±9.45e+01↑

f14 2.48e+07±2.85e+06 2.48e+07±2.85e+06 2.48e+07±2.85e+06
f15 2.81e+03±1.31e+02 2.81e+03±1.31e+02 2.81e+03±1.31e+02
f16 2.01e+01±2.62e+00 2.01e+01±2.62e+00 2.01e+01±2.62e+00
f17 9.78e+00±1.09e+01 9.78e+00±1.09e+01 9.78e+00±1.09e+01
f18 1.14e+03±1.82e+02 1.14e+03±1.82e+02 1.14e+03±1.82e+02

f19 1.16e+06±9.47e+04 1.16e+06±9.47e+04 1.16e+06±9.47e+04
f20 1.01e+09±8.96e+08 1.01e+09±8.96e+08 1.01e+09±8.96e+08

R+ � 168.0 170.0
R− � 42.0 40.0
p-value � 2.66e-02 1.71e-02

CEC�2013 Functions
F CCFR-I (U = Di) CCFR-I (U = 2Di) CCFR-I (U = 10Di)

f1 1.30e-05±3.18e-06 1.40e-05±3.49e-06 1.80e-05±4.65e-06↑
f2 5.51e-01±1.47e+00 5.33e+01±1.70e+01↑ 3.14e+02±2.05e+01↑
f3 2.00e+01±3.06e-07 2.00e+01±3.23e-07↓ 2.00e+01±3.89e-04↑

f4 4.50e+07±1.66e+07 5.26e+07±2.22e+07 7.47e+07±2.31e+07↑
f5 2.53e+06±2.67e+05 2.47e+06±3.75e+05 2.62e+06±3.88e+05
f6 1.06e+06±1.19e+03 1.06e+06±1.30e+03↓ 1.07e+06±1.64e+03↑
f7 8.60e+06±1.90e+07 9.94e+06±2.64e+07 1.04e+07±1.85e+07

f8 9.61e+09±1.59e+10 9.61e+09±1.59e+10 9.61e+09±1.59e+10
f9 1.85e+08±2.79e+07 1.84e+08±2.70e+07 1.84e+08±2.73e+07
f10 9.47e+07±1.86e+05 9.46e+07±3.84e+05 9.43e+07±3.44e+05↓
f11 3.25e+08±3.24e+08 2.53e+08±3.33e+08 3.28e+08±3.38e+08

f12 6.00e+08±7.09e+08 6.00e+08±7.09e+08 6.00e+08±7.09e+08
f13 9.28e+08±5.33e+08 9.28e+08±5.33e+08 9.28e+08±5.33e+08
f14 2.14e+09±2.11e+09 2.14e+09±2.11e+09 2.14e+09±2.11e+09

f15 8.25e+06±3.28e+06 8.25e+06±3.28e+06 8.25e+06±3.28e+06

R+ � 49.5 89.5
R− � 70.5 30.5
p-value � 6.25e-01 1.60e-01

The symbols ↑ and ↓ denote that the CCFR-I (U = Di) algorithm performs
signi�cantly better than and worse than this algorithm by the Wilcoxon rank sum
test at the signi�cance level of 0.05, respectively.

I. SENSITIVITY STUDY OF THE PARAMETER U OF CCFR

Table I summarizes the results of CCFR-I with different values of the parameter U (see Eq. (6a) in the paper) on the

CEC�2010 and CEC�2013 large-scale functions [1], [2]. Di is the dimensionality of the i-th subcomponent.
For the functions with separable variables (i.e., the CEC�2010 functions f1�f13 and the CEC�2013 functions f1�f7), the

smaller the value of U is, the better the performance of CCFR is in general. This is because CCFR with a small value of

U can early stop evolution for stagnant subpopulations. It can save more computational resources on stagnant variables than

CCFR with a larger value of U . Therefore, we use U = Di as the default setting of U . For the functions without separable
variables, the subpopulations hardly enter a stagnant state, so there are no differences between the performance of CCFR-I

with different values of U . Overall, CCFR-I with different values of U has similar performance on most of the CEC�2010 and
CEC�2013 functions.

II. SCALABILITY STUDY OF CCFR

We used the block-rotated ellipsoid function [3] to study the performance of CCFR-I, CBCC1-I, CBCC2-I and CC-I with

the scale-up dimensionality of the function and the scale-up number of subcomponents. The dimensionality of the function



3

Dimensionality

16 32 64 128 256 512 1024 16 32 64 128 256 512 1024 16 32 64 128 256 512 1024 16 32 64 128 256 512 1024

F
u
n
c
ti
o
n
 E

v
a
lu

a
ti
o
n
s

10
4

10
5

10
6

10
7

1 Subcomponents

2 Subcomponents

4 Subcomponents

8 Subcomponents

D Subcomponents

CC-ICBCC1-ICCFR-I CBCC2-I

Fig. 1: The average function evaluations used by CCFR-I, CBCC1-I, CBCC2-I and CC-I on the block-rotated ellipsoid function

over the successful runs out of 10 runs.

(i.e., D) ranges from 24 to 210. The numbers of subcomponents are {1,2,4,8,D}. Within 107 function evaluations, if the best
overall objective value is smaller than a target value (i.e., 0.1) in a run, CCFR-I stops running and this run is considered to be

successful. Fig. 1 shows the average number of function evaluations over successful runs out of 10 runs. CCFR-I can reach

the target value within 107 function evaluations when there are less than 64 variables in a subcomponent. When the number
of the variables in a subcomponent is equal to or smaller than eight, the number of function evaluations increases linearly as

the dimensionality of the function and the number of subcomponents increase. When there are more than eight variables in

a subcomponent, the number of function evaluations increases rapidly and linearly as the dimensionality of the function and

the number of subcomponents increase. It can be seen in Fig. 1 that CBCC1-I, CBCC2-I and CC-I have similar performance

to CCFR-I, but for CCFR-I, as the dimensionality of the function and the number of subcomponents increase, the number of

function evaluations increases less rapidly than the other three CC algorithms.

III. PERFORMANCE OF CCFR WITH DG AND IDG2

In order to study the effect of decomposition on the performance of CCFR, we tested CCFR with two grouping methods (DG

[4] and IDG2 [5]). DG is a differential grouping method with a theoretical foundation, which is able to group the interacting

variables with a high accuracy. In DG, the parameter � was set to 10-3, which is recommended in [4]. IDG2 is an improved
variant of DG, which is able to group the interacting variables better than DG. Table II summarizes the grouping results of

IDG2 and DG.

Table III summarizes the optimization results of CCFR, CBCC1 [6], CBCC2 [6] and DECC [4] with IDG2 and DG. Note

that, for the algorithms with IDG2 and DG, the function evaluations spent on groupings (see the �FEs� column in Table II)
are counted as part of the computational budget. The results show that CCFR-IDG2 and CCFR-DG perform better than the

other peer algorithms on the CEC�2010 and CEC�2013 functions.
CCFR-DG performs signi�cantly better than the other peer algorithms with DG on most of the separable functions (f1�

f3). For almost all the partially separable functions (the CEC�2010 functions f4�f18; the CEC�2013 functions f4�f11), the
differences between the results of the algorithms with DG are not signi�cant. For the CEC�2010 functions f7, f8 and f13,
because DG is not able to identify the interdependence between variables, there is interdependence between the subcomponents

formed by DG. CCFR-DG performs worse than CBCC1-DG and DECC-DG by several orders of magnitude. This indicates

that if there is interdependence between subcomponents, optimizing each subcomponent one by one may be a good way.

CCFR-IDG2 outperforms the other peer algorithms on most of the separable and partially separable functions (the

CEC�2010 functions f1�f18; the CEC�2013 functions f1�f11), especially on the separable functions (f1�f3). For the partially
separable functions on which CCFR-IDG2 performs worse, the differences between the results of CCFR and the other peer

algorithms are not signi�cant. For the functions on which CCFR-IDG2 performs better, the differences are signi�cant. For the
nonseparable functions (the CEC�2010 functions f19�f20; the CEC�2013 functions f12�f15), all the variables are grouped into
one subcomponent. Therefore, there are no signi�cant differences between the algorithms with IDG2 on these nonseparable
functions.

For most of the functions, the algorithms with IDG2 perform better than the ones with DG. This is because IDG2 can

identify the interdependence between variables with higher accuracies than DG. The results show that compared with DG,

IDG2 makes CCFR perform much better than the other peer algorithms. The performance of CCFR-IDG2 and CCFR-DG

does not differ greatly on most of the functions that CCFR-IDG2 performs worse than CCFR-DG. For most of the functions

on which CCFR-IDG2 performs better than CCFR-DG, CCFR-IDG2 signi�cantly outperforms CCFR-DG by several orders
of magnitude due to the higher grouping accuracies of IDG2 in identifying the nonseparable variables (e.g., the CEC�2010
functions f7, f8, f13 and f18; the CEC�2013 functions f4, f7, f8 and f11). The experimental results show that the performance
of CCFR is dependent on the decomposition method. A high grouping accuracy can improve the performance of CCFR,

especially for the nonseparable variables.



4

TABLE II: The grouping results on the CEC�2010 and CEC�2013 functions. The values of IDG2 and DG are separated by
�/�. The bold font denotes IDG2 performed better than DG; the gray background denotes IDG2 performed worse than DG.

CEC�2010 Functions

F
Sep
Vars

Non-Sep
IDG2 / DG (� = 10−3)

FEs
Sep Non-sep

Vars Groups
Formed
Vars

Captured
Vars

Accuracy
Formed

Subcomponents
Captured

Subcomponents
Accuracy

f1 1000 0 0 500501 / 1001000 1000 / 1000 1000 / 1000 100.0% / 100.0% 0 / 0 0 / 0 100.0% / 100.0%
f2 1000 0 0 500501 / 1001000 1000 / 1000 1000 / 1000 100.0% / 100.0% 0 / 0 0 / 0 100.0% / 100.0%
f3 1000 0 0 500501 / 1001000 0 / 1000 0 / 1000 0.0% / 100.0% 1 / 0 0 / 0 100.0% / 100.0%

f4 950 50 1 500501 / 14554 950 / 33 950 / 33 100.0% / 3.5% 1 / 10 1 / 1 100.0% / 100.0%
f5 950 50 1 500501 / 905450 950 / 950 950 / 950 100.0% / 100.0% 1 / 1 1 / 1 100.0% / 100.0%
f6 950 50 1 500501 / 906332 854 / 950 854 / 950 89.9% / 100.0% 2 / 1 1 / 1 100.0% / 100.0%
f7 950 50 1 500501 / 67742 950 / 248 950 / 248 100.0% / 26.1% 1 / 4 1 / 0 100.0% / 0.0%

f8 950 50 1 500501 / 23286 950 / 134 950 / 133 100.0% / 14.0% 1 / 5 1 / 0 100.0% / 0.0%

f9 500 500 10 500501 / 270802 500 / 500 500 / 500 100.0% / 100.0% 10 / 10 10 / 10 100.0% / 100.0%
f10 500 500 10 500501 / 272958 500 / 500 500 / 500 100.0% / 100.0% 10 / 10 10 / 10 100.0% / 100.0%
f11 500 500 10 500501 / 270640 0 / 501 0 / 500 0.0% / 100.0% 11 / 10 10 / 9 100.0% / 90.0%

f12 500 500 10 500501 / 271390 500 / 500 500 / 500 100.0% / 100.0% 10 / 10 10 / 10 100.0% / 100.0%
f13 500 500 10 500501 / 50328 500 / 131 500 / 107 100.0% / 21.4% 10 / 34 10 / 0 100.0% / 0.0%

f14 0 1000 20 500501 / 21000 0 / 0 0 / 0 100.0% / 100.0% 20 / 20 20 / 20 100.0% / 100.0%
f15 0 1000 20 500501 / 21000 0 / 0 0 / 0 100.0% / 100.0% 20 / 20 20 / 20 100.0% / 100.0%
f16 0 1000 20 500501 / 21128 0 / 4 0 / 0 100.0% / 100.0% 20 / 20 20 / 16 100.0% / 80.0%

f17 0 1000 20 500501 / 21000 0 / 0 0 / 0 100.0% / 100.0% 20 / 20 20 / 20 100.0% / 100.0%
f18 0 1000 20 500501 / 39624 0 / 78 0 / 0 100.0% / 100.0% 20 / 50 20 / 0 100.0% / 0.0%

f19 0 1000 1 500501 / 2000 0 / 0 0 / 0 100.0% / 100.0% 1 / 1 1 / 1 100.0% / 100.0%
f20 0 1000 1 500501 / 155430 0 / 33 0 / 0 100.0% / 100.0% 1 / 241 1 / 0 100.0% / 0.0%

CEC�2013 Functions

F
Sep
Vars

Non-Sep
IDG2 / DG (� = 10−3)

FEs
Sep Non-sep

Vars Groups
Formed
Vars

Captured
Vars

Accuracy
Formed

Subcomponents
Captured

Subcomponents
Accuracy

f1 1000 0 0 500501 / 1001000 1000 / 1000 1000 / 1000 100.0% / 100.0% 0 / 0 0 / 0 100.0% / 100.0%
f2 1000 0 0 500501 / 1001000 1000 / 1000 1000 / 1000 100.0% / 100.0% 0 / 0 0 / 0 100.0% / 100.0%
f3 1000 0 0 500501 / 1001000 0 / 1000 0 / 1000 0.0% / 100.0% 1 / 0 0 / 0 100.0% / 100.0%

f4 700 300 7 500501 / 15792 700 / 40 700 / 40 100.0% / 5.7% 7 / 13 7 / 3 100.0% / 58.3%

f5 700 300 7 500501 / 527026 700 / 707 700 / 700 100.0% / 100.0% 7 / 10 7 / 6 100.0% / 66.7%

f6 700 300 7 500501 / 579848 0 / 752 0 / 700 0.0% / 100.0% 8 / 5 7 / 3 100.0% / 50.0%

f7 700 300 7 500501 / 11452 700 / 64 700 / 64 100.0% / 9.1% 7 / 10 7 / 0 100.0% / 0.0%

f8 0 1000 20 500501 / 22682 200 / 4 0 / 0 100.0% / 100.0% 18 / 25 18 / 14 80.0% / 65.0%

f9 0 1000 20 500501 / 17650 0 / 0 0 / 0 100.0% / 100.0% 20 / 20 20 / 20 100.0% / 100.0%
f10 0 1000 20 500501 / 48650 0 / 152 0 / 0 100.0% / 100.0% 20 / 18 20 / 14 100.0% / 65.0%

f11 0 1000 20 500501 / 9102 0 / 1 0 / 0 100.0% / 100.0% 20 / 18 20 / 0 100.0% / 0.0%

f12 0 1000 1 500501 / 149894 0 / 50 0 / 0 100.0% / 100.0% 1 / 222 1 / 0 100.0% / 0.0%

f13 0 905 1 409966 / 18786 0 / 0 0 / 0 100.0% / 100.0% 1 / 20 1 / 0 100.0% / 0.0%

f14 0 905 1 409966 / 26698 0 / 0 0 / 0 100.0% / 100.0% 1 / 19 1 / 0 100.0% / 0.0%

f15 0 1000 1 500501 / 2000 0 / 0 0 / 0 100.0% / 100.0% 1 / 1 1 / 1 100.0% / 100.0%

IV. COMPARISON BETWEEN CCFR-IDG2 AND NON-CC ALGORITHMS

Table IV summarizes the results of CCFR-IDG2, MA-SW-Chains [7] and MOS-CEC2013 [8]. MA-SW-Chains and MOS-

CEC2013 were ranked the �rst in the IEEE CEC�2010 and CEC�2013 competitions on large-scale global optimization,
respectively. For the partially separable functions (the CEC�2010 functions f4�f18; the CEC�2013 functions f4�f11) on which
CCFR-IDG2 performs better than MA-SW-Chains, the differences between the results of CCFR-IDG2 and MA-SW-Chains are

signi�cant. For the partially separable functions on which CCFR-IDG2 performs worse than MA-SW-Chains, the differences
are not signi�cant except for the CEC�2010 function f12. CCFR-IDG2 performs worse than MOS-CEC2013 on most of the
CEC�2010 and CEC�2013 functions. For the nonseparable functions (the CEC�2010 functions f19�f20; the CEC�2013 functions
f12�f15), CCFR-IDG2 optimizes all the decision variables together and performs signi�cantly worse than MA-SW-Chains and
MOS-CEC2013. This indicates that the optimizer used by CCFR-IDG2 (i.e., SaNSDE) is inferior to MA-SW-Chains and MOS-

CEC2013. The results shows that CCFR-IDG2 performs worse than MA-SW-Chains and MOS-CEC2013 on the CEC�2013
functions. This may be because that the optimizer used by CCFR-IDG2 performs worse than MA-SW-Chains and MOS-

CEC2013. The previous experimental results have shown that for a given optimizer (i.e., SaNSDE), CCFR is superior to the

other peer algorithms with the same optimizer.

Fig. 2 shows the convergence of CCFR-IDG2, MA-SW-Chains and MOS-CEC2013. Because CCFR-IDG2 spends 500501

function evaluations grouping the decision variables, in Fig. 2 the convergence lines of CCFR-IDG2 start from 500502 function

evaluations. For the separable function f1, CCFR-IDG2 optimizes each separable variable one by one and converges slowly,



5

TABLE III: The average �tness values ± standard deviations on the CEC�2010 and CEC�2013 functions over 25 independent
runs. The signi�cantly better results are in bold font (Wilcoxon rank sum test with Holm p-value correction, α=0.05). R+,

R− and p-value have similar meanings as in Table I.

CEC�2010 Functions
F CCFR-IDG2 CBCC1-IDG2 CBCC2-IDG2 DECC-IDG2 CCFR-DG CBCC1-DG CBCC2-DG DECC-DG

f1 1.6e-05±6.5e-06 1.7e+07±2.1e+07↑ 1.7e+07±2.1e+07↑ 1.7e+07±2.1e+07↑ 4.8e+08±9.8e+07 2.9e+07±3.1e+07↓ 2.9e+07±3.1e+07↓ 2.9e+07±3.1e+07↓
f2 1.7e+02±8.6e+00 4.7e+03±4.8e+02↑ 4.7e+03±4.8e+02↑ 4.7e+03±4.8e+02↑ 3.2e+02±1.7e+01 4.7e+03±4.8e+02↑ 4.7e+03±4.8e+02↑ 4.7e+03±4.8e+02↑
f3 1.2e+01±3.7e-01 1.2e+01±3.7e-01 1.2e+01±3.7e-01 1.2e+01±3.7e-01 1.1e+01±3.8e-01 1.2e+01±3.7e-01↑ 1.2e+01±3.7e-01↑ 1.2e+01±3.7e-01↑

f4 1.3e+11±7.5e+10 7.4e+10±4.8e+10↓ 1.1e+11±2.9e+10 8.9e+10±4.6e+10↓ 4.3e+10±1.6e+10 3.5e+11±2.0e+11↑ 5.1e+10±3.1e+10 7.8e+11±5.5e+11↑
f5 9.2e+07±1.6e+07 6.8e+07±1.1e+07↓ 6.8e+07±9.4e+06↓ 6.7e+07±1.0e+07↓ 4.9e+08±2.4e+07 6.9e+07±1.0e+07↓ 6.9e+07±1.0e+07↓ 6.9e+07±1.1e+07↓
f6 6.8e+05±7.1e+05 1.1e+06±7.9e+05↑ 1.1e+06±6.9e+05↑ 6.4e+05±6.8e+05 1.1e+07±7.5e+05 1.3e+06±6.4e+05↓ 1.3e+06±6.4e+05↓ 8.1e+05±7.2e+05↓
f7 2.0e-03±3.5e-04 7.9e+04±1.0e+04↑ 1.1e+05±1.8e+04↑ 4.2e+04±1.2e+04↑ 2.7e+07±7.0e+07 1.1e+05±8.5e+04↓ 7.6e+09±6.6e+09↑ 6.0e+04±3.3e+04↓
f8 3.2e+05±1.1e+06 8.8e+05±1.6e+06↑ 1.1e+06±1.7e+06↑ 5.2e+05±1.3e+06↑ 2.6e+08±1.9e+08 4.6e+06±8.8e+06↓ 6.3e+07±6.0e+07↓ 1.5e+07±2.3e+07↓

f9 1.3e+07±1.7e+06 2.1e+07±2.2e+07 4.4e+09±7.0e+08↑ 5.4e+07±6.4e+07↑ 1.1e+07±1.4e+06 1.8e+07±2.1e+07 1.8e+07±2.1e+07 3.3e+07±2.0e+07↑
f10 1.8e+03±1.4e+02 3.4e+03±1.7e+02↑ 4.6e+03±7.7e+02↑ 4.3e+03±1.8e+02↑ 1.6e+03±1.2e+02 3.2e+03±1.7e+02↑ 3.2e+03±1.7e+02↑ 4.1e+03±1.7e+02↑
f11 2.0e+01±3.3e+00 2.4e+01±2.4e+00↑ 2.5e+01±2.3e+00↑ 2.3e+01±2.1e+00↑ 1.1e+01±2.5e+00 2.3e+01±2.2e+00↑ 2.3e+01±2.1e+00↑ 2.3e+01±2.7e+00↑
f12 2.0e+01±2.2e+01 2.6e+04±7.4e+03↑ 3.7e+04±9.7e+03↑ 2.3e+04±8.8e+03↑ 4.6e+00±6.9e+00 2.2e+04±6.3e+03↑ 2.2e+04±6.3e+03↑ 1.9e+04±7.3e+03↑
f13 5.3e+02±1.0e+02 2.6e+04±7.8e+03↑ 3.9e+04±6.2e+03↑ 2.5e+04±7.8e+03↑ 2.8e+06±9.2e+05 5.8e+03±4.4e+03↓ 1.6e+04±7.8e+03↓ 8.7e+03±3.9e+03↓

f14 3.1e+07±3.3e+06 3.5e+07±2.6e+06↑ 9.5e+09±5.2e+08↑ 3.3e+07±2.7e+06↑ 2.5e+07±2.9e+06 2.8e+07±2.1e+06↑ 2.8e+07±2.1e+06↑ 2.7e+07±2.2e+06↑
f15 3.2e+03±1.5e+02 4.4e+03±1.5e+02↑ 4.6e+03±1.7e+02↑ 4.4e+03±1.9e+02↑ 2.8e+03±1.3e+02 4.0e+03±1.5e+02↑ 4.0e+03±1.5e+02↑ 4.0e+03±1.6e+02↑
f16 2.0e+01±2.6e+00 1.9e+01±3.2e+00 2.0e+01±3.4e+00 2.0e+01±4.0e+00 2.4e+01±4.3e+00 2.0e+01±3.4e+00↓ 2.1e+01±3.1e+00 2.1e+01±3.4e+00
f17 6.7e+01±8.7e+01 1.3e+02±8.9e+01↑ 7.2e+02±3.4e+02↑ 8.0e+01±5.2e+01↑ 1.1e+01±1.1e+01 3.6e+01±4.9e+01↑ 3.6e+01±4.9e+01↑ 2.4e+01±3.7e+01
f18 1.4e+03±1.9e+02 1.3e+03±1.9e+02 1.7e+03±2.4e+02↑ 1.2e+03±1.5e+02↓ 1.3e+08±9.9e+07 6.9e+09±2.3e+09↑ 1.4e+10±2.0e+09↑ 2.1e+10±3.9e+09↑

f19 1.3e+06±1.0e+05 1.3e+06±1.0e+05 1.3e+06±1.0e+05 1.3e+06±1.0e+05 1.2e+06±9.5e+04 1.2e+06±9.5e+04 1.2e+06±9.5e+04 1.2e+06±9.5e+04
f20 2.0e+09±1.8e+09 2.0e+09±1.8e+09 2.0e+09±1.8e+09 2.0e+09±1.8e+09 3.1e+07±6.6e+06 1.4e+10±2.7e+09↑ 1.6e+08±1.5e+08↑ 3.3e+10±5.9e+09↑

R+ � 165.0 174.0 153.0 � 123.0 137.0 123.0

R− � 45.0 36.0 57.0 � 87.0 73.0 87.0
p-value � 2.51e-02 1.00e-02 7.31e-02 � 5.02e-01 2.32e-01 5.02e-01

CEC�2013 Functions
F CCFR-IDG2 CBCC1-IDG2 CBCC2-IDG2 DECC-IDG2 CCFR-DG CBCC1-DG CBCC2-DG DECC-DG

f1 1.8e-05±4.5e-06 4.6e+07±1.3e+08↑ 4.6e+07±1.3e+08↑ 4.6e+07±1.3e+08↑ 4.8e+08±6.9e+07 6.2e+07±1.3e+08↓ 6.2e+07±1.3e+08↓ 6.2e+07±1.3e+08↓
f2 3.6e+02±2.1e+01 2.1e+04±1.0e+03↑ 2.1e+04±1.0e+03↑ 2.1e+04±1.0e+03↑ 7.4e+02±4.0e+01 2.1e+04±1.0e+03↑ 2.1e+04±1.0e+03↑ 2.1e+04±1.0e+03↑
f3 2.1e+01±1.2e-02 2.1e+01±1.2e-02 2.1e+01±1.2e-02 2.1e+01±1.2e-02 2.0e+01±6.0e-07 2.1e+01±1.1e-02↑ 2.1e+01±1.1e-02↑ 2.1e+01±1.1e-02↑

f4 9.6e+07±4.0e+07 2.2e+08±6.0e+07↑ 6.6e+10±5.6e+09↑ 2.9e+08±9.7e+07↑ 9.1e+10±5.6e+10 8.7e+10±5.1e+10 4.6e+11±2.8e+11↑ 8.3e+10±4.7e+10
f5 2.8e+06±3.2e+05 2.6e+06±4.3e+05 2.5e+06±4.7e+05↓ 3.0e+06±4.7e+05 3.0e+06±5.2e+05 2.8e+06±3.6e+05 2.6e+06±4.4e+05↓ 3.3e+06±4.0e+05↑
f6 1.1e+06±1.0e+03 1.1e+06±1.7e+03↓ 1.1e+06±1.8e+03↓ 1.1e+06±1.6e+03↓ 1.1e+06±1.6e+03 1.1e+06±2.1e+03↓ 1.1e+06±1.5e+03↓ 1.1e+06±2.3e+03↓
f7 2.0e+07±2.9e+07 2.2e+07±2.6e+07 9.9e+07±3.7e+08 2.4e+07±3.8e+07 1.4e+08±9.7e+07 1.2e+08±3.9e+07 1.6e+10±1.4e+10↑ 1.4e+08±7.1e+07

f8 6.6e+10±9.5e+10 2.3e+13±1.6e+13↑ 1.1e+12±1.7e+11↑ 7.4e+13±5.8e+13↑ 1.6e+15±1.0e+15 2.0e+15±1.5e+15 5.9e+15±4.3e+15↑ 2.0e+15±1.4e+15
f9 1.9e+08±2.8e+07 2.6e+08±4.0e+07↑ 2.3e+08±3.0e+07↑ 3.0e+08±5.7e+07↑ 1.9e+08±2.8e+07 2.5e+08±3.8e+07↑ 2.2e+08±2.9e+07↑ 2.9e+08±5.2e+07↑
f10 9.5e+07±1.8e+05 9.4e+07±2.8e+05↓ 9.4e+07±2.5e+05↓ 9.5e+07±3.0e+05↓ 9.5e+07±3.1e+05 9.4e+07±6.1e+05↓ 9.4e+07±6.6e+05↓ 9.4e+07±2.4e+05↓
f11 4.2e+08±3.4e+08 5.0e+09±1.5e+10 7.3e+10±1.2e+11↑ 2.8e+09±1.1e+10 2.8e+10±6.0e+10 4.5e+10±6.1e+10↑ 5.2e+12±3.7e+12↑ 4.7e+10±5.7e+10↑

f12 1.6e+09±1.6e+09 1.6e+09±1.6e+09 1.6e+09±1.6e+09 1.6e+09±1.6e+09 8.0e+07±8.3e+06 6.0e+10±8.3e+09↑ 6.6e+08±1.3e+08↑ 1.2e+11±1.4e+10↑
f13 1.2e+09±6.0e+08 1.2e+09±6.0e+08 1.2e+09±6.0e+08 1.2e+09±6.0e+08 2.0e+09±1.0e+09 4.0e+09±1.5e+09↑ 4.1e+10±2.7e+10↑ 6.3e+09±1.9e+09↑
f14 3.4e+09±3.1e+09 3.5e+09±3.2e+09 3.5e+09±3.2e+09 3.5e+09±3.2e+09 7.4e+09±8.5e+09 1.3e+10±1.2e+10↑ 5.0e+11±1.2e+12↑ 8.9e+09±6.8e+09

f15 9.8e+06±3.7e+06 9.9e+06±3.7e+06 9.9e+06±3.7e+06 9.9e+06±3.7e+06 8.3e+06±3.3e+06 8.3e+06±3.3e+06 8.3e+06±3.3e+06 8.3e+06±3.3e+06

R+ � 107.0 107.0 112.0 � 80.0 99.0 91.0
R− � 13.0 13.0 8.0 � 40.0 21.0 29.0
p-value � 5.37e-03 5.37e-03 1.53e-03 � 2.77e-01 2.56e-02 8.33e-02

The symbols ↑ and ↓ have similar meanings as in Table I.

Function Evaluations ×10
6

0.5 1 1.5 2 2.5 3

M
e
a
n
 V

a
lu

e
 o

f 
B

e
s
t

10
-20

10
0

CCFR-IDG2

MA-SW-Chains

MOS-CEC2013

(a) f1

Function Evaluations ×10
6

0.5 1 1.5 2 2.5 3

M
e
a
n
 V

a
lu

e
 o

f 
B

e
s
t

10
10

10
15

10
20

CCFR-IDG2

MA-SW-Chains

MOS-CEC2013

(b) f8

Fig. 2: The average convergence on two selected CEC�2013 functions over 25 independent runs.

but when CCFR-IDG2 �nishes optimizing the last variable with the largest weight value, the best overall objective value
drops sharply. f8 is a partially separable function with imbalance between subcomponents. For f8, compared with MA-SW-
Chains and MOS-CEC2013, in the beginning of the evolutionary process, CCFR-IDG2 converges very slowly. When the �rst
evolutionary cycle ends (about 0.8 × 106 function evaluations), CCFR-IDG2 starts to allocate most computational resources
to the subpopulation which makes the greatest improvement of the best overall objective value. CCFR-IDG2 converges much

faster than MA-SW-Chains and MOS-CEC2013. This indicates that if the optimizer used by CCFR-IDG2 performs well on a

function, CCFR might outperform MA-SW-Chains and MOS-CEC2013 on this function.

To show a better performance of CCFR-IDG2, we replaced SaNSDE with CMAES [9]. Table V summarizes the results of

CCFR-IDG2 with CMAES. CCFR-IDG2 with CMAES signi�cantly outperforms MA-SW-Chains on almost all the CEC�2010



6

TABLE IV: The average errors ± standard deviations on the CEC�2010 and CEC�2013 functions over 25 independent runs.
The signi�cantly better results are in bold font (Wilcoxon rank sum test with Holm p-value correction, α=0.05). R+, R− and

p-value have similar meanings as in Table I.

CEC�2010 Functions
F CCFR-IDG2 MA-SW-Chains MOS-CEC2013

f1 1.62e-05±6.55e-06 3.88e-14±3.59e-14↓ 0.00e+00±0.00e+00↓
f2 1.73e+02±8.62e+00 8.63e+02±5.84e+01↑ 0.00e+00±0.00e+00↓
f3 1.22e+01±3.66e-01 5.41e-13±2.13e-13↓ 1.65e-12±6.73e-14↓

f4 1.26e+11±7.50e+10 2.94e+11±9.32e+10↑ 1.56e+10±6.02e+09↓
f5 9.15e+07±1.61e+07 1.75e+08±1.03e+08↑ 1.11e+08±2.25e+07↑
f6 6.85e+05±7.05e+05 3.52e+04±1.72e+05 1.22e-07±6.43e-08↓
f7 2.04e-03±3.45e-04 3.30e+02±1.40e+03 0.00e+00±0.00e+00↓
f8 3.19e+05±1.08e+06 9.28e+06±2.36e+07↑ 1.95e+00±8.03e+00↓

f9 1.34e+07±1.68e+06 1.45e+07±1.59e+06 3.46e+06±4.49e+05↓
f10 1.81e+03±1.43e+02 2.06e+03±1.19e+02↑ 3.78e+03±1.47e+02↑
f11 1.99e+01±3.26e+00 3.69e+01±8.24e+00↑ 1.91e+02±4.07e-01↑
f12 2.03e+01±2.23e+01 3.19e-06±5.32e-07↓ 0.00e+00±0.00e+00↓
f13 5.26e+02±1.04e+02 1.09e+03±6.29e+02↑ 7.14e+02±5.68e+02

f14 3.08e+07±3.35e+06 3.34e+07±3.37e+06↑ 9.80e+06±6.03e+05↓
f15 3.18e+03±1.51e+02 2.69e+03±9.75e+01↓ 7.44e+03±1.84e+02↑
f16 2.01e+01±2.62e+00 1.08e+02±1.51e+01↑ 3.82e+02±1.55e+01↑
f17 6.72e+01±8.68e+01 1.26e+00±9.45e-02↓ 2.83e-07±7.97e-08↓
f18 1.37e+03±1.93e+02 1.87e+03±5.79e+02↑ 1.54e+03±7.46e+02

f19 1.28e+06±1.01e+05 2.85e+05±1.74e+04↓ 2.91e+04±2.14e+03↓
f20 1.97e+09±1.83e+09 1.05e+03±7.59e+01↓ 3.52e+02±4.43e+02↓

R+ � 143.0 73.0
R− � 67.0 137.0
p-value � 1.56e-01 2.32e-01

CEC�2013 Functions
F CCFR-IDG2 MA-SW-Chains MOS-CEC2013

f1 1.77e-05±4.52e-06 8.49e-13±1.09e-12↓ 1.27e-22±7.41e-23↓
f2 3.64e+02±2.06e+01 1.22e+03±1.14e+02↑ 8.32e+02±4.48e+01↑
f3 2.07e+01±1.21e-02 2.14e+01±5.62e-02↑ 9.18e-13±5.12e-14↓

f4 9.56e+07±4.03e+07 4.58e+09±2.46e+09↑ 1.74e+08±7.87e+07↑
f5 2.80e+06±3.18e+05 1.87e+06±3.06e+05↓ 6.94e+06±8.85e+05↑
f6 1.06e+06±1.05e+03 1.01e+06±1.53e+04↓ 1.48e+05±6.43e+04↓
f7 2.03e+07±2.94e+07 3.45e+06±1.27e+06 1.62e+04±9.10e+03↓

f8 6.63e+10±9.52e+10 4.85e+13±1.02e+13↑ 8.00e+12±3.07e+12↑
f9 1.89e+08±2.83e+07 1.07e+08±1.68e+07↓ 3.83e+08±6.29e+07↑
f10 9.48e+07±1.82e+05 9.18e+07±1.06e+06↓ 9.02e+05±5.07e+05↓
f11 4.17e+08±3.43e+08 2.19e+08±2.98e+07 5.22e+07±2.05e+07↓

f12 1.56e+09±1.58e+09 1.25e+03±1.05e+02↓ 2.47e+02±2.54e+02↓
f13 1.21e+09±6.00e+08 1.98e+07±1.82e+06↓ 3.40e+06±1.06e+06↓
f14 3.39e+09±3.06e+09 1.36e+08±2.11e+07↓ 2.56e+07±7.94e+06↓

f15 9.82e+06±3.69e+06 5.71e+06±7.57e+05↓ 2.35e+06±1.94e+05↓

R+ � 34.0 41.0
R− � 86.0 79.0
p-value � 1.51e-01 3.03e-01

The symbols ↑ and ↓ have similar meanings as in Table I.

and CEC�2013 functions. CCFR-IDG2 with CMAES performs signi�cantly better than MOS-CEC2013 by several orders of
magnitude on most of the partially separable functions (the CEC�2010 functions f4�f18; the CEC�2013 functions f4�f11).

REFERENCES

[1] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, �Benchmark functions for the CEC�2010 special session and competition on large-scale global
optimization,� Nature Inspired Computation and Applications Laboratory, Tech. Rep., 2010.

[2] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, �Benchmark functions for the CEC�2013 special session and competition on large scale global
optimization,� Evolutionary Computation and Machine Learning Group, RMIT University, Australia, Tech. Rep., 2013.

[3] R. Ros and N. Hansen, �A simple modi�cation in cma-es achieving linear time and space complexity,� in Parallel Problem Solving from Nature, 2008,
pp. 296�305.

[4] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, �Cooperative co-evolution with differential grouping for large scale optimization,� Evolutionary Computation,
IEEE Transactions on, vol. 18, no. 3, pp. 378�393, 2014.

[5] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, �IDG: A faster and more accurate differential grouping algorithm,� University of Birmingham,
School of Computer Science, Tech. Rep. CSR-15-04, September 2015. [Online]. Available: ftp://ftp.cs.bham.ac.uk/pub/tech-reports/2015/CSR-15-04.pdf

[6] M. N. Omidvar, X. Li, and X. Yao, �Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms,� in Genetic
and Evolutionary Computation Conference, 2011, pp. 1115�1122.

[7] D. Molina, M. Lozano, and F. Herrera, �MA-SW-Chains: Memetic algorithm based on local search chains for large scale continuous global optimization,�
in IEEE Congress on Evolutionary Computation, 2010, pp. 1�8.



7

TABLE V: The average errors ± standard deviations on the CEC�2010 and CEC�2013 functions over 25 independent runs.
The signi�cantly better results are in bold font (Wilcoxon rank sum test with Holm p-value correction, α=0.05). R+, R− and

p-value have similar meanings as in Table I.

CEC�2010 Functions
F CCFR-IDG2 (CMAES) MA-SW-Chains MOS-CEC2013

f1 5.50e-17±2.15e-17 3.88e-14±3.59e-14↑ 0.00e+00±0.00e+00↓
f2 5.41e+02±4.80e+01 8.63e+02±5.84e+01↑ 0.00e+00±0.00e+00↓
f3 1.02e+00±3.98e-01 5.41e-13±2.13e-13↓ 1.65e-12±6.73e-14↓

f4 4.28e-03±4.98e-03 2.94e+11±9.32e+10↑ 1.56e+10±6.02e+09↑
f5 1.10e+08±1.60e+07 1.75e+08±1.03e+08↑ 1.11e+08±2.25e+07
f6 9.58e+00±8.51e-01 3.52e+04±1.72e+05↑ 1.22e-07±6.43e-08↓
f7 4.47e-07±1.73e-06 3.30e+02±1.40e+03↑ 0.00e+00±0.00e+00↓
f8 1.25e+06±1.85e+06 9.28e+06±2.36e+07↑ 1.95e+00±8.03e+00

f9 9.28e-06±5.47e-06 1.45e+07±1.59e+06↑ 3.46e+06±4.49e+05↑
f10 1.29e+03±6.14e+01 2.06e+03±1.19e+02↑ 3.78e+03±1.47e+02↑
f11 2.35e-01±4.08e-01 3.69e+01±8.24e+00↑ 1.91e+02±4.07e-01↑
f12 1.28e-10±9.64e-11 3.19e-06±5.32e-07↑ 0.00e+00±0.00e+00↓
f13 4.73e+00±3.79e+00 1.09e+03±6.29e+02↑ 7.14e+02±5.68e+02↑

f14 2.61e-19±3.26e-20 3.34e+07±3.37e+06↑ 9.80e+06±6.03e+05↑
f15 2.04e+03±8.22e+01 2.69e+03±9.75e+01↑ 7.44e+03±1.84e+02↑
f16 8.07e-13±2.60e-14 1.08e+02±1.51e+01↑ 3.82e+02±1.55e+01↑
f17 7.42e-24±1.63e-25 1.26e+00±9.45e-02↑ 2.83e-07±7.97e-08↑
f18 1.09e+01±6.87e+00 1.87e+03±5.79e+02↑ 1.54e+03±7.46e+02↑

f19 2.12e+04±2.21e+03 2.85e+05±1.74e+04↑ 2.91e+04±2.14e+03↑
f20 8.50e+02±2.50e+01 1.05e+03±7.59e+01↑ 3.52e+02±4.43e+02↓

R+ � 207.0 157.0
R− � 3.0 53.0
p-value � 1.40e-04 5.22e-02

CEC�2013 Functions
F CCFR-IDG2 (CMAES) MA-SW-Chains MOS-CEC2013

f1 5.52e-17±5.70e-18 8.49e-13±1.09e-12↑ 1.27e-22±7.41e-23↓
f2 4.35e+02±3.55e+01 1.22e+03±1.14e+02↑ 8.32e+02±4.48e+01↑
f3 2.04e+01±5.30e-02 2.14e+01±5.62e-02↑ 9.18e-13±5.12e-14↓

f4 5.58e+03±2.73e+04 4.58e+09±2.46e+09↑ 1.74e+08±7.87e+07↑
f5 2.19e+06±3.11e+05 1.87e+06±3.06e+05↓ 6.94e+06±8.85e+05↑
f6 9.99e+05±1.26e+04 1.01e+06±1.53e+04↑ 1.48e+05±6.43e+04↓
f7 2.22e-08±4.21e-08 3.45e+06±1.27e+06↑ 1.62e+04±9.10e+03↑

f8 4.89e+03±1.23e+03 4.85e+13±1.02e+13↑ 8.00e+12±3.07e+12↑
f9 1.59e+08±3.33e+07 1.07e+08±1.68e+07↓ 3.83e+08±6.29e+07↑
f10 9.11e+07±1.35e+06 9.18e+07±1.06e+06↑ 9.02e+05±5.07e+05↓
f11 4.64e-05±7.47e-05 2.19e+08±2.98e+07↑ 5.22e+07±2.05e+07↑

f12 1.01e+03±5.20e+01 1.25e+03±1.05e+02↑ 2.47e+02±2.54e+02↓
f13 2.58e+06±3.00e+05 1.98e+07±1.82e+06↑ 3.40e+06±1.06e+06↑
f14 3.63e+07±3.21e+06 1.36e+08±2.11e+07↑ 2.56e+07±7.94e+06↓

f15 2.80e+06±2.77e+05 5.71e+06±7.57e+05↑ 2.35e+06±1.94e+05↓

R+ � 103.0 77.0
R− � 17.0 43.0
p-value � 1.25e-02 3.59e-01

The symbols ↑ and ↓ have similar meanings as in Table I.

[8] A. LaTorre, S. Muelas, and J.-M. Pena, �Large scale global optimization: Experimental results with mos-based hybrid algorithms,� in IEEE Congress on
Evolutionary Computation, 2013, pp. 2742�2749.

[9] N. Hansen, S. D. Müller, and P. Koumoutsakos, �Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation
(cma-es),� Evol. Comput., vol. 11, no. 1, pp. 1�18, 2003.


