
This is a repository copy of Scaling Up Dynamic Optimization Problems: A 
Divide-and-Conquer Approach.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156239/

Version: Accepted Version

Article:

Yazdani, D, Omidvar, MN orcid.org/0000-0003-1944-4624, Branke, J et al. (2 more 
authors) (2020) Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer 
Approach. IEEE Transactions on Evolutionary Computation, 24 (1). ISSN 1089-778X 

https://doi.org/10.1109/TEVC.2019.2902626

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Scaling Up Dynamic Optimization Problems:

A Divide-and-Conquer Approach
Danial Yazdani, Mohammad Nabi Omidvar, Jürgen Branke, Trung Thanh Nguyen, and Xin Yao

Abstract—Scalability is a crucial aspect of designing efficient
algorithms. Despite their prevalence, large-scale dynamic opti-
mization problems are not well-studied in the literature. This
paper is concerned with designing benchmarks and frameworks
for the study of large-scale dynamic optimization problems. We
start by a formal analysis of the moving peaks benchmark and
show its nonseparable nature irrespective of its number of peaks.
We then propose a composite moving peaks benchmark suite
with exploitable modularity covering a wide range of scalable
partially separable functions suitable for the study of large-
scale dynamic optimization problems. The benchmark exhibits
modularity, heterogeneity, and imbalance features to resemble
real-world problems. To deal with the intricacies of large-scale
dynamic optimization problems, we propose a decomposition-
based coevolutionary framework which breaks a large-scale
dynamic optimization problem into a set of lower dimensional
components. A novel aspect of the framework is its efficient bi-
level resource allocation mechanism which controls the budget
assignment to components and the populations responsible for
tracking multiple moving optima. Based on a comprehensive
empirical study on a wide range of large-scale dynamic op-
timization problems with up to 200 dimensions, we show the
crucial role of problem decomposition and resource allocation
in dealing with these problems. The experimental results clearly
show the superiority of the proposed framework over three other
approaches in solving large-scale dynamic optimization problems.

Index Terms—dynamic optimization problems, large-scale op-
timization problems, decomposition, multi-population, computa-
tional resource allocation, cooperative coevolutionary.
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I. INTRODUCTION

Change is an inescapable aspect of natural and artificial

systems, and adaptation is central to their resilience [1], [2].

Optimization problems are no exception to this maxim. Indeed,

viability of businesses and their operational success depends

heavily on their effectiveness in responding to a change

in the myriad of optimization problems they entail. For an

optimization problem, this boils down to the efficiency of an

algorithm to find and maintain a quality solution to an ever

changing problem.

Ubiquity of dynamic optimization problems (DOPs) [3]

demands extensive research into design and development of

algorithms capable of dealing with various types of change [4].

These are often attributed to a change in the objective function,

its number of decision variables, or constraints. Despite the

large body of literature on dynamic optimization problems

and algorithms, little attention has been given to their scal-

ability. Indeed, the number of dimensions of a typical DOP

studied in the literature rarely exceeds twenty. This is contrary

to the emergence of high-dimensional dynamic optimization

problems such as deep online learning [5]. Deep learning

problems are large-scale by nature and the arrival of new

training data makes online learning a dynamic problem. Online

clustering of high-dimensional data is another example of

a large-scale dynamic optimization problem [6], [7]. Many

large-scale static optimization problems can also be regarded

as dynamic due to unforeseen environmental changes. Large-

scale crossing waypoints locating in air route networks is such

a problem whose problem space changes by delayed airplanes,

breakdowns, and extreme weather conditions [8].

Motivated by rapid technological advancements, large-scale

optimization has gained popularity in recent years [9]. How-

ever, the exponential growth in the size of the search space,

with respect to an increase in the number of decision variables,

has made large-scale optimization a challenging task. For

DOPs, however, the challenge is twofold. For such problems,

not only should an algorithm be capable of finding the global

optimum in the vastness of the search space but it should

also be able to track it over time. For multi-modal DOPs,

where several optima have the potential to turn into the global

optimum after environmental changes, the cost of tracking

multiple moving optima also adds to the complexity.

Exploiting problem structure is an effective way of ap-

proaching complex problems. Knowledge about the regular-

ities and the structure of a problem allows us to devise more

effective ways of solving them. This is common practice in

many branches of optimization [10]–[13]. More recently, the
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term gray-box optimization has come to refer to the practice

of incorporating problem structure into the optimization pro-

cess [14]. In evolutionary computation, finding and exploit-

ing the “hidden order” [15] by means of linkage learning

has played a central role in designing scalable optimization

algorithms [16], [17]. Divide-and-conquer and problem de-

composition techniques have also gained popularity in large-

scale global optimization in recent years [18], [19]. However,

scalability of dynamic optimization algorithms and the notion

of exploiting problem structure are under-explored areas which

we set out to study in this paper.

Moving peaks benchmark (MPB) [20] is the most popular

benchmark in the field of dynamic optimization. Despite being

scalable, MPB’s lack of modularity limits its utility for the

study of large-scale DOPs. Real-world problems often exhibit

a modular structure with nonuniform imbalance among the

contribution of its constituent parts to the objective value [21].

The modularity is caused by the interaction structure of the

decision variables resulting in a wide range of structures from

fully separable functions to fully nonseparable ones. Most

problems exhibit some degree of sparsity in their interaction

structure, which can be exploited by optimization algorithms.

The imbalance property can be caused as a by-product of

modularity or due to the heterogeneous nature of the input

variables and their domains. For example, model predictive

control (MPC) is a dynamic optimization problem with a wide

range of applications in chemical power plants, robotics, and

power systems and exhibits modularity and imbalance [22].

In this paper, we formally analyze the standard MPB and

show that it is additively nonseparable. We then propose a new

benchmark generator by composing several MPBs to account

for modularity and imbalance.

In addition to the new benchmark, we draw on advances in

large-scale global optimization and propose a decomposition-

based framework for large-scale dynamic optimization prob-

lems. The idea is to first discover and exploit the underlying

structure of a given problem by decomposing it into several

components of smaller sizes, and then to tackle the subprob-

lems simultaneously. The former can be achieved by a wide

range of variable interaction analysis algorithms capable of

identifying the underlying structure of a black-box problem

with high efficiency and accuracy [18], [19], [23], [24], and

the latter can be achieved by means of cooperative coevolution

(CC) [25]–[27]. To deal with the imbalance problem, we

also devise a new resource allocation policy, which takes the

dynamic nature of the problem into account for an economical

use of the limited computational resources. We empirically

evaluate the proposed framework on a wide range of problem

settings to validate the efficacy of various strategies such as

problem decomposition, tracking multiple moving optima, and

resource allocation. In short, this paper has the following major

contributions:

1) A mathematical variable interaction analysis on the MPB

benchmark to determine its interaction structure.

2) A large-scale benchmark suite with a modular heteroge-

neous structure allowing for imbalance among its com-

ponents.

3) A decomposition-based algorithm for solving large-scale

DOPs with a novel resource allocation mechanism.

The organization of this paper is as follows. Section II

covers the background information and related work. Sec-

tion III contains the analysis of the moving peaks bench-

mark and the details of the proposed large-scale benchmark

function generator for DOPs. The details of the proposed

decomposition-based algorithm and its resource allocation

mechanism is given in Section IV. Section V is concerned with

a comprehensive empirical analysis of the proposed algorithm.

Finally, Section VI concludes the paper and outlines possible

future directions.

II. BACKGROUND AND LITERATURE REVIEW

DOPs are usually represented as follows:

F (x) = f
(

x, θ(t)
)

, (1)

where f is the objective function, x is a design vector, θ(t)

is environmental parameters which change over time and t is

the time index with t ∈ [0, T ] where T is the problem life

cycle. In this paper, like most previous studies in the DOP

domain, we investigate DOPs that change discretely over time,

i.e., t ∈ {1, . . . , T}. In this type of DOP, the environmental

parameters change over time with stationary periods between

changes. As a result, for a DOP with T environmental states,

we have a sequence of T static environments:

F (x) =
[

f(x, θ(1)), f(x, θ(2)), . . . , f(x, θ(T ))
]

, (2)

where θ(i) denotes the parameters of the ith environment.

A. Variable Interaction

Variable interaction or linkage refers to the extent to which

the optimum of a variable depends on the values taken by

other decision variables. For continuous optimization prob-

lems, variable interaction is defined as follows [18]:

Definition 1 (Mei et al. [18]). Let f : Rn → R be a twice

differentiable function. Decision variables xi and xj interact

if a candidate solution x⋆ exists, such that

∂2f(x⋆)

∂xi∂xj
6= 0.

Some functions exhibit an underlying interaction structure

such that groups of decision variables can be optimized

independently. These functions, which are called partially

separable, are defined as follows:

Definition 2 (Omidvar et al. [21]). A function f(x) is partially

separable with m independent components iff:

arg min
x

f(x)=
(

arg min
x1

f(x1, . . . ), . . . , arg min
xm

f(. . . ,xm)
)

,

where x = (x1, . . . , xn)
⊤ is a decision vector of n dimensions,

x1, . . . ,xm are disjoint sub-vectors of x, and 2 ≤ m ≤ n. The

function is called fully separable when m = n.

Additive separability is a special type of partial separability,

which is defined as follows:
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Algorithm 1: (x⋆, f⋆) = CC(f )

1 /*Main Framework of CC*/

2 P← randomized initial population;

3 c← randomized initial context vector;

4 //grouping stage

5 G = Grouping(f);

6 //optimization stage

7 while Termination Condition is Not Satisfied do

8 for κ = 1 to |G| do

9 (P, c) = Optimizer(P, c,Gκ);

10 x⋆ = c ; f⋆ = f(x⋆) ;

11 return (x⋆, f⋆);

Definition 3 (Omidvar et al. [21]). A function is additively

separable if it has the following general form:

f(x) =

m
∑

i=1

fi(xi), m > 1,

where fi(·) is a nonseparable subfunction, and m is the

number of nonseparable components of f . The definition of

x and xi is identical to what was given in Def. 2.

Definition 4 (Omidvar et al. [21]). A function f(x) is fully

nonseparable if every pair of its decision variables interact.

Let us provide two illustrative examples. Given the poly-

nomial f(x) = x2
1 + 3x1x

2
2 + 2x2

3x
3
4, by applying Def. 1

we can show that
∂f(x)
∂x1∂x2

= 6x2 which is clearly nonzero

when x2 6= 0. Therefore, x1 and x2 interact. Conversely, the

quantity
∂f(x)
∂x1∂x3

is identically zero regardless of the choice

of x. Therefore, x1 and x3 are separable. It is clear that

the nonlinearity of f(x) is caused by the product terms,

resulting in the following interaction groups: {x1, x2} and

{x3, x4}. Accordingly, we can rewrite f(x) in terms of two

subfunctions as follows: f(x) = f1(x1, x2) + f2(x3, x4).
It is therefore clear that f(x) is both partially separable

and partially additively separable (Defs. 2 and 3). Another

example is g(x) = exp{∑n
i=1 x

2
i }. It is clear that all second-

order partial derivatives of g(x) are nonzero except at the

origin, which forces all pairs of variables to interact (Def. 4).

However, the optimal values for each dimension can still be

found independently regardless of the values taken by other

dimensions. This makes g(x) fully separable according to

Def. 2 where m = n.

B. Cooperative Coevolution

Cooperative coevolution (CC) has been proposed by Potter

and De Jong [25] with the goal of allowing evolutionary

algorithms the capacity to solve increasingly complex prob-

lems. The idea is based on decomposing a complex problem

into subproblems of lower complexity which are coadapted

within an evolutionary context. Algorithm 1 shows a high-level

representation of CC. In the original implementation of CC, an

n-dimensional problem is decomposed into n 1-dimensional

problems each of which is optimized using a given optimizer

in a round-robin fashion. In order to assign a fitness to each

partial solution in a component, the individuals are evaluated

within the context of a complete solution often referred to as

the context vector [28].

The round-robin optimization of components assumes a

uniform contribution from each component which is often not

the case for various reasons [21]. The so-called imbalance

among the contribution of components can be attributed to

the following: 1) nonuniform dimensionality of the underlying

component functions. 2) component functions with different

landscapes and output ranges. 3) the dynamics of the opti-

mizer, its convergence behavior, and stagnation. Contribution-

based cooperative coevolution (CBCC) [29], [30] is an im-

proved CC framework which addresses the imbalance issue by

assigning more resources to components with higher overall

contributions. An important aspect of a contribution-aware

coevolutionary framework is maintaining an optimal balance

between an exploration phase in which the contribution of

components is updated, and an exploitation phase in which the

most contributing component is optimized. This has resulted

in many attempts to design various exploration/exploitation

polices [31]–[33].

The original CC framework and its contribution-based

counterpart have no explicit means of dealing with variable

interactions. They only respond to interactions through the

cooperation of individuals in updating the context vector,

which acts as a message passing mechanism. The efficiency of

this approach depends on the policy of constructing the context

vector [34] as well as its update frequency [35]. To alleviate

this problem, many variable interaction analysis algorithms

have been proposed with the aim of decomposing a large-

scale problem into smaller independent components. There

have been many attempts on this [26], [36], among which the

differential grouping family of algorithms showed the highest

accuracy [18], [19], [23]. Differential grouping (DG) works

on the basis of the following theorem:

Theorem 1 (Omidvar et al. [23]). Let f(x) be an additively

separable function. ∀a, b1 6= b2, δ ∈ R, δ 6= 0, variables xp

and xq interact if the following condition holds

∆δ,xp
[f ](x)|xp=a,xq=b1 6= ∆δ,xp

[f ](x)|xp=a,xq=b2 , (3)

where

∆δ,xp
[f ](x) = f(. . . , xp + δ, . . . )− f(. . . , xp, . . . ), (4)

refers to the forward difference of f with respect to variable

xp with interval δ.

The quantities in (3) are real-valued numbers; therefore, the

equality check cannot be evaluated exactly over the floating-

point number field on computer systems. Consequently, the

equality check needs to be converted to an inequality check

by introducing a sensitivity parameter: |∆(1) − ∆(2)| > ǫ.
Here, ∆(1) and ∆(2) denote the left and right hand side of

(3), respectively. In the absence of representation and roundoff

errors, ǫ can be theoretically set to zero; however, this is not

usually the case and the optimal value of ǫ is often a nonzero

positive number. This parameterization makes DG sensitive to

choices of ǫ whose optimal value may vary from function to

function and is difficult to tune by practitioners. To alleviate

this problem, Omidvar et al. proposed DG2 [24], a parameter-

free version of DG, which automatically sets ǫ by estimating

the bounds on the computational roundoff errors to maximize
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the accuracy of variable interaction detection. DG2 is the core

decomposition algorithm used in this paper.

C. Tracking Moving Optimum

Tracking moving optimum is the most popular approach in

the DOP domain in which algorithms try to find the optimum

and track it after each environmental change. One of the most

important and challenging DOPs are problems with several

competing local optima each having the potential to become

the global optimum after an environmental change [4]. A

multi-population strategy is one of the most effective ap-

proaches for solving this type of DOPs [37]. In this section, we

only focus on the most relevant algorithms in which the multi-

population strategy is utilized for tracking multiple moving

optima (TMMO) [3], [4], [37], [38].

Self organizing scouts (SOS) [39] is a multi-population

approach which utilizes a large subpopulation for global search

and a number of small subpopulations for tracking changes of

the identified peaks. SOS is one of the first methods which

proposed TMMO. This strategy with some modifications has

also been used with other metaheuristics such as PSO [40]–

[43], differential evolution (DE) [44], [45], and artificial fish

swarm optimization [46], [47].

In [42], two multi-population methods, called MQSO and

MCPSO, were proposed which use quantum and charged

particles for maintaining diversity. The population size is

equal for every sub-swarm, and the number of sub-swarms is

fixed and predetermined. An anti-convergence method ensures

continued search for possible better peaks. The problem with

having a fixed number of subpopulations is that the algorithm

either misses some peaks, or wastes computational resources

due to redundant subpopulations. Although these two methods

rely on an exclusion mechanism to avoid several populations

to converge on the same peak, their reliance on knowing the

actual number of peaks to determine the exclusion radius

violates the black-box assumption.

Other methods used a dynamic number of subpopulations in

which regrouping and splitting models were utilized for creat-

ing subpopulations [4], [37]. Algorithms such as species-based

PSO (SPSO) [48] and the randomized regrouping multi-swarm

PSO [49] regroups individuals every generation/iteration or

when a predefined criterion is satisfied. In [50], [51], a method

based on hierarchical clustering was proposed for developing

subpopulations whenever a change is detected. The splitting

approaches generate subpopulations by dividing a main pop-

ulation when a certain criterion is met [52], [53].

AMQSO [43] was the first adaptive number of subpopu-

lations in which the algorithm performed a continual search

for new peaks and adapts the number of subpopulations

to the number of detected peaks. Different algorithms with

adaptive number of subpopulations mechanisms have been

proposed [46], [54]–[58]. Since AMQSO adapts the number

of subpopulations to the number of peaks, it can adjust the

exclusion radius without having access to the actual number

of peaks. Unlike MQSO which uses quantum particles during

the course of optimization, AMQSO only uses them after

an environmental change [4], resulting in substantial sav-

ings of computational resources. The tracking moving optima

with adaptive number of subpopulations and the exclusion

mechanisms used in this paper are based on AMQSO. For

diversification however, we use a simple random sampling

mechanism around the best solution immediately prior to an

environment change [40], [58], [59].

A multi-population DE (DynDE) was proposed in [44] for

solving DOPs. DynDE uses Brownian particles around the best

found position to improve exploitation. An improved version

of DynDE was proposed by Plessis and Engelbrecht [45] by

modifying its exclusion mechanism and adding a resource

allocation mechanism which prioritizes the optimization of

promising peaks. Although this mechanism results in a faster

convergence within each environment, the computational re-

sources are still wasted due to the continual optimization of an

already stagnant population. This type of resource allocation

only reduces the offline error which is based on averaging of

the current error across all environments [20], but does not

necessarily improve the overall performance by transferring

the resources from an stagnant population to those that can still

improve. Yazdani et al. [58] partially addressed this problem

by using a hibernation mechanism to avoid optimization of

stagnant populations; however, their approach does not take

the imbalance and the relative contribution of tracker swarms

into account. The resource allocation mechanism proposed in

this paper addresses this issue.

Recently, in [60], for the first time, partially separable

DOPs were investigated and a divide-and-conquer method was

used in order to solve them. This method uses differential

grouping [23] for detecting interactions between decision

variables and uses a species-based PSO as its optimizer [48],

[61]. A major drawback of this algorithm is the assumption

that the number of peaks in each subfunction and the number

of generations between successive environmental changes are

known a priori, which violates the black-box assumption.

Despite the importance of modularity, heterogeneity, im-

balance and high-dimensionality in many real-world prob-

lems [21], [62]–[64], very few studies are dedicated to address

these issues in dynamic optimization. The only research in

which modularity and high-dimensionality were investigated

is [60]. However, this research did not consider heterogeneity

and imbalance which are common in modular problems [21].

Limited research about the effect of scalability, modularity,

imbalance and heterogeneity in dynamic optimization is partly

due to a lack of suitable benchmarks, which is the topic of

next section.

D. DOP Benchmarks

In this section, we review the well-known dynamic opti-

mization benchmarks relevant to the current study, i.e., those

which are continuous, single-objective, and unconstrained [4].

In [65] a switching function method was proposed in which

two landscapes A and B are used to generate the following

three types of change: 1) Linear translation of peaks in A;

2) Changing the location of the optimum randomly while the

rest of the search space remain unchanged; and 3) Switching

between landscapes A and B.

Branke’s Moving Peaks Benchmark (MPB) [20], [66] is

the most widely used benchmark in DOP. The search space
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generated by this benchmark consists of several peaks whose

width, height, and location change over time. MPB is very

flexible to generate functions with configurable dimensions,

number of peaks, and peak dynamics. In the standard MPB, the

widths and heights of peaks are changed by adding Gaussian

noise.

Similar to MPB, DF1 [67], [68] generates problem instances

in which the width, height, and location of peaks change over

time. The nature of the changes can be controlled by a logistic

function to generate fixed, chaotic, or bifurcated step sizes.

Another benchmark whose landscape consists of several peaks

is Gaussian peak [69]. In this benchmark, the location of peaks

change in random directions and the step sizes are uniformly

distributed over an interval controlled by two levels of severity

called abrupt and gradual [69].

Generalized dynamic benchmark generator (GDBG) [70],

[71] can be instantiated into the binary space, real space

and combinatorial space. GDBG provided six properties of

the environmental dynamics including small step change,

large step change, random change, recurrent change, recurrent

change with noise, and chaotic change. These environmental

dynamics were used in some other studies such as [72], [73],

in which the width and height of each peak changed using

them.

Dynamic rotation uses rotation for creating dynamic

changes [74]. In this benchmark, the landscape is combined

with a visibility mask which allows a percentage of the search

space to be masked with a predefined fitness value. The

rotation dynamic benchmark generator (RDBG) [71], [75] is

another benchmark generators that uses rotation to generate

environmental changes in continuous space. The magnitude

of change in RDBG is defined using a rotation angle.

Although all the previous benchmarks are scalable, they

all lack modularity which is an important feature of many

real-world problems. One way of modularizing benchmarks is

through summation of several independent benchmarks which

is a common practice in large-scale global optimization [21],

[75], [76]. However, in addition to modularity, the bench-

mark should exhibit heterogeneity and imbalance features to

resemble real-world problems [21], [62]–[64], [75]. In [60]

a modularized MPB was proposed; however, the generated

problem instances lack heterogeneity and imbalance. Generat-

ing problem instances to resemble real-world problems is the

motivation behind proposing a new benchmark in this paper.

III. THE PROPOSED BENCHMARK GENERATOR

The moving peaks benchmark (MPB) [20] is the most pop-

ular benchmark suite in dynamic optimization. MPB generates

a landscape containing several peaks whose height, width, and

location change over time. As a result, each peak can become

the global optimum after an environmental change according

to its current height and width. Standard baseline function of

MPB is as follows:

f (t)(x) = max
i∈{1,...,m}

{

h
(t)
i − w

(t)
i

∥

∥

∥
x− c

(t)
i

∥

∥

∥

}

, (5)

where m is the number of peaks, x is a solution in the problem

space, h
(t)
i , w

(t)
i and c

(t)
i are the height, width, and the center

of the ith peak in the tth environment, respectively.

Although MPB can be scaled to any number of dimensions,

its lack of modularity limits its capacity for large-scale DOPs.

This limitation comes from the nonseparable nature of the

benchmark.

Proposition 1. An n-dimensional MPB with m > 1 peaks is

nonseparable.

Proof. See Section S-I of the supplementary document.

Proposition 2. An n-dimensional MPB with a single peak

(m = 1) is additively nonseparable.

Proof. See Section S-I of the supplementary document.

Proposition 2 conveys that MPB of the simplest form,

i.e., an n-dimensional MPB with a single peak is separable

according to Def. 2; however, according to Def. 3 it is not

additively separable. A theoretical proof of this is given in the

supplementary document.

One way of modularizing MPB is through summation of

several independent MPBs. This is customary in many large-

scale global optimization benchmarks [75], [76] and has been

recently used in [60] to propose a modularized MPB. Three

major shortcomings of this benchmark are: a lack of imbalance

among components, uniform component sizes, and unrealistic

homogeneous structures. Many real-world problems, however,

are heterogeneous in nature which is caused by the coexistence

of separable and nonseparable components, each having a

different share in improving the objective function [21].

In this paper, we address these shortcomings by proposing

a new scalable benchmark, Composite MPB (CMPB), through

heterogeneous composition of several MPBs. CMPB uses the

standard MPB (Equation (5)) as its component function and

has the following general form:

F (t)(x) =

k
∑

i=1

(

ωif
(t)
i (xi)

)

+

k+l
∑

j=k+1

(

ωjγf
(t)
j (xj)

)

, (6)

where the first summation term generates k nonseparable

components, and the second summation term generates an l-
dimensional separable component. Here fi is the ith nonsep-

arable subfunction which is a di-dimensional MPB (di > 1),

fj is the jth 1-dimensional MPB, x is the decision vector of

D dimensions, xi is a disjoint sub-vector of x with di ≥ 2,

xj is a 1-dimensional scalar variable, ωi and ωj control the

contribution of each component (for generating imbalance),

and γ is a regulatory factor controlling the dominance of the

separable component which is the reciprocal of the average

dimensionality of the nonseparable components:

γ =
k

∑k
i=1 di

. (7)

According to (5), the contribution of various MPBs is almost

identical. This is because the height and the width parameters

are usually sampled from the same distribution for different in-

stances of MPB and the use of the max function also dampens

the contrasts between various instances of MPB. Therefore, in

(6) a large number of separable variables can easily dominate

the final function value, F (t), which limits the utility of the

benchmark to study a wide range of scenarios. To alleviate this
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(a) 1-dimensional MPB with

3 peaks

(b) 1-dimensional MPB with

2 peaks

(c) 2D CMPB with 6 peaks

by adding (a) and (b).

Fig. 1. Exponentially growing number of peaks by composing MPBs.

issue, γ is used to regulate the dominance of one component

over another. As can be seen, γ is a function of k and di and

is calculated automatically when the number of nonseparable

components and their dimensions are chosen. Only after this

regularization, the imbalance coefficients (ωi and ωj) make

intuitive sense and can be freely picked by the user to generate

different imbalance patterns. By assigning different values to

ωi and ωj , it is possible to generate problem instances in which

different subfunctions have different contributions to the total

fitness value which resembles the imbalance characteristics of

some real-world problems.

For each MPB in the CMPB, the height, width, and center

of a peak change from one environment to the next by the

following equations:

h
(t+1)
i = h

(t)
i + αi N (0, 1), (8)

w
(t+1)
i = w

(t)
i + βi N (0, 1), (9)

c
(t+1)
i = c

(t)
i + v

(t+1)
i , (10)

v
(t+1)
i =

sir

‖r‖ , (11)

where N (0, 1) is a random number drawn from a Gaussian

distribution with mean 0 and variance 1, αi is the height

severity, βi is the width severity, si is the shift severity of the

ith peak, and the components of the vector r are uniformly

drawn from [−0.5, 0.5]. The reason that each peak has its own

width, height, and shift severity is to simulate problems in

which different regions change with different intensity. The

parameter settings of CMPB are shown in Table I.

An interesting and natural consequence of CMPB’s design

is the exponential growth in the total number of peaks as

the number of multi-modal components increases. This is a

new challenge never addressed in either large-scale global

optimization or dynamic optimization. In CMPB, when we

compose several MPBs according to (6), the total number of

peaks is:

M =
k+l
∏

i=1

mi, (12)

where mi is the number of peaks in the ith MPB subfunction

(represented by fi and fj in (6)). It should be noted that

M is the maximum number of peaks that can exist in the

landscape, which may change over time due to coverage of

smaller peaks by larger ones. For the sake of clarity, we

provide an illustrative example. In Fig. 1(a) and Fig. 1(b),

two 1-dimensional MPBs with 2 and 3 peaks are shown.

The 2-dimensional function constructed based on (6) with

ω1 = ω2 = 1 results in a total of 2 × 3 = 6 peaks. A

consequence of this is that even for low-dimensional functions

of this form, variable interaction analysis and problem de-

composition can significantly simplify the problem. Indeed, an

ideal decomposition can reduce the maximum number of peaks

down to
∑k+l

i=1 mi which is significantly smaller than (12) for

problems with large number of peaks and components. In the

next section, we propose a decomposition-based framework

that has this feature.

IV. THE PROPOSED FRAMEWORK

In this section, we propose a cooperative coevolutionary

multi-population framework for solving large-scale DOPs. We

first provide an overview of the framework with an emphasis

on its high-level structure and the resource allocation policy

(Section IV-A). We then focus on the details of our multi-

population part of the framework and address dynamic issues

such as convergence detection of populations, avoiding mutual

convergence of populations onto the same peak, diversity

control, and detection and handling of environmental changes

(Section IV-B).

A. The high-level structure of the proposed framework

Algorithm 2 shows the structure of the proposed framework.

The framework has three major parts – decomposition, search

and resource allocation, and change management – which

are explained next. In addition to Algorithm 2, Fig. S-1 in

the supplementary document illustrates the flow chart of the

proposed framework.

1) Decomposition: The framework starts by decomposing

a given dynamic optimization problem into its constituent

independent components (Algorithm 2, line 1). This is done

using a variable interaction analysis algorithm. In this paper,

we use the state-of-the-art DG2 algorithm [24] introduced in

Section II. After problem decomposition, a multi-population

dynamic optimizer is initialized for each of the identified

components (Algorithm 2, lines 2-3). It should be noted that

each component contains partial solutions which cannot be

evaluated directly using the objective function. Due to the

black-box nature of the objective function, these partial so-

lutions can only be evaluated within the context of a complete

solution referred to as a context vector [28] which is randomly

initialized on line 4.

Next, the framework enters its main loop and optimizes

the identified lower-dimensional components in an iterative

manner (Algorithm 2, lines 5-41). The framework has three

major phases: 1) exploration, 2) exploitation, and 3) change

management. In the first phase (Algorithm 2, lines 6-23),

the framework cycles over all components with the aim

of tracking optima, discovering any emerging optima, and

estimating the contribution of each component in improving

the overall objective function value. For this purpose, the

framework maintains a free population and a set of tracker

populations for each component. The primary purpose of a free

population is to find uncovered peaks. When a free population

has converged to a peak, it will change to a tracker population

whose primary purpose is to do exploitation and track it
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after each environmental change. For better use of the limited

computational resources between successive environmental

changes, the framework detects and deactivates the converged

tracker populations based on a mechanism which will be

explained in the next section.

2) Search and Resource Allocation: The exploitation phase

(Algorithm 2, lines 24-29) is a crucial step in improving the

efficiency of the framework. First, the tracking of multiple

moving optima is inherently expensive. Second, the contribu-

tion of components are not uniform, making the classic round-

robin optimization policy very inefficient. The imbalance

in the contribution happens for several reasons. Two major

factors are nonuniform change severity of components after

an environmental change, and discrepancy in the convergence

behavior of populations.

For best use of the available resources, the exploitation

phase occurs at two levels: component level, and population

level. At the component level, the best contributing component

is selected and all its active tracker populations are executed

for an extra iteration (Algorithm 2, lines 24-26). The amount

that each component improves the objective value at the

end of the exploration phase is taken as its contribution.

This often happens for the component experiencing the most

intense environmental change. Therefore, by allocating more

computational resource to such populations, the algorithm ac-

celerates the optimization process by prioritizing components

with higher importance or higher change severities. Finally,

at the population level, the best tracker of each component

is executed for one more iteration (Algorithm 2, lines 27-29).

This step not only gives more resources to the best performing

tracker, but also keeps the information about the best partial

solutions up-to-date for the purpose of updating the context

vector.

3) Change Management: Finally, the last phase deals with

the environmental changes and updating of the context vector.

Two events trigger the updating of the context vector. The first

and most obvious case is the detection of an environmental

change (Algorithm 2, lines 30-37). The second is prior to the

deployment of a solution (Algorithm 2, lines 38-40). In DOPs,

the algorithm is given a predefined time frame within which

it has to respond to an environmental change. We denote this

with η which is the maximum number of function evaluations

available to the optimizer before providing a solution for

deployment. It should be noted that in classic CC, the context

vector is updated at every coevolutionary cycle. This is a costly

operation because all solutions whose fitness were calculated

with a previous version of the context vector have to be re-

evaluated. However, owing to the grouping accuracy of DG2

and the independent nature of the components, this operation

can be delayed until it becomes necessary (due to a dynamic

change).

B. Dynamic Considerations

The aim of the framework on each component is to find all

peaks and track them. However, due to the lack of information

about the number of peaks, and also the coverage of some

smaller peaks by larger ones in some of the environments,

Algorithm 2: The Proposed Framework

1 G = Grouping(f);

2 forall G do

3 Pfree ← Initialize the free population;

4 c← Randomly initialize the context vector;

5 repeat

6 forall G do

7 (Pfree, g
⋆
free

) = Optimizer(Pfree, g
⋆
free

);

8 if diversity of the free population is < rconv then

9 Change its status to tracker population;

10 Pfree ← Initialize a new free population;

11 foreach tracker population i do

12 if ‖g⋆
free
− g⋆

i ‖ < rexcl then

13 Pfree ← Reinitialize the free population;

14 if ith tracker population is active then

15 (Pi, g
⋆
i ) = Optimizer(Pi, g

⋆
i );

16 if the diversity is < rdeact then

17 Deactivate the tracker population;

18 foreach tracker populations j do

19 if ‖g⋆
i − g⋆

j ‖ < rexcl then

20 if f(g⋆
i ) < f(g⋆

j ) then

21 Remove ith tracker population;

22 else if f(g⋆
i ) > f(g⋆

j ) then

23 Remove jth tracker population ;

24 Determine the component H with the highest progress;

25 forall active tracker populations i in H do

26 (Pi, g
⋆
i ) = Optimizer(Pi, g

⋆
i );

27 foreach G do

28 Determine the best tracker population b;

29 (Pb, g
⋆
b ) = Optimizer(Pb, g

⋆
b );

30 if an environmental change is happened then

31 c← Update context vector using best found position in each

population g⋆;

32 forall G do

33 Re-evaluate all individuals of the free population;

34 forall trackers do

35 Update estimated shift severity by Eq. (15);

36 Activate if is deactivated;

37 Increase diversity by Eq. (14);

38 if computational budget η is finished then

39 c← Update context vector using best found position in each

population g⋆;

40 Re-evaluate all individuals in all populations;

41 until stopping criterion is met;

a free population needs to constantly search for possible

uncovered peaks. Once a new optimum is found by a free

population, it changes to a tracker population. To test the

convergence of a free population, we use the procedure in

which the Euclidean distances between all pairs of individuals

are calculated. If all calculated distances are smaller than a

given threshold (rconv), it is assumed that the free popula-

tion is converged [43]. When a free population becomes a

tracker population, a new free population will be initialized

immediately in the search space in order to search for another

uncovered peak. It is possible that a free population converges

to a peak already covered by a tracker population. Tracking a

peak by multiple populations wastes a considerable amount

of computational resource. Therefore, a mutual exclusion

principle is enforced to avoid more than one population to

cover the same peak. To establish the mutual exclusion, we use

the mechanism proposed in [43]. According to the exclusion

mechanism, when Euclidean distances between the global

best of the free population and a tracker population is less
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than a threshold (rexcl), the algorithm assumes that the free

population has converged to a covered peak. In this situation,

the free population will be re-initialized. The value of rexcl is

calculate as follows:

rexcl = 0.5
SR

D
√
TN

, (13)

where SR is the range of search space and TN is the number

of trackers.

A similar conflict can also happen to two trackers when

a peak is covered by a larger peak. Therefore, its tracker

loses its own peak and starts converging to the larger peak’s

center. A similar situation happens when the convergence of

a free population is detected before it enters into the mutual

exclusion area of a covered peak. As a result, it becomes a

tracker population and moves toward the peak’s center. This

is another case where the exclusion principle is enforced to

control the computational overhead. To do so, the tracker with

the second best found position’s fitness value f(g⋆) will be

removed. For determining tracker populations which are under

exclusion condition, the Euclidean distance between all pairs

of trackers’ g⋆ position is calculated and compared with rexcl
based on (13).

Another critical challenge of the population-based opti-

mization algorithms in DOPs is diversity loss. According

to [4], there are two main groups of methods to address

this challenge. First is the reaction methods which introduce

diversity after each environmental change, and second is

diversity maintenance methods which try to keep the diversity

of population above a certain level over time.

Our multi-population part of the framework uses a reaction

type method in which the trackers’ diversities are increased at

the beginning of each environment. When a change is detected,

for each tracker, one of the individuals is located on the g⋆

position from the previous environment and other individuals

are randomized around the g⋆ position with radius of shift

severity of the peak by (14):

Pi,j = (si · r) + g
⋆(t−1),end
i , (14)

where Pi,j is the position of the jth individual of the ith

tracker population and g
⋆(t−1),end
i is its best found position at

the end of the previous environment, si is the shift severity of

the peak which is under cover of the ith tracker population, and

r is a uniformly distributed random number vector in range

[−1, 1]. The reason for using si in (14) is that the new location

of the peak after environmental change is expected to be inside

that radius from the previous peak center. In (14), the g∗ from

the end of the previous environment is used instead of previous

peak center position. Therefore, the diversity is introduced to

the population of each tracker as much as needed. The shift

severity of each peak is estimated by (15):

ŝi =
1

t− bi − 1
·

t−1
∑

k=bi+1

∥

∥

∥
g
⋆k,end
i − g

⋆(k−1),end
i

∥

∥

∥
, (15)

where ŝi is the estimated shift severity of the peak covered by

ith tracker population, bi is the time index of the environment

that ith tracker population has started tracking the peak, t is

TABLE I
PARAMETER SETTINGS OF CMPB

Parameter Symbol Value

Number of peaks m Randomized*between 1 to 10

Dimension D 1-200

Evaluations between changes f 500D

Shift severity s Randomized*∈ [0.5, 3]

Height severity α Randomized*∈ [3, 10]

Width severity β Randomized*∈ [0.5, 1.5]
Peaks shape – Cone

Peaks location range SR [-50,50]

Peak height h [30,70]

Peak width w [1,12]

Initial height value – 50

Initial width value – 6

Number of environments – 100

Weight ω Randomized*∈ [0.5, 2]

* Randomized with uniform distribution.

the current environment time index and g
⋆k,end
i is the global

best position of the ith tracker population at the end of the

kth environment.

Another diversity related issue is detection and deactivation

of converged trackers to save computational resources. When

a tracker population gets sufficiently close to the center of

a peak, it should be deactivated until the next environment.

A tracker population is deactivated when its diversity drops

below a certain threshold. To measure the diversity of a tracker

population the infinity norm distance between all pairs of

individuals is calculated. If all distances fall below a predefined

value (rdeact), the tracker population will be deactivated which

means that its individuals freeze until another environmental

change is detected. rdeact is a positive constant number. A

positive attribute of using infinity norm distance here is that

it is independent from dimension number.

Another challenge of DOPs is outdated memory which

happens after each environmental change due to the outdated

stored fitness values of positions such as g⋆. For addressing

this issue, after each environmental change, the fitness values

of all necessary positions (depends on the component opti-

mizer) of the free population will be re-evaluated. For tracker

populations, after re-diversification, the fitness values of the

necessary positions are evaluated. For example, if PSO is

embedded into the framework, the fitness values of particle

positions are evaluated and the personal best positions are set

to the particle positions.

The final main challenge is change detection. Since de-

tecting a change is a separate issue and in most real-world

dynamic environments the occurrence of a change is obvious

(e.g., arrival of new order, change in temperature) [38], in

this paper, we assume that the framework will be informed

when an environmental change happens. However, it should

be noted that environmental changes can be detected easily in

many problems (including the ones that we investigate in this

paper) by re-evaluating some beacons [4].

V. EXPERIMENTS AND ANALYSIS

The experiments in this section are based on different

scenarios of the CMPB framework described in Section III.

Section V-A covers the experimental settings, and Section V-B
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covers the experimental analysis which contains three sets

of experiments. The first set is concerned with investigat-

ing the efficacy of decomposition and resource allocation in

the proposed framework (Section V-B1), the second set is

concerned with investigating the robustness of the proposed

framework with respect to various aspects of DOPs, such as

the number of peaks, shift severities, and change frequencies

(Section V-B2), and the third is to investigate the effect of

different component optimizers on the relative performance of

the framework (Section V-B3) to demonstrate that the results

hold independent of the component optimizer used.

A. Experimental Design

1) Compared Frameworks: To study the effectiveness of

different components of the proposed framework, i.e., co-

operative coevolution (indexed by C), tracking of moving

optima (indexed by T), and resource allocation (indexed by

R), we generated four different frameworks which take these

components into account in isolation as well as together. These

cases are summarized in Table II.

The first framework (T) has no decomposition or resource

allocation mechanism and is a representative of the classic

TMMO algorithms. For a fair comparison, this framework

uses the multi-population approach presented in Section IV-B.

The second framework (C) is a simple CC framework which

uses DG2 for problem decomposition and uses a single-

population optimizer for each component. This framework

represents large-scale static methods with no designated mul-

tiple optima tracking mechanism. After each environmental

change, it simply re-initializes the subpopulations while main-

taining the best solution. The third framework (CT) is the

combination of the previous two cases, which is identical to

our proposed framework (CTR) with the exception of the

resource allocation mechanism. CT represents the state-of-

the-art GCM-PSO [60] and replicates its major features and

unifies its underlying decomposition and the multi-population

optima tracking mechanisms for a fair comparison. The last

framework (CTR) represents our proposed framework with all

three features active.

All the frameworks presented above can be used with any

component optimizer. For our empirical analysis, we use four

popular component optimizers: PSO [77], jDE [78], [79],

DynDE [44], [80], and CMAES [81]. For the experiments

in Sections V-B1 and V-B2, we use PSO as the component

optimizer due to its popularity in the dynamic optimization

literature [4], [37]. The remaining algorithms are used in

Section V-B3 to test the effect of different component op-

timizers on the proposed frameworks and to show that main

conclusions are independent of the component optimizer used.

2) Parameter Settings: The parameter settings of all al-

gorithms and frameworks are given in Table III. The right

column shows whether the settings are taken from the original

reference or from the sensitivity analysis results reported

in the supplementary document. The parameters common to

all algorithms are also listed at the bottom of the table.

For all frameworks, the context vector is updated only after

environmental changes and when the computational budget η

TABLE II
SUMMERY OF UTILIZED APPROACHES IN THE FRAMEWORKS

Framework
Cooperative Tracking multiple Resource

coevolutionary moving optima allocation

CTR 3 3 3

CT 3 3 5

C 3 5 5

T 5 3 5

TABLE III
PARAMETER SETTINGS

Alg. Param.
Frameworks

Ref.

CTR CT T C

CMAES
λ 5 30 Tables S-IV, S-VIII

µ ⌊λ/2⌋ [81]

jDE

NP 7 20 Tables S-II, S-VI

Cr self adaptive ∈ [0, 1] [78]

F self adaptive ∈ [0.1, 0.9] [78]

strategy DE/rand/1/bin [78]

DynDE

NP 10 60 Tables S-III, S-VII

Brownian 3 Tables S-III, S-VII

F,Cr random uniform ∈ [0, 1] [80]

strategy DE/best/2/bin [80]

PSO

C1 = C2 2.05 [82]

χ 0.729843788 [82]

5 for d ≤ 5 50 Tables S-I, S-V

swarm size 7 for 5 < d ≤ 7 50 Tables S-I, S-V

10 for d > 10 50 Tables S-I, S-V

Common Parameters

rdeact 0.1 – – – Table S-XI

rconv rexcl – [43]

is used. The default value of η is f− 1 which means we fetch

the solution at the end of each environment.

3) Performance Indicator: To measure the efficiency of

algorithms, the average error of the updated context vector

at the time of deployment (determined by η) after each

environmental change is used as the measure of performance:

P =
1

T

T
∑

t=1

(

f (t)
(

Optimum(t)
)

− f (t)
(

c(t),η
))

, (16)

where c(t),η is the context vector at the tth environment which

is updated after η fitness evaluations since the beginning of the

new environment.

B. Empirical Analysis

To compare the performance of the four algorithms, we test

them on 20 functions with various characteristics created using

the CMPB benchmark generator. The suite contains functions

with five different variable interaction structures tested in

25-, 50-, 100-, and 200-dimensional spaces (Table IV). The

statistical results are based on 31 independent runs and their

median are reported for comparison (mean and standard error

are reported in the supplementary document). To test the

statistical significance, we perform a multiple comparison test

based on a series of pairwise Wilcoxon signed-rank tests

with Holm-Bonferroni p-value correction with α = 0.05.

Highlighted entries are not statistically different from the best

result.
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TABLE IV
BENCHMARK SCENARIOS BASED ON CMPB.

F D Dimensionality of Nonseparable Components Separable

f1 25 {2, 4, 6, 8} 5

f2 25 {2, 5} 18

f3 25 {2, 4, 5, 6, 8} 0

f4 25 — 25

f5 25 {25} 0

f6 50 {2, 3, 5, 6, 7, 8, 10} 10

f7 50 {2, 3, 5, 5} 35

f8 50 {2, 2, 3, 5, 5, 5, 5, 5, 8, 10} 0

f9 50 — 50

f10 50 {50} 0

f11 100 {2, 2, 3, 5, 5, 6, 6, 8, 8, 10, 10, 15} 20

f12 100 {2, 2, 3, 3, 5, 5, 10} 70

f13 100 {2, 2, 2, 2, 3, 3, 5, 5, 5, 5, 5, 5, 8, 8, 10, 10, 20} 0

f14 100 — 100

f15 100 {100} 0

f16 200 {2, 2, 3, 5, 5, 6, 6, 8, 8, 10, 10, 15, 20, 20, 30} 50

f17 200 {2, 3, 5, 10, 20, 30} 130

f18 200 {2, 2, 2, 3, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 20, 20, 30, 50} 0

f19 200 — 200

f20 200 {200} 0

TABLE V
COMPARATIVE RESULTS OF PSOCTR , PSOCT , PSOC , AND PSOT ON

f1 TO f20 . THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER

USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE

ADJUSTMENT (α = 0.05).

Dim Function PSOCTR PSOCT PSOC PSOT

25D

f1 2.35e+00 3.95e+00 5.93e+01 6.43e+01

f2 2.23e+00 3.24e+00 3.17e+01 9.55e+01

f3 1.19e+00 2.87e+00 5.71e+01 4.30e+01

f4 3.00e+00 3.19e+00 1.10e+01 3.21e+02

f5 1.84e+00 2.94e+00 1.38e+01 1.24e+00

50D

f6 4.56e+00 8.77e+00 1.14e+02 1.77e+02

f7 4.42e+00 6.53e+00 6.68e+01 2.47e+02

f8 3.64e+00 5.95e+00 1.14e+02 2.07e+02

f9 6.08e+00 6.73e+00 2.17e+01 8.16e+02

f10 7.76e+00 8.38e+00 1.66e+01 8.05e+00

100D

f11 1.05e+01 2.02e+01 2.13e+02 6.45e+01

f12 1.19e+01 1.51e+01 1.31e+02 5.71e+02

f13 1.05e+01 1.70e+01 1.98e+02 5.00e+02

f14 1.18e+01 1.32e+01 4.35e+01 2.14e+03

f15 3.61e+01 4.43e+01 3.47e+01 4.80e+01

200D

f16 3.63e+01 5.19e+01 3.39e+02 9.78e+02

f17 3.77e+01 5.60e+01 2.92e+02 5.79e+02

f18 2.79e+01 3.77e+01 2.27e+02 1.17e+03

f19 2.38e+01 2.29e+01 8.14e+01 5.01e+03

f20 1.49e+02 1.98e+02 8.92e+01 1.75e+02

1) The Overall Comparison: For the experiments in this

section, the dynamic parameters of the functions listed in

Table IV are set according to the default values reported in

Table I. The obtained results by PSOCTR, PSOCT, PSOT,

and PSOC on f1 to f20 are summarized in Table V. The table

clearly shows that PSOCTR performs significantly better than

all other algorithms on majority of the functions. Exceptions

are the fully nonseparable functions (f5, f10, f15, and f20)

for which no decomposition happens. It is notable that other

decomposition-based algorithms, PSOCT and PSOC, also

perform better than PSOT which does not benefit from a

decomposition mechanism. This clearly shows the benefit of

problem decomposition for solving large-scale DOPs. Two

reasons can be attributed to the poor performance of PSOT

TABLE VI
OBTAINED RESULTS BY ALGORITHMS ON f6 TO f10 WITH DIFFERENT

NUMBER OF PEAKS m FOR EACH COMPONENT RANDOMIZED IN THE

FOLLOWING RANGES {1, . . . , 5}, {1, . . . , 10}, AND {1, . . . , 20}. OTHER

PARAMETERS OF CMPB ARE SET AS SHOWN IN TABLE I.

# Peaks F (x) PSOCTR PSOCT PSOC PSOT

m ∈ {1, . . . , 5}

f6 2.54e+00 5.57e+00 1.03e+02 1.90e+02

f7 2.36e+00 4.61e+00 6.01e+01 2.63e+02

f8 2.14e+00 3.01e+00 1.04e+02 2.08e+02

f9 3.41e+00 3.64e+00 1.92e+01 8.61e+02

f10 6.17e+00 8.08e+00 1.45e+01 7.75e+00

m ∈ {1, . . . , 10}

f6 4.56e+00 8.77e+00 1.14e+02 1.77e+02

f7 4.42e+00 6.53e+00 6.68e+01 2.47e+02

f8 3.64e+00 5.95e+00 1.14e+02 2.07e+02

f9 6.08e+00 6.73e+00 2.17e+01 8.16e+02

f10 7.76e+00 8.38e+00 1.66e+01 8.05e+00

m ∈ {1, . . . , 20}

f6 9.52e+00 1.33e+01 1.12e+02 2.02e+02

f7 7.04e+00 9.32e+00 6.73e+01 2.62e+02

f8 8.07e+00 1.21e+01 1.29e+02 2.55e+02

f9 9.55e+00 1.11e+01 2.47e+01 8.38e+02

f10 6.99e+00 8.42e+00 1.89e+01 8.36e+00

on majority of the functions. First is the scalability issue.

It is clear that in the absence of problem decomposition,

the dimensionality of a given problem can easily exceed the

capacity of the optimizer. Second, is the exponential growth

in the number of peaks when no decomposition is used (see

Fig. 1).

In addition to problem decomposition, resource allocation

is another major feature of PSOCTR. The effectiveness of the

resource allocation mechanism can be checked by comparing

it with PSOCT whose only difference lies within its resource

allocation policy. Table V clearly shows the superiority of

PSOCTR over PSOCT. Although problem decomposition

plays a crucial role in simplifying a large-scale problem,

the existence of numerous components can impose a com-

putational overhead on the algorithm. Additionally, use of a

multi-population algorithm to optimize the components also

adds to the computational complexity. The component-level

and population-level resource allocation policies of PSOCTR

allow for an economical use of resources while preserving the

simplifying effects of problem decomposition. The population-

level mechanism prevents over-exploitation of trackers and

releases more resources to be used by the best trackers to

improve the overall solution quality. The component-level

mechanism accelerates the convergence by allocating more

resources to the component with maximum impact on the

overall solution quality. On the fully nonseparable functions

however (f5, f10, f15, and f20), the only active resources

allocation mechanism is the population level. The relative high

dimensionality of the only available component causes the

population-level mechanism to lose its efficiency because of

slow convergence and existence of many active populations.

Another interesting observation is a sharp contrast between

the performance of multi-population methods (PSOCTR and

PSOCT) and the only single-population method (PSOC).

These are all decomposition based where each component is

optimized independently. PSOCTR and PSOCT use multiple

populations for each component whereas PSOC uses a single

population for each component. All these methods benefit from
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(a) Convergence plot for f6
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(b) Convergence plot for f7

Fig. 2. Convergence plot of PSOCTR, PSOCT, PSOC and PSOT based on
the average current error of 31 runs on f6 and f7 for the first 20 environments.

an ideal decomposition which eliminates the issue of expo-

nentially growing number of peaks. However, the comparison

clearly shows that a special mechanism for tracking multiple

moving optima should be in place to obtain acceptable results.

In other words, simple mechanisms such re-initialization and

injection of the best found solution into the population are not

sufficient for efficient handling of environmental changes.

Fig. 2 shows the convergence plot of the four algorithms

on f6 and f7. The convergence plots are based on current

error of the context vector after each function evaluation

for the first 20 environments. The figure shows that the

algorithms try to find better solutions until the end of an

environment where the error jumps due to an environmental

change. PSOCTR and PSOCT which are decomposition-based

and track multiple optima outperform PSOT and PSOC across

all environments. PSOCTR has a clear advantage over PSOCT

due to its efficient resource allocation mechanism. As can be

seen in Fig. 2, for the first environment, algorithms try to find

uncovered peaks to track them after environmental changes.

That is why the results obtained in the first environment

are worse. This circumstance is more obvious for PSOCTR

and PSOCT which suffer from uncovered peaks until the

fifth environment. After this phase, the algorithms are more

stable and their results are improved because most peaks are

identified and the trackers can converge faster to the new

optimum after each environmental change.

2) Robustness to Dynamic Changes: Table VI shows the

results obtained by the four algorithms on f6-f10 with different

number of peaks1. The results show that the performance of all

algorithms deteriorates as the number of peaks increases. How-

ever, PSOCTR maintains the best performance across all three

cases. For the multi-population algorithms (PSOCTR, PSOCT,

and PSOT) the increase in the number of peaks results in

more tracker populations, which increases the computational

overhead of these algorithms. Among these methods, PSOT

has the worst performance and experiences an exponential

growth in the number of peaks due to its lack of decomposition

TABLE VII
OBTAINED RESULTS BY PSOCTR , PSOCT , PSOC , AND PSOT ON f6
TO f10 WITH DIFFERENT SHIFT SEVERITY VALUES FOR EACH PEAK IN

EACH COMPONENT. THE VALUES ARE RANDOMIZED IN THE FOLLOWING

RANGES [0.5, 1], [0.5, 3], AND [0.5, 5]. OTHER PARAMETERS OF CMPB
ARE SET AS SHOWN IN TABLE I.

Shift Severity F (x) PSOCTR PSOCT PSOC PSOT

S ∈ [0.5, 1]

f6 3.67e+00 6.74e+00 1.10e+02 1.50e+02

f7 3.79e+00 4.26e+00 6.26e+01 2.12e+02

f8 3.53e+00 4.02e+00 1.20e+02 1.73e+02

f9 7.63e+00 5.04e+00 1.87e+01 7.02e+02

f10 6.05e+00 6.43e+00 1.65e+01 6.53e+00

S ∈ [0.5, 3]

f6 4.56e+00 8.77e+00 1.14e+02 1.77e+02

f7 4.42e+00 6.53e+00 6.68e+01 2.47e+02

f8 3.64e+00 5.95e+00 1.14e+02 2.07e+02

f9 6.08e+00 6.73e+00 2.17e+01 8.16e+02

f10 7.76e+00 8.38e+00 1.66e+01 8.05e+00

S ∈ [0.5, 5]

f6 6.20e+00 1.14e+01 1.13e+02 2.49e+02

f7 5.84e+00 7.75e+00 7.01e+01 3.12e+02

f8 5.05e+00 7.60e+00 1.24e+02 2.89e+02

f9 5.93e+00 7.97e+00 2.25e+01 9.53e+02

f10 9.48e+00 1.03e+01 1.66e+01 9.48e+00

(see Fig. 1). PSOCTR performs better than PSOCT thanks

to its resource allocation mechanism, which makes it less

susceptible to an increase in the number of peaks (hence more

trackers). PSOC, which maintains a single population, also

suffers from an increase in the number of peaks. The reason

is that the increased number of peaks adds to the complexity

of the landscape and increasing the likelihood of a premature

convergence.

Table VII shows the obtained results by the four algo-

rithms on f6-f10 with different shift severities1. It is clear

that stronger shift severities, i.e., larger displacement in the

location of a peak, makes tracking more difficult and time

consuming. Table VII shows that PSOCTR has the best overall

performance across all three severity levels. The results clearly

show that PSOCTR has a better competitive advantage on

problems with stronger shift severities. The resource allocation

mechanism of PSOCTR allows it to prioritize its limited

computational resources for tracking of important peaks. On

simpler problems with a smaller shift magnitude, other algo-

rithms with no resource allocation mechanism such PSOCT

can also track the peaks with a relatively good efficiency and

accuracy. This is because the amount of available function

evaluations between successive environmental changes is large

enough to track all the peaks accurately.

Table VIII shows the obtained results by the four algorithms

on f6-f10 with different change frequencies (f)1. The results

show that the performance of all methods declines when the

change frequency is high (i.e., when the number of fitness eval-

uations between successive environmental changes is lower).

A high change frequency means that the algorithm has limited

time to do an accurate global and local search, which leads

to degraded performance. Despite this, a desired property of

PSOCTR is its good performance on problems with a high

change frequency. The results clearly show that the PSOCTR

gains a significant competitive edge over other algorithms on

such problems. This can be attributed to its resource allocation

mechanism which allows it to benefit from the saved resources

to respond to rapid environmental changes more efficiently.
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TABLE VIII
OBTAINED RESULTS BY PSOCTR , PSOCT , PSOC , AND PSOT ON f6

TO f10 WITH DIFFERENT CHANGE FREQUENCIES: 200D, 500D, AND

1000D. OTHER PARAMETERS OF CMPB ARE SET AS SHOWN IN TABLE I.

Frequency F (x) PSOCTR PSOCT PSOC PSOT

f = 200D

f6 1.83e+01 2.90e+01 1.93e+02 2.76e+02

f7 1.61e+01 2.00e+01 1.05e+02 3.32e+02

f8 1.33e+01 2.34e+01 1.73e+02 3.18e+02

f9 1.74e+01 2.79e+01 5.82e+01 1.05e+03

f10 1.20e+01 1.51e+01 1.97e+01 1.36e+01

f = 500D

f6 4.56e+00 8.77e+00 1.14e+02 1.77e+02

f7 4.42e+00 6.53e+00 6.68e+01 2.47e+02

f8 3.64e+00 5.95e+00 1.14e+02 2.07e+02

f9 6.08e+00 6.73e+00 2.17e+01 8.16e+02

f10 7.76e+00 8.38e+00 1.66e+01 8.05e+00

f = 1000D

f6 1.90e+00 2.84e+00 9.08e+01 1.62e+02

f7 2.16e+00 1.91e+00 4.55e+01 2.30e+02

f8 2.24e+00 2.13e+00 9.89e+01 1.84e+02

f9 3.54e+00 1.33e+00 1.16e+01 7.30e+02

f10 6.03e+00 6.12e+00 1.77e+01 6.75e+00

This property is less crucial for problems with low change

frequencies, due to the availability of sufficient time between

environmental changes for accurate tracking of all the peaks.

3) The Effect of Component Optimizers: In this part, we

investigate the influence of several component optimizers on

the performance of the proposed framework. We compare the

performance of the frameworks when PSO [82], jDE [78],

[79], DynDE [44], [80], and CMAES [81], [83] are used as

the optimizer. For all multi-population algorithms, we use the

same mechanism described in Section IV-B. The reason is that

our aim here is to confirm that our conclusions are independent

of the component optimizer used, not the effect of different

dynamic handling mechanisms.

The core procedure of CMAES [81] is very different from

PSO and DE. Therefore, for embedding it in the frameworks,

we need to carry out some modifications. Instead of the best

found position, the mean position is used. For calculating

the diversity of each population in CMAESCTR, CMAESCT

and CMAEST, we calculate the Euclidean distance between

all pairs of offspring (i.e., prior to selection). After each

environmental change, the mean positions of all free and

tracker populations are re-evaluated. Moreover, for the free

population, all other state variables remain unchanged. For

trackers however, all state variables relating to the covariance

matrix and the evolution path are reinitialized since the direc-

tions towards the new optima are unknown. For the ith tracker,

the step-size (σi) is set to ŝi/2 where ŝi is the estimated

shift severity of its covered peak. The reason for choosing

ŝi/2 for σi is that the offspring are normally distributed and

approximately 95.4% of them are located within 2 standard

deviations from the mean. This makes the diversity of new

samples in CMAES similar to those of PSO and DE trackers

after re-diversification by (14).

Table IX shows the results obtained by the four frameworks

using PSO, CMAES, jDE and DynDE as component optimiz-

ers on f6-f10 (see Table IV). The results clearly show that

our proposed framework (CTR) consistently outperforms other

cases independent of the chosen optimizer. Additionally, com-

1Other parameters of CMPB are set based on Table I.

TABLE IX
OBTAINED RESULTS BY THE FOUR FRAMEWORKS FROM TABLE II WITH

DIFFERENT OPTIMIZERS INCLUDING PSO, JDE, DYNDE, AND CMAES
ON f6 TO f10 WITH DEFAULT PARAMETER SETTING OF CMPB (TABLE I).

Framework

Optimizer F CTR CT C T

PSO

f6 4.56e+00 8.77e+00 1.14e+02 1.77e+02

f7 4.42e+00 6.53e+00 6.68e+01 2.47e+02

f8 3.64e+00 5.95e+00 1.14e+02 2.07e+02

f9 6.08e+00 6.73e+00 2.17e+01 8.16e+02

f10 7.76e+00 8.38e+00 1.66e+01 8.05e+00

CMA-ES

f6 6.70e+00 1.18e+01 8.22e+01 1.43e+03

f7 7.55e+00 1.25e+01 7.09e+01 1.16e+03

f8 4.20e+00 6.92e+00 1.02e+02 2.03e+03

f9 1.36e+01 1.67e+01 1.68e+02 2.62e+03

f10 1.11e+00 1.33e+00 1.08e+01 5.90e+02

DynDE

f6 5.47e+00 1.04e+01 6.94e+01 1.43e+02

f7 4.84e+00 9.61e+00 4.14e+01 2.05e+02

f8 4.53e+00 5.74e+00 9.13e+01 1.64e+02

f9 4.86e+00 5.10e+00 1.25e+01 6.88e+02

f10 4.53e+00 4.92e+00 1.26e+01 5.20e+00

jDE

f6 2.11e+01 3.43e+01 7.80e+01 1.19e+02

f7 1.62e+01 2.36e+01 5.76e+01 1.35e+02

f8 1.75e+01 2.50e+01 7.53e+01 1.31e+02

f9 1.08e+01 1.77e+01 8.75e+00 3.56e+02

f10 2.91e+00 2.60e+00 1.15e+01 3.95e+00

paring the component optimizers across different frameworks

shows that PSO has the best performance with CTR; however,

comparing the efficacy of component optimizers is beyond

the scope of this study. More comparative results obtained by

the four frameworks from Table II with the above mentioned

component optimizers on different 100 and 200-dimensional

problems with different dynamic configurations of CMPB, can

be found in Section S-V of the supplementary document.

VI. CONCLUSION

In this paper, we presented a thorough investigation of

large-scale dynamic optimization problems (DOPs). A formal

analysis of the moving peaks benchmark (MPB) showed that

its lack of modularity limits its applicability to the study

of large-scale DOPs. A new benchmark generator based on

MPB was proposed for large-scale DOPs. The benchmark

was made by composing several weighted MPBs in which

an automated weight regulates the equilibrium between fully

separable and nonseparable components, and a manual weight

creates artificial imbalance among the contributions of differ-

ent components.

We also proposed a cooperative coevolutionary multi-

population framework which benefits from a bi-level com-

putational resource allocation mechanism capable of saving

resources at both component and sub-population levels. We in-

vestigated the performance of the proposed framework against

three other frameworks on a wide range of problems having

different dimensions, interaction structures, shift severities,

number of peaks, and change frequencies. The results showed

that the proposed framework not only outperforms the peer

frameworks, but also gains even a greater competitive advan-

tage on more difficult problems with higher dimensionality,

number of peaks, change frequency or shift severity.
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Despite improving the baseline with up to two orders of

magnitude, the proposed framework has several shortcomings

that can limit its applicability in certain situations. The de-

composition algorithm used in this paper cannot exploit the

structure of problems with overlapping components. Many

overlapping problems have sparse interaction matrices [21],

[84]; however, the proposed framework does not have the

necessary mechanisms to exploit this sparsity; therefore, treat-

ing them as fully nonseparable. Optimal decomposition of

overlapping functions is an open question even in static

optimization, which becomes a greater challenge in dynamic

environments. Another decomposition related issue is optimal

grouping of separable variables. Although one may consider

a full decomposition of separable variables into a series

of 1-dimensional subproblems an obvious choice, empirical

evidence suggests that such decomposition is suboptimal and

increases the computational overhead of cooperative coevolu-

tion [85]. Grouping of separable variables may decrease this

computational overhead; however, imbalance considerations

and the phenomenon of exponentially growing “pseudo” peaks

discussed in Section III makes finding an effective decomposi-

tion a nontrivial task. Finally, dealing with fully nonseparable

problems with no apparent exploitable modularity is another

important issue missing form the current study.

On the dynamic side, the proposed framework is primarily

designed for tracking moving optima with no consideration

about the cost of deploying a new solution after an envi-

ronmental change. In many real-world situations however,

frequent deployment of new solutions can incur additional

cost [86], [87]. Although the ability to find and track moving

optima precedes any deployment consideration, designing a

framework capable of finding robust solutions over time has

strong practical merits. Other practical considerations such

as dealing with dynamic constraints [88], [89] and multiple

conflicting objectives [90], [91] are important topics deserving

further investigation.
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S-I. PROOFS

Proposition 1. An n-dimensional MPB with m > 1 peaks is

nonseparable.

Proof. Let,

f (t)(x) = max
{

ξ
(t)
1 (x), ψ(t)(x)

}

, (1)

where

ψ(t)(x) = max
{

ξ
(t)
2 (x), . . . , ξ(t)m (x)

}

. (2)

The max(·) function can be rewritten as follows:

f (t)(x) =
1

2

(

ξ
(t)
1 (x) + ψ(t)(x) + |ξ

(t)
1 (x)− ψ(t)(x)|

)

. (3)

The first and second order partial derivative of f (t)(x) is:

∂f (t)(x)

∂xi
=

1

2

[

∂ξ
(t)
1 (x)

∂xi
+
∂ψ(t)(x)

∂xi
+

(

∂ξ
(t)
1 (x)

∂xi
−
∂ψ(t)(x)

∂xi

)

sgn
(

ξ
(t)
1 (x)− ψ(t)(x)

)

]

, (4)

∂2f (t)(x)

∂xi∂xj
=

1

2

[

∂2ξ
(t)
1 (x)

∂xi∂xj
+
∂2ψ(t)(x)

∂xi∂xj
+

(

∂2ξ
(t)
1 (x)

∂xi∂xj
−
∂2ψ(t)(x)

∂xi∂xj

)

sgn
(

ξ
(t)
1 (x)− ψ(t)(x)

)

]

, (5)

where sgn(x) = x
|x| is the sign function.

It is clear that
∂f(t)(x)
∂xi

is either a function of
∂ξ

(t)
1 (x)
∂xi

or
∂ψ(t)(x)
∂xi

depending on whether ξ
(t)
1 (x) > ψ(t)(x) for a given

value of xi. In other words, for
∂f(t)(x)
∂xi

to be consistently

a function of
∂ξ

(t)
1 (x)
∂xi

or
∂ψ(t)(x)
∂xi

, ξ
(t)
1 (x) must be strictly

smaller or larger than ψ(t)(x) for every xi. This essentially

reduces f (t)(x) to a single peak MPB, which is clearly not

the case simply because the height, the width, and the center of

each peak is different. Therefore, the extremum with respect

to the ith dimension cannot be uniquely determined by xi.

It is also clear that the second order partial derivative for

arbitrary choices of i and j (i 6= j) can be made nonzero

for various choices of x due to the fact that the width, the

height, and the center of each peak (ξ
(t)
i ) is different. This

makes every dimension interact with every other dimensions

(Def. 1). Therefore, a multi-modal MPB is fully nonseparable

(Def. 4).

Proposition 2. An n-dimensional MPB with a single peak

(m = 1) is additively nonseparable.

Lemma 1 (necessary condition of additive separability).

Given an additively separable function f(x) (Def. 3), for ar-

bitrary choices of xi and xj belonging to different component

functions fp and fq ,
∂2f(x)
∂xi∂xj

is equal to zero.

Proof. Assuming that xi belongs to the component function

fp and xj belongs to fq , according to Def. 3, ∂f
∂xi

=
∂fp
∂xi

.

Therefore, ∂2f
∂xi∂xj

=
∂2fp
∂xi∂xj

= 0 because fp is not a function

of xj .

Proof of Proposition 2. Let the following be the definition of

an n-dimensional single-peak MPB.

f (t)(x) = h(t) − w(t)‖x− c
(t)‖ (6)

∂f (t)(x)

∂xi
=

−w(t)
(

xi − c
(t)
i

)

‖x− c
(t)‖

(7)

∂2f (t)(x)

∂xi∂xj
=
w(t)

(

xi − c
(t)
i

)(

xj − c
(t)
j

)

‖x− c
(t)‖3

(8)

It is clear that ∂2f
∂xi∂xj

is a function of both xi and xj and is

nonzero as long as xi 6= ci and xj 6= cj . Therefore, according

to Lemma 1 the necessary condition for additive separability

does not hold. Therefore, an n-dimensional MPB with a single

peak is not additively separable.

The following discussion clarifies why a single-peak MPB

is easy to optimize despite its additive nonseparability feature.

It is clear that (7) can be written as g(xi)h(x) where g(xi) =
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−w(t)(xi− c
(t)
i ), and h(x) = ‖x−c‖−1. To set (7) to zero, it

is sufficient to force g(xi) to zero by forcing xi = c
(t)
i . This is

precisely why according to Def. 2 an n-dimensional MPB with

a single peak is fully separable. Another way of looking at this

problem is to realize that the square root function, implicit in

the calculation of the Euclidean norm in the MPB formulation,

is a monotonic function which does not change the location

of the global optimum; however its presence removes additive

separability. This observation is also empirically verified with

DG2. It should be noted that this analysis is independent of

environmental changes. In other words, MPB is additively

nonseparable and remains so across all environments.

S-II. FLOW CHART OF THE PROPOSED FRAMEWORK

Figure S-1 shows the flow chart of the proposed framework.

S-III. SENSITIVITY ANALYSIS

Table S-I shows sensitivity analysis on different population

size of PSO, which is used as the component optimizer in the

framework described in Section IV-B. The results of Table S-I

are obtained from experiments on a single MPB with 5 peaks

and different dimensions (all other parameters are set based

on Table I). According to this table, it seems that choosing

population size of 5 for d ≤ 5, 7 for 5 < d ≤ 10, and

10 for d > 10 is good. The same set of experiments are

done on multi-population methods based on the framework

described in Section IV-B and different component optimizers,

i.e., jDE, DynDE, and CMAES the result of which are reported

in Tables S-II, S-III, and S-IV respectively. According to

the illustrated results in these tables and the multi-comparison

statistical analysis, the population size of jDE and DynDE, and

the number of offsprings in CMAES in the multi-population

approaches are set to 7, 10, and 5 respectively in the rest

of experiments. It is worth mentioning that according to

the mutation structure in jDE and DynDE, the minimum

population size for these optimizers are 4 and 5 respectively.

Moreover, according to [1] the minimum number of offspring

is 4. Additionally, this value for PSO is 3 [2].

For each single-population approach, i.e., PSOC, jDEC,

DynDEC, and CMAESC, a sensitivity analysis has been

conducted on their population sizes. The experiments are based

on a single MPB with 5 peaks and different dimensions (all

other parameters are set based on Table I). The obtained

results are shown in Tables S-V, S-VI, S-VII, and S-VIII.

According to these tables, good choices are population sizes of

50, 20, and 60 for PSOC, jDEC, and DynDEC respectively.

Additionally, according to Table S-VIII, sample size of 30

seems a good choice for CMAESC. It is worth mentioning

that according to [1], the suggested number of offsprings

in single-population CMAES is 4 + ⌊3 log(d)⌋, where d is

the problem dimension. Therefore, we include this in the

sensitivity analysis of CMAESC in Table S-VIII. As shown

in this table, setting the number of offspring according to the

above mentioned formula is not the best choice in dynamic

environments.

For DynDE, the number of Brownian individuals was set

to 20% of the population size for obtaining the results in

Tables S-III and S-VII. After choosing appropriate popula-

tion sizes from these two tables for multi-population DynDE

methods and the DynDEC, a sensitivity analysis is done on the

Brownian individual numbers for each method the results of

which are shown in Tables S-IX and S-X. According to these

tables, we choose 3 for the number of Brownian individuals

in both versions of DynDE.

Finally, the sensitivity analysis for rdeact in PSOCTR is

illustrated in Table S-XI, which is conducted on a single MPB

with 5 peaks and different dimensions (all other parameters are

set based on Table I). According to this table, PSOCTR’s per-

formance is not sensitive to different values of this parameter.

For the rest of experiments, since rdeact = 0.1 is in the middle

of the highlighted values for almost all dimensions, we choose

it for our experiments. The same set of experiments has been

conducted for jDECTR, DynDECTR and CMAESCTR and

the results showed that rdeact = 0.1 is a good choice for all

these algorithms.

S-IV. EXPERIMENTS – EXPANDED DESCRIPTION

STATISTICS

The tables presented in this section contain extra descriptive

statistics in addition to the median reported in the Sec. V of

the paper.

S-V. EXPERIMENTS – ADDITIONAL COMPARISONS

The effect of various dynamic settings on the combination

of four components optimizers (CMAES, jDE, DynDE, and

PSO) and four frameworks (CTR, CT, C, and T) are studied

using a set of 100 and 200 dimensional functions the result of

which are reported in Tables S-XVII, S-XVIII, S-XIX, and

S-XX. The functions f11 and f16 have more nonseparable

components while f12 and f17 have more separable variables.

In Table S-XVII, the CMPB parameters are set to default

values according to Table I. In Table S-XVIII, the performance

of the algorithms are obtained on f11, f12, f16 and f17
using a higher number of peaks (uniformly randomized in

{1, · · · , 20}) which is a more challenging dynamic setting

than the default case. In Table S-XIX, the performance of

the algorithms are obtained on f11, f12, f16 and f17 using

a higher change frequency (200D) which is also more chal-

lenging than the default setting. Finally, Table S-XX shows

the results obtained from the algorithms on f11, f12, f16
and f17 using a higher shift severity of the peaks (uniformly

randomized in [0.5, 5]) which are also more difficult than the

default settings. According to the four tables, the best results

are obtained when algorithms utilize cooperative coevolution,

tracking moving optima, and resource allocation approaches

which are hybridized in the proposed framework (CTR). The

results in this section demonstrate the superiority of the pro-

posed framework on problems with different dimensionality

and dynamic configurations, which is invariant to the choice

of the component optimizer.
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-Activate all trackers.

-Rediversify all trackers.

Computational

budget η used up?

-Update context vector c.

-Re-evaluate all individuals in all

populations.

Yes

No

Yes

No

Yes

No

No

Yes

Yes

No

COOPERATIVE COEVOLUTION: DECOMPOSITION

COOPERATIVE COEVOLUTION: HANDLING G SUBPROBLEMS

COOPERATIVE COEVOLUTION: UPDATING CONTEXT VECTOR c

RESOURCE ALLOCATION

TRACKING MOVING OPTIMA: MULTI-POPULATION

TRACKING MOVING OPTIMA: REACTION TO CHANGE

Fig. S-1. Flow chart of the proposed framework.
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TABLE S-I
SENSITIVITY ANALYSIS ON DIFFERENT POPULATION SIZES OF THE PSO EMBEDDED IN THE FRAMEWORK IN SECTION IV-B (WHICH IS USED IN

PSOCTR , PSOCT AND PSOT) FOR OPTIMIZING MPBS WITH m = 5, DIFFERENT DIMENSIONS AND OTHER PARAMETERS FROM TABLE I. THE

HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

Dimension stats.
Population Size

3 4 5 7 10 15 20

1
Median 5.55e-02 5.96e-02 5.53e-02 7.77e-02 1.24e-01 1.63e-01 2.36e-01
Mean 7.27e-02 6.27e-02 6.87e-02 8.55e-02 1.42e-01 1.99e-01 3.65e-01
StErr 8.54e-03 4.93e-03 6.94e-03 1.09e-02 1.62e-02 2.88e-02 7.25e-02

2
Median 2.07e-01 1.33e-01 1.48e-01 2.45e-01 3.86e-01 5.02e-01 7.26e-01
Mean 3.22e-01 2.04e-01 2.84e-01 3.61e-01 4.81e-01 6.15e-01 8.66e-01
StErr 4.76e-02 3.56e-02 7.88e-02 5.84e-02 4.89e-02 5.62e-02 1.03e-01

3
Median 3.69e-01 1.56e-01 1.48e-01 3.02e-01 3.79e-01 6.56e-01 1.05e+00
Mean 4.83e-01 3.01e-01 4.32e-01 5.10e-01 6.83e-01 8.05e-01 1.24e+00
StErr 6.49e-02 7.28e-02 1.24e-01 9.57e-02 1.55e-01 8.33e-02 1.30e-01

5
Median 1.21e+00 3.45e-01 1.56e-01 2.27e-01 4.20e-01 7.51e-01 1.24e+00
Mean 1.38e+00 5.72e-01 3.03e-01 4.21e-01 5.59e-01 9.16e-01 1.53e+00
StErr 1.04e-01 1.32e-01 6.91e-02 8.30e-02 8.23e-02 8.28e-02 1.57e-01

7
Median 2.96e+00 8.08e-01 3.63e-01 2.20e-01 4.76e-01 8.04e-01 1.17e+00
Mean 2.80e+00 9.22e-01 4.24e-01 4.77e-01 5.10e-01 9.35e-01 1.37e+00
StErr 1.49e-01 6.88e-02 3.66e-02 1.87e-01 5.15e-02 8.38e-02 1.15e-01

10
Median 6.01e+00 2.24e+00 8.83e-01 6.12e-01 6.24e-01 1.11e+00 1.62e+00
Mean 5.89e+00 2.30e+00 1.04e+00 6.90e-01 7.43e-01 1.51e+00 1.74e+00
StErr 2.35e-01 1.20e-01 8.06e-02 7.02e-02 9.15e-02 2.48e-01 1.25e-01

15
Median 1.29e+01 6.04e+00 3.16e+00 1.50e+00 8.72e-01 1.37e+00 1.66e+00
Mean 1.34e+01 6.39e+00 3.55e+00 1.82e+00 1.36e+00 1.45e+00 1.89e+00
StErr 5.53e-01 3.03e-01 2.59e-01 2.95e-01 2.90e-01 1.51e-01 1.55e-01

20
Median 2.23e+01 1.12e+01 7.00e+00 3.61e+00 1.67e+00 2.05e+00 2.27e+00
Mean 2.27e+01 1.12e+01 7.42e+00 3.77e+00 2.15e+00 2.33e+00 3.25e+00
StErr 6.72e-01 3.73e-01 5.43e-01 2.89e-01 2.13e-01 2.68e-01 4.49e-01

TABLE S-II
SENSITIVITY ANALYSIS ON DIFFERENT POPULATION SIZES OF THE JDE EMBEDDED THE FRAMEWORK IN SECTION IV-B (WHICH IS USED IN jDECTR ,
jDECT AND jDET) FOR OPTIMIZING MPBS WITH m = 5, DIFFERENT DIMENSIONS AND OTHER PARAMETERS FROM TABLE I. THE HIGHLIGHTED

ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

Dimension stats.
Population Size

4 5 7 10 15 20

1
Median 1.14e+00 3.93e-01 3.08e-01 3.86e-01 5.94e-01 9.64e-01
Mean 1.18e+00 4.17e-01 3.60e-01 4.56e-01 6.81e-01 1.00e+00
StErr 1.14e-01 3.60e-02 3.86e-02 4.92e-02 6.11e-02 7.63e-02

2
Median 2.57e+00 9.96e-01 1.25e+00 1.59e+00 1.93e+00 2.36e+00
Mean 2.92e+00 1.31e+00 1.35e+00 1.70e+00 2.15e+00 2.50e+00
StErr 3.88e-01 1.54e-01 1.60e-01 1.97e-01 2.13e-01 2.46e-01

3
Median 2.00e+00 1.41e+00 1.58e+00 2.01e+00 2.44e+00 3.64e+00
Mean 3.49e+00 1.62e+00 1.93e+00 2.59e+00 2.84e+00 3.65e+00
StErr 5.63e-01 1.60e-01 2.60e-01 2.45e-01 2.63e-01 4.09e-01

5
Median 3.07e+00 1.92e+00 1.61e+00 2.50e+00 3.25e+00 4.67e+00
Mean 3.93e+00 2.10e+00 2.33e+00 2.74e+00 4.27e+00 5.27e+00
StErr 5.44e-01 2.10e-01 3.30e-01 2.51e-01 4.48e-01 4.85e-01

7
Median 3.16e+00 2.13e+00 2.09e+00 2.90e+00 3.32e+00 4.58e+00
Mean 3.85e+00 2.49e+00 2.47e+00 3.34e+00 3.97e+00 4.97e+00
StErr 5.83e-01 2.58e-01 2.37e-01 3.20e-01 4.43e-01 3.81e-01

10
Median 3.55e+00 2.26e+00 2.30e+00 2.62e+00 4.36e+00 4.49e+00
Mean 4.47e+00 3.21e+00 2.54e+00 3.71e+00 4.79e+00 5.72e+00
StErr 5.58e-01 4.65e-01 3.13e-01 5.58e-01 5.28e-01 6.53e-01

15
Median 4.91e+00 3.81e+00 3.32e+00 3.32e+00 4.49e+00 5.62e+00
Mean 5.70e+00 4.18e+00 3.35e+00 4.12e+00 4.55e+00 5.61e+00
StErr 5.30e-01 3.55e-01 2.63e-01 5.23e-01 3.67e-01 3.94e-01

20
Median 6.22e+00 4.92e+00 3.76e+00 4.57e+00 5.07e+00 6.69e+00
Mean 6.59e+00 5.23e+00 4.44e+00 4.51e+00 5.85e+00 7.12e+00
StErr 6.11e-01 4.36e-01 5.28e-01 4.20e-01 4.55e-01 7.36e-01
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TABLE S-III
SENSITIVITY ANALYSIS ON DIFFERENT POPULATION SIZES OF THE DYNDE EMBEDDED IN THE FRAMEWORK IN SECTION IV-B (WHICH IS USED IN

DynDECTR , DynDECT AND DynDET) FOR OPTIMIZING MPBS WITH m = 5, DIFFERENT DIMENSIONS AND OTHER PARAMETERS FROM TABLE I.
THE NUMBER OF BROWNIAN INDIVIDUALS IS SET TO 20% OF THE POPULATION SIZE. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING

PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

Dimension stats.
Population Size

5 7 10 15 20

1
Median 9.98e-02 7.09e-02 8.03e-02 1.52e-01 1.64e-01
Mean 1.50e-01 1.19e-01 1.40e-01 1.68e-01 1.81e-01
StErr 3.73e-02 2.14e-02 2.67e-02 2.10e-02 1.55e-02

2
Median 1.61e-01 2.97e-01 3.49e-01 4.82e-01 6.56e-01
Mean 4.12e-01 4.68e-01 4.66e-01 5.91e-01 9.73e-01
StErr 1.05e-01 9.67e-02 7.45e-02 7.68e-02 1.96e-01

3
Median 2.08e-01 1.92e-01 2.43e-01 8.33e-01 8.08e-01
Mean 9.10e-01 6.45e-01 6.57e-01 1.19e+00 1.04e+00
StErr 2.79e-01 1.35e-01 2.00e-01 2.54e-01 1.32e-01

5
Median 4.26e-01 1.93e-01 1.77e-01 4.68e-01 6.01e-01
Mean 5.33e-01 4.80e-01 3.40e-01 6.56e-01 9.30e-01
StErr 9.50e-02 1.45e-01 7.68e-02 1.13e-01 1.31e-01

7
Median 7.35e-01 3.96e-01 2.36e-01 3.96e-01 7.28e-01
Mean 7.82e-01 4.17e-01 2.45e-01 5.34e-01 9.07e-01
StErr 8.65e-02 3.71e-02 2.10e-02 9.17e-02 1.22e-01

10
Median 1.27e+00 8.53e-01 4.18e-01 4.87e-01 6.61e-01
Mean 1.26e+00 9.21e-01 4.86e-01 6.87e-01 1.01e+00
StErr 8.65e-02 1.02e-01 5.66e-02 1.72e-01 1.77e-01

15
Median 3.36e+00 2.03e+00 1.24e+00 1.00e+00 8.91e-01
Mean 3.38e+00 2.30e+00 1.55e+00 1.25e+00 1.23e+00
StErr 2.85e-01 2.03e-01 1.67e-01 1.52e-01 1.94e-01

20
Median 4.60e+00 3.82e+00 2.10e+00 1.62e+00 1.87e+00
Mean 5.03e+00 3.73e+00 2.45e+00 1.96e+00 2.14e+00
StErr 5.24e-01 3.50e-01 3.13e-01 2.04e-01 2.63e-01
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TABLE S-IV
SENSITIVITY ANALYSIS ON DIFFERENT OFFSPRING NUMBERS OF THE CMAES EMBEDDED IN THE FRAMEWORK IN SECTION IV-B (WHICH IS USED IN

CMAESCTR , CMAESCT AND CMAEST) FOR OPTIMIZING MPBS WITH m = 5, DIFFERENT DIMENSIONS AND OTHER PARAMETERS FROM TABLE I.
THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT

(α = 0.05).

Dimension stats.
Population Size

4 5 7 10 15 20

1
Median 2.64e-01 3.90e-01 3.17e-01 5.66e-01 6.81e-01 1.21e+00
Mean 4.09e-01 3.83e-01 4.36e-01 5.90e-01 8.39e-01 1.33e+00
StErr 6.60e-02 3.11e-02 5.79e-02 6.81e-02 7.98e-02 1.54e-01

2
Median 5.66e-01 4.91e-01 6.79e-01 7.60e-01 1.36e+00 1.09e+00
Mean 8.62e-01 8.30e-01 9.29e-01 1.19e+00 1.70e+00 1.69e+00
StErr 1.78e-01 2.14e-01 1.64e-01 2.32e-01 2.18e-01 2.71e-01

3
Median 9.36e-01 3.76e-01 8.41e-01 7.71e-01 9.25e-01 1.28e+00
Mean 1.28e+00 1.18e+00 1.19e+00 1.36e+00 1.43e+00 1.84e+00
StErr 2.36e-01 4.30e-01 2.25e-01 2.87e-01 2.29e-01 3.28e-01

5
Median 2.31e-01 1.40e-01 1.95e-01 4.88e-01 4.35e-01 1.07e+00
Mean 4.50e-01 5.52e-01 5.46e-01 1.01e+00 9.66e-01 1.24e+00
StErr 9.70e-02 1.64e-01 1.36e-01 2.03e-01 2.18e-01 1.68e-01

7
Median 1.71e-01 1.03e-01 1.38e-01 3.74e-01 6.20e-01 7.87e-01
Mean 3.99e-01 1.30e-01 5.14e-01 1.42e+00 1.27e+00 1.21e+00
StErr 1.09e-01 2.31e-02 1.57e-01 3.80e-01 2.83e-01 2.33e-01

10
Median 2.34e-01 1.42e-01 1.07e-01 1.63e-01 4.22e-01 7.44e-01
Mean 4.12e-01 4.56e-01 2.58e-01 3.62e-01 8.24e-01 1.35e+00
StErr 8.56e-02 2.54e-01 8.80e-02 1.10e-01 1.81e-01 2.97e-01

15
Median 3.31e-01 1.95e-01 2.51e-01 3.45e-01 6.52e-01 7.24e-01
Mean 7.28e-01 5.61e-01 8.84e-01 9.82e-01 1.73e+00 1.09e+00
StErr 1.56e-01 1.24e-01 2.11e-01 2.78e-01 4.17e-01 1.59e-01

20
Median 8.21e-01 7.02e-01 7.23e-01 6.49e-01 1.10e+00 1.86e+00
Mean 1.61e+00 1.06e+00 1.59e+00 1.41e+00 2.32e+00 1.96e+00
StErr 2.99e-01 2.14e-01 4.22e-01 3.25e-01 5.36e-01 3.21e-01
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TABLE S-V
SENSITIVITY ANALYSIS ON DIFFERENT SWARM’S POPULATION SIZES OF THE PSOC FOR OPTIMIZING MPBS WITH m = 5, DIFFERENT DIMENSIONS AND

OTHER PARAMETERS FROM TABLE I. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH

HOLM p-VALUE ADJUSTMENT (α = 0.05).

Dimension stats.
Population Size

10 20 30 40 50 60 70

1
Median 7.78e+00 1.01e+01 7.78e+00 6.84e+00 6.44e+00 6.56e+00 6.99e+00
Mean 8.38e+00 9.06e+00 9.25e+00 7.78e+00 7.40e+00 7.14e+00 7.80e+00
StErr 5.35e-01 5.11e-01 9.52e-01 7.50e-01 7.21e-01 5.77e-01 6.12e-01

2
Median 1.20e+01 1.12e+01 1.22e+01 1.23e+01 1.34e+01 1.18e+01 1.33e+01
Mean 1.24e+01 1.26e+01 1.23e+01 1.25e+01 1.40e+01 1.22e+01 1.22e+01
StErr 8.86e-01 1.09e+00 6.94e-01 7.74e-01 8.81e-01 5.27e-01 8.05e-01

3
Median 1.67e+01 1.31e+01 1.40e+01 1.36e+01 1.20e+01 1.31e+01 1.12e+01
Mean 2.01e+01 1.30e+01 1.51e+01 1.35e+01 1.23e+01 1.32e+01 1.12e+01
StErr 1.87e+00 5.01e-01 1.13e+00 8.29e-01 6.21e-01 7.02e-01 5.44e-01

5
Median 3.57e+01 1.24e+01 1.44e+01 1.37e+01 1.20e+01 1.34e+01 1.52e+01
Mean 3.76e+01 1.44e+01 1.44e+01 1.58e+01 1.28e+01 1.40e+01 1.49e+01
StErr 1.94e+00 1.35e+00 6.75e-01 1.26e+00 6.84e-01 5.42e-01 8.68e-01

7
Median 4.40e+01 1.64e+01 1.20e+01 1.29e+01 1.44e+01 1.25e+01 1.28e+01
Mean 6.24e+01 1.75e+01 1.38e+01 1.33e+01 1.43e+01 1.40e+01 1.34e+01
StErr 8.26e+00 1.24e+00 1.13e+00 8.22e-01 8.03e-01 9.27e-01 8.15e-01

10
Median 4.73e+01 1.60e+01 1.58e+01 1.42e+01 1.41e+01 1.49e+01 1.46e+01
Mean 5.34e+01 1.70e+01 2.17e+01 1.76e+01 1.47e+01 1.56e+01 1.62e+01
StErr 3.61e+00 1.30e+00 3.95e+00 2.41e+00 8.41e-01 8.54e-01 1.41e+00

15
Median 5.09e+01 1.49e+01 1.51e+01 1.62e+01 1.35e+01 1.71e+01 1.39e+01
Mean 6.31e+01 2.16e+01 1.73e+01 1.91e+01 1.69e+01 1.65e+01 2.17e+01
StErr 8.94e+00 5.15e+00 2.09e+00 2.20e+00 2.91e+00 1.18e+00 5.57e+00

20
Median 5.63e+01 1.92e+01 1.91e+01 1.58e+01 1.64e+01 1.40e+01 1.47e+01
Mean 7.61e+01 4.71e+01 4.43e+01 2.46e+01 2.86e+01 1.67e+01 2.34e+01
StErr 1.14e+01 1.26e+01 8.54e+00 4.15e+00 8.62e+00 2.14e+00 4.63e+00

TABLE S-VI
SENSITIVITY ANALYSIS ON DIFFERENT POPULATION SIZES OF THE jDEC FOR OPTIMIZING MPBS WITH m = 5, DIFFERENT DIMENSIONS AND OTHER

PARAMETERS FROM TABLE I. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM

p-VALUE ADJUSTMENT (α = 0.05).

Dimension stats.
Population Size

10 20 30 40 50 60 70

1
Median 3.87e-01 1.65e-01 3.02e-01 5.28e-01 6.61e-01 7.42e-01 9.00e-01
Mean 5.73e-01 2.22e-01 3.33e-01 5.63e-01 7.71e-01 8.20e-01 1.03e+00
StErr 9.09e-02 3.08e-02 2.67e-02 4.64e-02 6.34e-02 6.52e-02 8.38e-02

2
Median 2.99e+00 2.21e+00 3.03e+00 4.49e+00 5.80e+00 5.98e+00 6.63e+00
Mean 3.35e+00 2.56e+00 3.77e+00 4.69e+00 5.60e+00 6.43e+00 7.04e+00
StErr 3.20e-01 2.50e-01 3.36e-01 3.35e-01 3.78e-01 4.70e-01 5.70e-01

3
Median 5.66e+00 5.39e+00 6.46e+00 8.30e+00 8.67e+00 9.91e+00 1.00e+01
Mean 6.17e+00 5.75e+00 6.54e+00 8.42e+00 1.01e+01 1.08e+01 1.15e+01
StErr 6.02e-01 6.57e-01 5.50e-01 7.66e-01 1.05e+00 8.36e-01 1.09e+00

5
Median 9.47e+00 8.89e+00 8.90e+00 1.12e+01 1.54e+01 1.56e+01 2.03e+01
Mean 9.49e+00 1.03e+01 1.12e+01 1.19e+01 1.59e+01 1.81e+01 2.01e+01
StErr 6.63e-01 8.78e-01 9.00e-01 1.02e+00 1.22e+00 1.41e+00 1.59e+00

7
Median 1.18e+01 1.18e+01 1.23e+01 1.54e+01 1.64e+01 1.95e+01 2.23e+01
Mean 1.09e+01 1.18e+01 1.16e+01 1.59e+01 1.75e+01 2.03e+01 2.31e+01
StErr 8.55e-01 9.22e-01 8.80e-01 1.05e+00 1.21e+00 1.45e+00 1.80e+00

10
Median 9.56e+00 1.14e+01 1.20e+01 1.31e+01 1.61e+01 2.02e+01 2.45e+01
Mean 1.15e+01 1.18e+01 1.30e+01 1.51e+01 1.75e+01 2.30e+01 2.60e+01
StErr 1.16e+00 9.38e-01 1.05e+00 1.25e+00 1.46e+00 2.02e+00 2.48e+00

15
Median 1.09e+01 1.35e+01 1.46e+01 1.95e+01 2.21e+01 2.44e+01 2.82e+01
Mean 1.22e+01 1.46e+01 1.53e+01 1.81e+01 2.28e+01 2.81e+01 3.43e+01
StErr 1.14e+00 1.32e+00 1.24e+00 1.26e+00 1.45e+00 2.14e+00 2.86e+00

20
Median 1.45e+01 1.42e+01 1.82e+01 1.90e+01 2.26e+01 3.09e+01 3.68e+01
Mean 1.49e+01 1.56e+01 1.72e+01 1.99e+01 2.42e+01 3.34e+01 3.77e+01
StErr 1.21e+00 1.42e+00 1.33e+00 1.30e+00 1.65e+00 3.18e+00 2.57e+00
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TABLE S-VII
SENSITIVITY ANALYSIS ON DIFFERENT POPULATION SIZES OF THE DynDEC FOR OPTIMIZING MPBS WITH m = 5, DIFFERENT DIMENSIONS AND

OTHER PARAMETERS FROM TABLE I. THE NUMBER OF BROWNIAN INDIVIDUALS IS SET TO 20% OF THE POPULATION SIZE. THE HIGHLIGHTED ENTRIES

ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

Dimension stats.
Population Size

10 20 30 40 50 60 70

1
Median 1.35e+00 5.30e-01 4.90e-01 3.72e-01 2.95e-01 2.58e-01 2.09e-01
Mean 1.38e+00 6.56e-01 5.96e-01 4.26e-01 3.91e-01 3.58e-01 3.02e-01
StErr 1.40e-01 8.93e-02 8.85e-02 5.30e-02 5.85e-02 4.32e-02 4.59e-02

2
Median 6.16e+00 4.30e+00 3.37e+00 3.57e+00 3.48e+00 3.04e+00 3.14e+00
Mean 5.95e+00 4.49e+00 3.96e+00 3.38e+00 3.44e+00 3.29e+00 3.09e+00
StErr 4.07e-01 4.33e-01 4.31e-01 2.71e-01 3.45e-01 2.90e-01 2.85e-01

3
Median 8.51e+00 5.80e+00 6.38e+00 7.22e+00 6.00e+00 7.10e+00 6.69e+00
Mean 8.96e+00 8.02e+00 7.41e+00 7.81e+00 6.92e+00 8.03e+00 6.97e+00
StErr 9.04e-01 1.03e+00 7.72e-01 6.98e-01 7.64e-01 9.52e-01 5.39e-01

5
Median 1.13e+01 1.14e+01 1.13e+01 9.30e+00 1.12e+01 1.07e+01 1.09e+01
Mean 1.25e+01 1.23e+01 1.17e+01 1.19e+01 1.11e+01 1.18e+01 1.24e+01
StErr 1.21e+00 1.12e+00 1.10e+00 1.29e+00 8.51e-01 1.22e+00 1.27e+00

7
Median 1.33e+01 1.19e+01 1.18e+01 1.23e+01 1.17e+01 1.15e+01 1.22e+01
Mean 1.33e+01 1.43e+01 1.29e+01 1.36e+01 1.22e+01 1.20e+01 1.44e+01
StErr 1.09e+00 1.34e+00 1.14e+00 1.37e+00 1.06e+00 1.12e+00 1.37e+00

10
Median 1.05e+01 1.11e+01 1.37e+01 1.06e+01 1.21e+01 1.22e+01 1.21e+01
Mean 1.35e+01 1.26e+01 1.42e+01 1.13e+01 1.25e+01 1.53e+01 1.42e+01
StErr 1.56e+00 1.25e+00 1.30e+00 1.03e+00 1.13e+00 1.55e+00 1.25e+00

15
Median 1.35e+01 1.65e+01 1.17e+01 1.26e+01 1.39e+01 1.45e+01 1.55e+01
Mean 1.51e+01 1.60e+01 1.47e+01 1.43e+01 1.67e+01 1.72e+01 1.71e+01
StErr 1.23e+00 1.33e+00 1.57e+00 1.08e+00 1.54e+00 1.80e+00 1.55e+00

20
Median 1.48e+01 1.72e+01 1.92e+01 1.66e+01 1.75e+01 1.46e+01 2.03e+01
Mean 1.73e+01 1.70e+01 1.68e+01 1.90e+01 1.62e+01 1.63e+01 1.96e+01
StErr 1.46e+00 1.41e+00 1.42e+00 1.48e+00 1.11e+00 1.42e+00 1.62e+00

TABLE S-VIII
SENSITIVITY ANALYSIS ON DIFFERENT OFFSPRING NUMBERS OF THE CMAESC FOR OPTIMIZING MPBS WITH m = 5, DIFFERENT DIMENSIONS AND

OTHER PARAMETERS FROM TABLE I. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH

HOLM p-VALUE ADJUSTMENT (α = 0.05).

Dimension stats.
Population Size

10 20 30 40 50 60 70 4 + ⌊3 log(d)⌋

1
Median 3.27e+00 2.90e+00 4.17e+00 6.68e+00 9.36e+00 1.33e+01 1.74e+01 4.50e+00
Mean 3.55e+00 3.47e+00 5.00e+00 7.21e+00 1.03e+01 1.46e+01 1.88e+01 4.94e+00
StErr 3.31e-01 3.74e-01 6.14e-01 8.83e-01 7.68e-01 1.19e+00 1.63e+00 4.78e-01

2
Median 1.02e+01 1.13e+01 9.21e+00 8.75e+00 1.00e+01 8.77e+00 8.79e+00 1.00e+01
Mean 1.11e+01 1.08e+01 9.38e+00 9.08e+00 1.00e+01 1.03e+01 1.01e+01 1.18e+01
StErr 1.11e+00 1.02e+00 8.89e-01 7.90e-01 8.69e-01 9.97e-01 8.43e-01 1.07e+00

3
Median 9.80e+00 1.34e+01 1.13e+01 9.27e+00 8.89e+00 1.06e+01 9.42e+00 1.20e+01
Mean 1.24e+01 1.24e+01 1.29e+01 1.09e+01 1.01e+01 1.17e+01 1.13e+01 1.34e+01
StErr 1.28e+00 1.06e+00 1.28e+00 1.10e+00 1.08e+00 1.25e+00 9.82e-01 1.32e+00

5
Median 1.21e+01 1.22e+01 1.38e+01 1.15e+01 1.16e+01 1.49e+01 1.12e+01 1.35e+01
Mean 1.38e+01 1.24e+01 1.40e+01 1.35e+01 1.32e+01 1.50e+01 1.18e+01 1.33e+01
StErr 1.14e+00 1.10e+00 1.05e+00 1.23e+00 1.07e+00 1.23e+00 1.00e+00 8.16e-01

7
Median 1.17e+01 1.43e+01 1.25e+01 1.27e+01 1.36e+01 1.28e+01 1.31e+01 1.34e+01
Mean 1.39e+01 1.42e+01 1.42e+01 1.38e+01 1.40e+01 1.40e+01 1.38e+01 1.48e+01
StErr 1.13e+00 9.60e-01 1.10e+00 1.11e+00 1.13e+00 9.83e-01 1.30e+00 1.05e+00

10
Median 1.12e+01 1.28e+01 1.19e+01 1.23e+01 1.13e+01 1.23e+01 1.15e+01 1.12e+01
Mean 1.28e+01 1.31e+01 1.38e+01 1.23e+01 1.41e+01 1.36e+01 1.41e+01 1.28e+01
StErr 1.04e+00 9.00e-01 1.38e+00 1.04e+00 1.30e+00 1.20e+00 1.13e+00 1.04e+00

15
Median 1.45e+01 1.63e+01 1.42e+01 1.51e+01 1.18e+01 1.47e+01 1.45e+01 1.45e+01
Mean 1.62e+01 1.52e+01 1.50e+01 1.55e+01 1.44e+01 1.52e+01 1.53e+01 1.60e+01
StErr 1.36e+00 1.24e+00 1.04e+00 1.07e+00 1.20e+00 1.25e+00 1.06e+00 1.33e+00

20
Median 1.46e+01 1.55e+01 1.49e+01 1.63e+01 1.57e+01 1.54e+01 1.53e+01 1.46e+01
Mean 1.53e+01 1.68e+01 1.65e+01 1.68e+01 1.53e+01 1.66e+01 1.70e+01 1.60e+01
StErr 1.26e+00 1.28e+00 1.22e+00 1.33e+00 9.70e-01 1.40e+00 1.52e+00 1.19e+00
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TABLE S-IX
SENSITIVITY ANALYSIS ON DIFFERENT BROWNIAN INDIVIDUAL NUMBERS OF THE DYNDE EMBEDDED IN THE FRAMEWORK IN SECTION IV-B (WHICH

IS USED IN DynDECTR , DynDECT AND DynDET) FOR OPTIMIZING MPBS WITH m = 5, DIFFERENT DIMENSIONS AND OTHER PARAMETERS FROM

TABLE I. POPULATION SIZE IS SET TO 10 ACCORDING TO TABLE S-III. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE

WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

Dimension stats.
Brownian size

3 4 5 7 10 15

1
Median 5.78e-02 8.10e-02 1.14e-01 1.00e-01 8.67e-02 1.25e-01
Mean 8.20e-02 1.74e-01 1.46e-01 1.61e-01 1.49e-01 2.21e-01
StErr 1.67e-02 4.08e-02 2.03e-02 3.05e-02 2.70e-02 4.49e-02

2
Median 3.84e-01 4.99e-01 4.22e-01 3.97e-01 4.50e-01 5.40e-01
Mean 5.92e-01 6.99e-01 6.71e-01 7.55e-01 7.23e-01 8.03e-01
StErr 1.52e-01 1.51e-01 1.62e-01 1.67e-01 1.39e-01 1.49e-01

3
Median 2.95e-01 2.70e-01 4.63e-01 3.16e-01 7.23e-01 8.40e-01
Mean 5.12e-01 8.18e-01 8.58e-01 7.96e-01 9.73e-01 1.71e+00
StErr 1.02e-01 2.31e-01 2.14e-01 2.25e-01 1.49e-01 5.77e-01

5
Median 2.04e-01 2.48e-01 2.91e-01 3.09e-01 4.28e-01 7.69e-01
Mean 3.75e-01 3.91e-01 4.87e-01 5.39e-01 6.15e-01 8.84e-01
StErr 9.23e-02 6.98e-02 9.09e-02 8.90e-02 8.83e-02 1.08e-01

7
Median 2.99e-01 2.88e-01 3.19e-01 4.02e-01 5.98e-01 7.38e-01
Mean 4.44e-01 3.55e-01 4.53e-01 5.70e-01 7.51e-01 1.02e+00
StErr 1.37e-01 4.37e-02 1.02e-01 8.28e-02 9.39e-02 1.39e-01

10
Median 4.70e-01 4.15e-01 5.60e-01 5.76e-01 7.46e-01 9.37e-01
Mean 7.10e-01 6.76e-01 8.80e-01 9.70e-01 9.41e-01 1.11e+00
StErr 1.58e-01 1.32e-01 1.81e-01 2.04e-01 9.99e-02 1.41e-01

15
Median 1.31e+00 1.20e+00 1.32e+00 1.29e+00 1.64e+00 1.73e+00
Mean 1.54e+00 1.55e+00 1.60e+00 1.70e+00 1.64e+00 1.81e+00
StErr 1.76e-01 1.81e-01 2.11e-01 1.88e-01 1.31e-01 1.25e-01

20
Median 1.93e+00 2.19e+00 2.40e+00 2.36e+00 2.78e+00 3.01e+00
Mean 2.37e+00 2.71e+00 2.33e+00 2.98e+00 3.51e+00 3.70e+00
StErr 2.57e-01 3.55e-01 1.69e-01 3.64e-01 4.24e-01 3.80e-01
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TABLE S-X
SENSITIVITY ANALYSIS ON DIFFERENT BROWNIAN INDIVIDUAL NUMBER OF THE DynDEC FOR OPTIMIZING MPBS WITH m = 5, DIFFERENT

DIMENSIONS AND OTHER PARAMETERS FROM TABLE I. POPULATION SIZE IS SET TO 60 ACCORDING TO TABLE S-VII. THE HIGHLIGHTED ENTRIES ARE

SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

Dimension stats.
Population Size

2 3 5 7 10 15 20

1
Median 2.71e-01 2.87e-01 2.99e-01 2.85e-01 2.69e-01 3.69e-01 2.63e-01
Mean 3.61e-01 3.21e-01 3.32e-01 3.63e-01 3.26e-01 4.16e-01 2.81e-01
StErr 3.65e-02 2.75e-02 4.05e-02 4.73e-02 4.28e-02 5.16e-02 3.36e-02

2
Median 2.98e+00 3.04e+00 2.82e+00 2.75e+00 2.77e+00 3.26e+00 2.49e+00
Mean 3.07e+00 3.26e+00 3.15e+00 3.10e+00 3.17e+00 3.57e+00 3.02e+00
StErr 2.35e-01 2.67e-01 3.24e-01 2.97e-01 3.08e-01 3.43e-01 2.74e-01

3
Median 4.96e+00 5.88e+00 6.30e+00 6.89e+00 6.95e+00 6.04e+00 6.47e+00
Mean 7.06e+00 7.73e+00 6.90e+00 7.79e+00 7.73e+00 6.62e+00 7.30e+00
StErr 8.45e-01 8.95e-01 5.59e-01 7.58e-01 7.39e-01 6.70e-01 8.70e-01

5
Median 9.14e+00 8.64e+00 1.13e+01 1.21e+01 1.09e+01 1.16e+01 9.99e+00
Mean 1.19e+01 1.09e+01 1.21e+01 1.30e+01 1.22e+01 1.25e+01 1.15e+01
StErr 1.34e+00 1.27e+00 1.18e+00 1.07e+00 1.19e+00 1.01e+00 1.23e+00

7
Median 1.22e+01 1.28e+01 1.34e+01 1.25e+01 1.11e+01 1.23e+01 1.35e+01
Mean 1.19e+01 1.28e+01 1.39e+01 1.35e+01 1.21e+01 1.37e+01 1.44e+01
StErr 1.09e+00 9.68e-01 1.15e+00 1.17e+00 1.34e+00 1.23e+00 1.24e+00

10
Median 1.04e+01 9.89e+00 1.30e+01 1.28e+01 1.21e+01 1.20e+01 1.18e+01
Mean 1.30e+01 1.23e+01 1.36e+01 1.43e+01 1.33e+01 1.28e+01 1.28e+01
StErr 1.22e+00 1.20e+00 1.12e+00 1.28e+00 1.11e+00 1.09e+00 1.26e+00

15
Median 1.48e+01 1.47e+01 1.57e+01 1.54e+01 1.93e+01 1.36e+01 1.51e+01
Mean 1.56e+01 1.54e+01 1.67e+01 1.73e+01 1.73e+01 1.53e+01 1.78e+01
StErr 1.43e+00 1.31e+00 1.30e+00 1.76e+00 1.44e+00 1.31e+00 1.77e+00

20
Median 1.45e+01 1.47e+01 1.64e+01 1.62e+01 1.73e+01 1.74e+01 1.69e+01
Mean 1.60e+01 1.66e+01 1.77e+01 1.62e+01 1.70e+01 1.82e+01 1.91e+01
StErr 1.66e+00 1.45e+00 1.40e+00 1.54e+00 1.59e+00 1.52e+00 1.63e+00

TABLE S-XI
SENSITIVITY ANALYSIS ON DIFFERENT rdeact IN PSOCTR FOR OPTIMIZING MPBS WITH m = 5, DIFFERENT DIMENSIONS AND OTHER PARAMETERS

FROM TABLE I. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE

ADJUSTMENT (α = 0.05).

Dimension stats.
rdeact

0.01 0.02 0.05 0.1 0.2 0.5 1 2

1
Median 6.21e-02 8.67e-02 1.09e-01 8.51e-02 1.09e-01 1.43e-01 3.03e-01 5.02e-01
Mean 1.19e-01 1.63e-01 1.61e-01 1.43e-01 1.53e-01 1.82e-01 3.57e-01 5.75e-01
StErr 2.45e-02 3.27e-02 2.97e-02 3.12e-02 2.98e-02 3.27e-02 4.94e-02 7.41e-02

2
Median 3.98e-01 2.96e-01 3.80e-01 2.21e-01 2.60e-01 2.20e-01 3.73e-01 7.43e-01
Mean 6.29e-01 4.85e-01 5.50e-01 5.42e-01 4.82e-01 4.83e-01 5.82e-01 1.04e+00
StErr 1.21e-01 9.76e-02 1.04e-01 1.47e-01 9.77e-02 1.19e-01 1.07e-01 1.85e-01

3
Median 2.45e-01 2.09e-01 1.31e-01 1.86e-01 1.99e-01 2.81e-01 4.78e-01 7.17e-01
Mean 6.22e-01 1.21e+00 4.85e-01 6.76e-01 5.63e-01 7.10e-01 8.16e-01 1.02e+00
StErr 2.02e-01 6.91e-01 1.71e-01 1.63e-01 1.44e-01 2.02e-01 2.52e-01 1.91e-01

5
Median 1.33e-01 1.48e-01 9.95e-02 1.22e-01 1.69e-01 1.83e-01 2.93e-01 9.46e-01
Mean 4.82e-01 3.47e-01 3.44e-01 3.32e-01 3.28e-01 3.40e-01 4.41e-01 9.66e-01
StErr 1.39e-01 9.10e-02 9.28e-02 9.75e-02 7.48e-02 7.76e-02 7.34e-02 1.29e-01

7
Median 2.48e-01 2.25e-01 2.40e-01 2.05e-01 2.04e-01 1.77e-01 2.64e-01 6.54e-01
Mean 3.71e-01 4.16e-01 4.16e-01 3.53e-01 3.97e-01 2.73e-01 4.39e-01 7.65e-01
StErr 7.44e-02 8.27e-02 8.17e-02 8.49e-02 8.05e-02 5.62e-02 7.72e-02 9.21e-02

10
Median 3.90e-01 3.38e-01 4.89e-01 3.33e-01 3.58e-01 4.01e-01 4.38e-01 1.03e+00
Mean 8.26e-01 1.02e+00 6.41e-01 6.67e-01 7.35e-01 5.20e-01 5.97e-01 1.07e+00
StErr 3.45e-01 3.46e-01 1.24e-01 1.49e-01 1.94e-01 9.73e-02 8.61e-02 1.29e-01

15
Median 9.96e-01 7.64e-01 8.79e-01 8.43e-01 9.38e-01 7.22e-01 7.95e-01 1.24e+00
Mean 1.54e+00 1.37e+00 1.40e+00 1.49e+00 1.26e+00 9.14e-01 9.81e-01 1.74e+00
StErr 2.51e-01 2.47e-01 2.79e-01 2.87e-01 1.84e-01 1.34e-01 1.27e-01 2.61e-01

20
Median 1.75e+00 1.52e+00 1.58e+00 1.68e+00 1.68e+00 1.37e+00 1.68e+00 2.10e+00
Mean 2.41e+00 1.81e+00 2.03e+00 1.95e+00 2.61e+00 2.21e+00 1.94e+00 2.23e+00
StErr 4.71e-01 2.48e-01 3.21e-01 2.36e-01 4.02e-01 4.43e-01 3.13e-01 2.37e-01
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TABLE S-XII
COMPARATIVE RESULTS OF PSOCTR , PSOCT , PSOC , AND PSOT ON f1 TO f15 . THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING

PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

Function Stats. PSOCTR PSOCT PSOC PSOT

f1

Median 2.35e+00 3.95e+00 5.93e+01 6.43e+01

Mean 2.59e+00 4.33e+00 5.94e+01 6.15e+01

StErr 2.74e-01 3.56e-01 2.99e+00 3.18e+00

f2

Median 2.23e+00 3.24e+00 3.17e+01 9.55e+01

Mean 2.38e+00 4.00e+00 3.20e+01 9.72e+01

StErr 1.95e-01 4.27e-01 1.90e+00 2.02e+00

f3

Median 1.19e+00 2.87e+00 5.71e+01 4.30e+01

Mean 1.67e+00 2.96e+00 5.89e+01 4.52e+01

StErr 2.33e-01 2.40e-01 2.82e+00 2.67e+00

f4

Median 3.00e+00 3.19e+00 1.10e+01 3.21e+02

Mean 3.05e+00 3.23e+00 1.10e+01 3.17e+02

StErr 2.13e-01 1.07e-01 2.43e-01 5.75e+00

f5

Median 1.84e+00 2.94e+00 1.38e+01 1.24e+00

Mean 2.34e+00 3.56e+00 1.49e+01 2.13e+00

StErr 3.62e-01 3.87e-01 1.39e+00 4.14e-01

f6

Median 4.56e+00 8.77e+00 1.14e+02 1.77e+02

Mean 5.19e+00 9.09e+00 1.18e+02 1.79e+02

StErr 4.33e-01 4.69e-01 3.96e+00 4.84e+00

f7

Median 4.42e+00 6.53e+00 6.68e+01 2.47e+02

Mean 4.44e+00 6.58e+00 6.62e+01 2.46e+02

StErr 2.51e-01 3.43e-01 2.66e+00 3.63e+00

f8

Median 3.64e+00 5.95e+00 1.14e+02 2.07e+02

Mean 4.20e+00 6.22e+00 1.17e+02 1.96e+02

StErr 3.47e-01 4.86e-01 4.23e+00 6.15e+00

f9

Median 6.08e+00 6.73e+00 2.17e+01 8.16e+02

Mean 6.03e+00 6.48e+00 2.18e+01 8.19e+02

StErr 1.61e-01 1.26e-01 2.73e-01 1.11e+01

f10

Median 7.76e+00 8.38e+00 1.66e+01 8.05e+00

Mean 7.77e+00 9.67e+00 2.01e+01 8.22e+00

StErr 6.11e-01 7.92e-01 2.66e+00 8.00e-01

f11

Median 1.05e+01 2.02e+01 2.13e+02 6.45e+01

Mean 1.46e+01 2.06e+01 2.11e+02 6.14e+01

StErr 3.10e+00 6.99e-01 5.06e+00 3.18e+00

f12

Median 1.19e+01 1.51e+01 1.31e+02 5.71e+02

Mean 1.44e+01 1.63e+01 1.30e+02 5.66e+02

StErr 1.44e+00 1.34e+00 4.90e+00 5.46e+00

f13

Median 1.05e+01 1.70e+01 1.98e+02 5.00e+02

Mean 1.15e+01 1.79e+01 2.02e+02 4.96e+02

StErr 1.04e+00 8.35e-01 4.67e+00 1.06e+01

f14

Median 1.18e+01 1.32e+01 4.35e+01 2.14e+03

Mean 1.19e+01 1.31e+01 4.38e+01 2.14e+03

StErr 2.94e-01 1.64e-01 4.57e-01 2.26e+01

f15

Median 3.61e+01 4.43e+01 3.47e+01 4.80e+01

Mean 3.99e+01 4.38e+01 4.19e+01 4.81e+01

StErr 2.76e+00 3.43e+00 4.99e+00 3.24e+00

f16

Median 3.63e+01 5.19e+01 3.39e+02 9.78e+02

Mean 3.64e+01 5.12e+01 3.38e+02 9.84e+02

StErr 1.22e+00 1.44e+00 9.44e+00 1.98e+01

f17

Median 3.77e+01 5.60e+01 2.92e+02 5.79e+02

Mean 6.05e+01 8.88e+01 3.49e+02 5.68e+02

StErr 1.55e+01 2.25e+01 3.53e+01 1.09e+01

f18

Median 2.79e+01 3.77e+01 2.27e+02 1.17e+03

Mean 3.13e+01 4.05e+01 2.25e+02 1.16e+03

StErr 1.63e+00 1.80e+00 1.65e+01 3.54e+01

f19

Median 2.38e+01 2.29e+01 8.14e+01 5.01e+03

Mean 2.62e+01 2.62e+01 8.96e+01 4.98e+03

StErr 2.51e+00 3.11e+00 7.48e+00 2.24e+01

f20

Median 1.49e+02 1.98e+02 8.92e+01 1.75e+02

Mean 1.70e+02 1.88e+02 1.16e+02 1.71e+02

StErr 5.00e+01 1.27e+01 1.54e+01 1.48e+01
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TABLE S-XIII
RESULTS OBTAINED BY ALGORITHMS ON f6 TO f10 WITH DIFFERENT NUMBERS OF PEAKS m FOR EACH COMPONENT RANDOMIZED IN THE FOLLOWING

RANGES {1, . . . , 5}, {1, . . . , 10}, AND {1, . . . , 20}. OTHER PARAMETERS OF CMPB ARE SET AS SHOWN IN TABLE I. THE HIGHLIGHTED ENTRIES ARE

SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

m ∈ {1, . . . , 5} m ∈ {1, . . . , 10} m ∈ {1, . . . , 20}

F (x) Stats. PSOCTR PSOCT PSOC PSOT PSOCTR PSOCT PSOC PSOT PSOCTR PSOCT PSOC PSOT

f6

Median 2.54e+00 5.57e+00 1.03e+02 1.90e+02 4.56e+00 8.77e+00 1.14e+02 1.77e+02 9.52e+00 1.33e+01 1.12e+02 2.02e+02
Mean 2.68e+00 6.21e+00 1.02e+02 1.93e+02 5.19e+00 9.09e+00 1.18e+02 1.79e+02 1.01e+01 1.33e+01 1.16e+02 2.08e+02
StErr 2.06e-01 4.94e-01 3.33e+00 4.59e+00 4.33e-01 4.69e-01 3.96e+00 4.84e+00 6.36e-01 6.97e-01 3.97e+00 5.80e+00

f7

Median 2.36e+00 4.61e+00 6.01e+01 2.63e+02 4.42e+00 6.53e+00 6.68e+01 2.47e+02 7.04e+00 9.32e+00 6.73e+01 2.62e+02
Mean 2.75e+00 5.22e+00 6.13e+01 2.62e+02 4.44e+00 6.58e+00 6.62e+01 2.46e+02 7.60e+00 9.10e+00 6.56e+01 2.56e+02
StErr 1.95e-01 5.27e-01 2.71e+00 3.59e+00 2.51e-01 3.43e-01 2.66e+00 3.63e+00 3.82e-01 3.29e-01 2.31e+00 4.61e+00

f8

Median 2.14e+00 3.01e+00 1.04e+02 2.08e+02 3.64e+00 5.95e+00 1.14e+02 2.07e+02 8.07e+00 1.21e+01 1.29e+02 2.55e+02
Mean 2.15e+00 3.16e+00 1.01e+02 2.11e+02 4.20e+00 6.22e+00 1.17e+02 1.96e+02 8.53e+00 1.28e+01 1.26e+02 2.57e+02
StErr 1.77e-01 2.08e-01 2.63e+00 4.33e+00 3.47e-01 4.86e-01 4.23e+00 6.15e+00 6.03e-01 6.71e-01 3.80e+00 6.53e+00

f9

Median 3.41e+00 3.64e+00 1.92e+01 8.61e+02 6.08e+00 6.73e+00 2.17e+01 8.16e+02 9.55e+00 1.11e+01 2.47e+01 8.38e+02
Mean 3.39e+00 3.67e+00 1.91e+01 8.69e+02 6.03e+00 6.48e+00 2.18e+01 8.19e+02 1.19e+01 1.15e+01 2.51e+01 8.29e+02
StErr 1.39e-01 7.36e-02 3.22e-01 1.06e+01 1.61e-01 1.26e-01 2.73e-01 1.11e+01 2.17e+00 4.01e-01 8.22e-01 4.70e+00

f10

Median 6.17e+00 8.08e+00 1.45e+01 7.75e+00 7.76e+00 8.38e+00 1.66e+01 8.05e+00 6.99e+00 8.42e+00 1.89e+01 8.36e+00
Mean 7.30e+00 8.63e+00 1.61e+01 8.51e+00 7.77e+00 9.67e+00 2.01e+01 8.22e+00 7.76e+00 9.19e+00 2.11e+01 9.19e+00
StErr 7.52e-01 7.24e-01 1.64e+00 7.27e-01 6.11e-01 7.92e-01 2.66e+00 8.00e-01 6.24e-01 6.90e-01 1.88e+00 7.09e-01

TABLE S-XIV
RESULTS OBTAINED BY ALGORITHMS ON f6 TO f10 WITH DIFFERENT SHIFT SEVERITY VALUES FOR EACH PEAK IN EACH COMPONENT. THE VALUES ARE

RANDOMIZED IN THE FOLLOWING RANGES [0.5, 1], [0.5, 3], AND [0.5, 5]. OTHER PARAMETERS OF CMPB ARE SET AS SHOWN IN TABLE I. THE

HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

S ∈ [0.5, 1] S ∈ [0.5, 3] S ∈ [0.5, 5]

F (x) Stats. PSOCTR PSOCT PSOC PSOT PSOCTR PSOCT PSOC PSOT PSOCTR PSOCT PSOC PSOT

f6

Median 3.67e+00 6.74e+00 1.10e+02 1.50e+02 4.56e+00 8.77e+00 1.14e+02 1.77e+02 6.20e+00 1.14e+01 1.13e+02 2.49e+02
Mean 3.82e+00 7.27e+00 1.15e+02 1.53e+02 5.19e+00 9.09e+00 1.18e+02 1.79e+02 7.15e+00 1.18e+01 1.19e+02 2.47e+02
StErr 2.85e-01 5.27e-01 4.30e+00 3.12e+00 4.33e-01 4.69e-01 3.96e+00 4.84e+00 5.51e-01 5.72e-01 3.94e+00 5.66e+00

f7

Median 3.79e+00 4.26e+00 6.26e+01 2.12e+02 4.42e+00 6.53e+00 6.68e+01 2.47e+02 5.84e+00 7.75e+00 7.01e+01 3.12e+02
Mean 4.39e+00 4.35e+00 6.24e+01 2.13e+02 4.44e+00 6.58e+00 6.62e+01 2.46e+02 6.01e+00 7.98e+00 6.80e+01 3.13e+02
StErr 3.02e-01 2.21e-01 2.64e+00 2.39e+00 2.51e-01 3.43e-01 2.66e+00 3.63e+00 4.12e-01 4.05e-01 2.58e+00 3.96e+00

f8

Median 3.53e+00 4.02e+00 1.20e+02 1.73e+02 3.64e+00 5.95e+00 1.14e+02 2.07e+02 5.05e+00 7.60e+00 1.24e+02 2.89e+02
Mean 3.43e+00 4.68e+00 1.19e+02 1.74e+02 4.20e+00 6.22e+00 1.17e+02 1.96e+02 5.30e+00 7.80e+00 1.18e+02 2.86e+02
StErr 3.33e-01 4.49e-01 4.08e+00 4.35e+00 3.47e-01 4.86e-01 4.23e+00 6.15e+00 3.78e-01 4.89e-01 4.14e+00 7.14e+00

f9

Median 7.63e+00 5.04e+00 1.87e+01 7.02e+02 6.08e+00 6.73e+00 2.17e+01 8.16e+02 5.93e+00 7.97e+00 2.25e+01 9.53e+02
Mean 7.95e+00 5.04e+00 1.87e+01 7.00e+02 6.03e+00 6.48e+00 2.18e+01 8.19e+02 6.07e+00 7.76e+00 2.24e+01 9.61e+02
StErr 2.28e-01 1.27e-01 2.03e-01 5.61e+00 1.61e-01 1.26e-01 2.73e-01 1.11e+01 1.29e-01 1.76e-01 1.92e-01 8.56e+00

f10

Median 6.05e+00 6.43e+00 1.65e+01 6.53e+00 7.76e+00 8.38e+00 1.66e+01 8.05e+00 9.48e+00 1.03e+01 1.66e+01 9.48e+00
Mean 6.72e+00 7.36e+00 2.05e+01 7.59e+00 7.77e+00 9.67e+00 2.01e+01 8.22e+00 9.55e+00 1.15e+01 1.99e+01 1.03e+01
StErr 4.82e-01 5.44e-01 2.66e+00 7.53e-01 6.11e-01 7.92e-01 2.66e+00 8.00e-01 7.85e-01 9.29e-01 2.10e+00 8.11e-01
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TABLE S-XV
RESULTS OBTAINED BY ALGORITHMS ON f6 TO f10 WITH DIFFERENT CHANGE FREQUENCIES: 200D, 500D, AND 1000D. OTHER PARAMETERS OF

CMPB ARE SET AS SHOWN IN TABLE I. THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST

WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

f = 200D f = 500D f = 1000D

F (x) Stats. PSOCTR PSOCT PSOC PSOT PSOCTR PSOCT PSOC PSOT PSOCTR PSOCT PSOC PSOT

f6

Median 1.83e+01 2.90e+01 1.93e+02 2.76e+02 4.56e+00 8.77e+00 1.14e+02 1.77e+02 1.90e+00 2.84e+00 9.08e+01 1.62e+02
Mean 1.98e+01 2.91e+01 2.03e+02 2.76e+02 5.19e+00 9.09e+00 1.18e+02 1.79e+02 2.25e+00 3.00e+00 8.84e+01 1.62e+02
StErr 8.62e-01 1.17e+00 6.59e+00 5.65e+00 4.33e-01 4.69e-01 3.96e+00 4.84e+00 2.59e-01 2.44e-01 2.90e+00 3.80e+00

f7

Median 1.61e+01 2.00e+01 1.05e+02 3.32e+02 4.42e+00 6.53e+00 6.68e+01 2.47e+02 2.16e+00 1.91e+00 4.55e+01 2.30e+02
Mean 1.60e+01 1.96e+01 1.03e+02 3.34e+02 4.44e+00 6.58e+00 6.62e+01 2.46e+02 2.39e+00 2.19e+00 4.70e+01 2.25e+02
StErr 6.01e-01 7.79e-01 3.47e+00 3.88e+00 2.51e-01 3.43e-01 2.66e+00 3.63e+00 2.03e-01 1.79e-01 2.15e+00 2.86e+00

f8

Median 1.33e+01 2.34e+01 1.73e+02 3.18e+02 3.64e+00 5.95e+00 1.14e+02 2.07e+02 2.24e+00 2.13e+00 9.89e+01 1.84e+02
Mean 1.44e+01 2.39e+01 1.76e+02 3.20e+02 4.20e+00 6.22e+00 1.17e+02 1.96e+02 2.47e+00 2.52e+00 1.03e+02 1.89e+02
StErr 6.50e-01 1.18e+00 5.29e+00 8.26e+00 3.47e-01 4.86e-01 4.23e+00 6.15e+00 2.78e-01 3.00e-01 3.88e+00 4.73e+00

f9

Median 1.74e+01 2.79e+01 5.82e+01 1.05e+03 6.08e+00 6.73e+00 2.17e+01 8.16e+02 3.54e+00 1.33e+00 1.16e+01 7.30e+02
Mean 1.75e+01 2.79e+01 5.83e+01 1.04e+03 6.03e+00 6.48e+00 2.18e+01 8.19e+02 3.65e+00 1.38e+00 1.14e+01 7.18e+02
StErr 2.53e-01 4.85e-01 5.54e-01 9.73e+00 1.61e-01 1.26e-01 2.73e-01 1.11e+01 1.32e-01 6.45e-02 1.98e-01 4.42e+00

f10

Median 1.20e+01 1.51e+01 1.97e+01 1.36e+01 7.76e+00 8.38e+00 1.66e+01 8.05e+00 6.03e+00 6.12e+00 1.77e+01 6.75e+00
Mean 1.21e+01 1.56e+01 2.21e+01 1.44e+01 7.77e+00 9.67e+00 2.01e+01 8.22e+00 5.95e+00 6.25e+00 1.85e+01 7.58e+00
StErr 8.67e-01 1.15e+00 2.14e+00 1.12e+00 6.11e-01 7.92e-01 2.66e+00 8.00e-01 4.14e-01 4.23e-01 2.31e+00 6.88e-01
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TABLE S-XVI
RESULTS OBTAINED BY THE FOUR FRAMEWORKS FROM TABLE II WITH DIFFERENT OPTIMIZERS INCLUDING PSO, JDE, DYNDE, AND CMAES ON f6

TO f10 WITH DEFAULT PARAMETER SETTINGS OF CMPB (TABLE I). THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE

WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

Framework

Optimizer F Stats. CTR CT C T

PSO

f6

Median 4.56e+00 8.77e+00 1.14e+02 1.77e+02

Mean 5.19e+00 9.09e+00 1.18e+02 1.79e+02

StErr 4.33e-01 4.69e-01 3.96e+00 4.84e+00

f7

Median 4.42e+00 6.53e+00 6.68e+01 2.47e+02

Mean 4.44e+00 6.58e+00 6.62e+01 2.46e+02

StErr 2.51e-01 3.43e-01 2.66e+00 3.63e+00

f8

Median 3.64e+00 5.95e+00 1.14e+02 2.07e+02

Mean 4.20e+00 6.22e+00 1.17e+02 1.96e+02

StErr 3.47e-01 4.86e-01 4.23e+00 6.15e+00

f9

Median 6.08e+00 6.73e+00 2.17e+01 8.16e+02

Mean 6.03e+00 6.48e+00 2.18e+01 8.19e+02

StErr 1.61e-01 1.26e-01 2.73e-01 1.11e+01

f10

Median 7.76e+00 8.38e+00 1.66e+01 8.05e+00

Mean 7.77e+00 9.67e+00 2.01e+01 8.22e+00

StErr 6.11e-01 7.92e-01 2.66e+00 8.00e-01

CMA-ES

f6

Median 6.70e+00 1.18e+01 8.22e+01 1.43e+03

Mean 7.95e+00 1.19e+01 8.79e+01 1.56e+03

StErr 6.70e-01 5.96e-01 4.26e+00 6.04e+01

f7

Median 7.55e+00 1.25e+01 7.09e+01 1.16e+03

Mean 7.91e+00 1.24e+01 7.38e+01 1.14e+03

StErr 5.49e-01 4.46e-01 2.93e+00 3.09e+01

f8

Median 4.20e+00 6.92e+00 1.02e+02 2.03e+03

Mean 4.64e+00 7.02e+00 1.06e+02 2.14e+03

StErr 5.37e-01 6.58e-01 3.23e+00 9.76e+01

f9

Median 1.36e+01 1.67e+01 1.68e+02 2.62e+03

Mean 1.40e+01 1.68e+01 1.72e+02 2.62e+03

StErr 3.55e-01 3.45e-01 3.30e+00 4.03e+01

f10

Median 1.11e+00 1.33e+00 1.08e+01 5.90e+02

Mean 2.41e+00 1.99e+00 1.20e+01 7.58e+02

StErr 5.33e-01 4.13e-01 1.04e+00 9.28e+01

DynDE

f6

Median 5.47e+00 1.04e+01 6.94e+01 1.43e+02

Mean 5.96e+00 1.11e+01 7.84e+01 1.46e+02

StErr 6.06e-01 6.44e-01 4.21e+00 3.58e+00

f7

Median 4.84e+00 9.61e+00 4.14e+01 2.05e+02

Mean 4.78e+00 9.42e+00 4.35e+01 2.08e+02

StErr 3.59e-01 4.68e-01 2.26e+00 3.45e+00

f8

Median 4.53e+00 5.74e+00 9.13e+01 1.64e+02

Mean 5.11e+00 6.39e+00 9.00e+01 1.65e+02

StErr 5.14e-01 4.47e-01 2.95e+00 3.81e+00

f9

Median 4.86e+00 5.10e+00 1.25e+01 6.88e+02

Mean 4.82e+00 5.12e+00 1.26e+01 6.91e+02

StErr 1.64e-01 1.22e-01 2.56e-01 6.34e+00

f10

Median 4.53e+00 4.92e+00 1.26e+01 5.20e+00

Mean 5.02e+00 5.11e+00 1.26e+01 5.75e+00

StErr 4.18e-01 3.33e-01 1.22e+00 5.00e-01

jDE

f6

Median 2.11e+01 3.43e+01 7.80e+01 1.19e+02

Mean 2.38e+01 3.77e+01 8.53e+01 1.25e+02

StErr 1.58e+00 2.09e+00 3.82e+00 5.02e+00

f7

Median 1.62e+01 2.36e+01 5.76e+01 1.35e+02

Mean 1.71e+01 2.34e+01 5.98e+01 1.36e+02

StErr 1.35e+00 1.13e+00 2.72e+00 3.08e+00

f8

Median 1.75e+01 2.50e+01 7.53e+01 1.31e+02

Mean 1.83e+01 2.55e+01 7.70e+01 1.33e+02

StErr 1.07e+00 9.98e-01 2.53e+00 3.58e+00

f9

Median 1.08e+01 1.77e+01 8.75e+00 3.56e+02

Mean 1.08e+01 1.80e+01 8.78e+00 3.53e+02

StErr 1.81e-01 2.52e-01 1.80e-01 5.34e+00

f10

Median 2.91e+00 2.60e+00 1.15e+01 3.95e+00

Mean 3.13e+00 4.08e+00 1.21e+01 3.91e+00

StErr 3.98e-01 5.56e-01 1.25e+00 4.48e-01



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

TABLE S-XVII
RESULTS OBTAINED BY THE FOUR FRAMEWORKS FROM TABLE II WITH DIFFERENT OPTIMIZERS INCLUDING PSO, JDE, DYNDE, AND CMAES ON f11 ,

f12 , f16 AND f17 WITH DEFAULT PARAMETER SETTINGS OF CMPB (TABLE I). THE HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING

PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

CMPB parameters Frameworks

Optimizer F D m S f Stats. CTR CT C T

PSO

f11 100 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 1.05e+01 2.02e+01 2.13e+02 6.45e+01

Mean 1.46e+01 2.06e+01 2.11e+02 6.14e+01

StErr 3.10e+00 6.99e-01 5.06e+00 3.18e+00

f12 100 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 1.19e+01 1.51e+01 1.31e+02 5.71e+02

Mean 1.44e+01 1.63e+01 1.30e+02 5.66e+02

StErr 1.44e+00 1.34e+00 4.90e+00 5.46e+00

f16 200 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 3.63e+01 5.19e+01 3.39e+02 9.78e+02

Mean 3.64e+01 5.12e+01 3.38e+02 9.84e+02

StErr 1.22e+00 1.44e+00 9.44e+00 1.98e+01

f17 200 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 3.77e+01 5.60e+01 2.92e+02 5.79e+02

Mean 6.05e+01 8.88e+01 3.49e+02 5.68e+02

StErr 1.55e+01 2.25e+01 3.53e+01 1.98e+01

CMA-ES

f11 100 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 3.25e+01 5.77e+01 1.30e+02 9.89e+02

Mean 8.80e+01 1.34e+02 1.54e+02 9.97e+02

StErr 3.26e+01 4.95e+01 7.93e+00 1.96e+01

f12 100 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 3.75e+01 5.72e+01 1.44e+02 8.27e+02

Mean 3.51e+01 6.39e+01 1.44e+02 8.78e+02

StErr 2.29e+00 4.06e+00 3.04e+00 1.24e+01

f16 200 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 1.51e+02 3.14e+02 2.39e+02 1.63e+03

Mean 1.52e+01 3.48e+02 2.36e+02 1.64e+03

StErr 6.01e+00 1.41e+01 3.27e+00 4.00e+01

f17 200 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 3.53e+02 4.08e+02 5.06e+02 8.38e+02

Mean 5.27e+02 5.31e+02 6.78e+02 8.46e+02

StErr 7.38e+01 7.84e+01 7.10e+01 1.59e+01

DynDE

f11 100 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 2.04e+01 4.19e+01 1.40e+02 3.03e+02

Mean 3.03e+01 6.61e+01 1.54e+02 3.08e+02

StErr 5.33e+00 1.39e+01 7.52e+00 8.39e+00

f12 100 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 1.86e+01 4.37e+01 1.11e+02 4.01e+02

Mean 2.26e+01 4.17e+01 1.04e+02 4.05e+02

StErr 2.18e+00 1.96e+00 4.10e+00 8.41e+00

f16 200 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 8.14e+01 1.67e+02 3.03e+02 5.69e+02

Mean 7.58e+01 1.71e+02 2.99e+02 5.85e+02

StErr 3.78e+00 6.44e+00 7.10e+00 1.76e+01

f17 200 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 8.65e+01 2.14e+02 3.89e+02 4.02e+02

Mean 1.89e+02 4.60e+02 5.63e+02 4.10e+02

StErr 3.48e+01 8.68e+01 7.54e+01 6.11e+00

jDE

f11 100 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 7.42e+01 1.32e+02 2.02e+02 1.84e+02

Mean 8.78e+01 1.51e+02 2.18e+02 1.87e+02

StErr 1.01e+01 1.63e+01 1.97e+01 5.98e+00

f12 100 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 7.00e+01 8.32e+01 1.51e+02 1.75e+02

Mean 6.93e+01 9.14e+01 1.68e+02 1.84e+02

StErr 4.35e+00 8.36e+00 1.00e+01 5.43e+00

f16 200 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 1.88e+02 3.27e+02 4.68e+02 4.82e+02

Mean 1.90e+02 3.34e+02 4.67e+02 4.92e+02

StErr 6.10e+00 1.45e+01 7.24e+00 2.90e+01

f17 200 ∈ {1 · · · 10} ∈ [0.5, 3] 500D
Median 1.85e+02 4.07e+02 4.61e+02 6.12e+02

Mean 3.14e+02 5.99e+02 7.26e+02 6.37e+02

StErr 4.14e+01 9.72e+01 8.60e+01 1.45e+01
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TABLE S-XVIII
RESULTS OBTAINED BY THE FOUR FRAMEWORKS FROM TABLE II WITH DIFFERENT OPTIMIZERS INCLUDING PSO, JDE, DYNDE, AND CMAES ON f11 ,

f12 , f16 AND f17 WITH NUMBER OF PEAKS m RANDOMIZED ∈ {1, . . . , 20}. OTHER PARAMETERS OF CMPB ARE SET AS SHOWN IN TABLE I. THE

HIGHLIGHTED ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

CMPB parameters Frameworks

Optimizer F D m S f Stats. CTR CT C T

PSO

f11 100 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 2.83e+01 3.95e+01 2.21e+02 4.60e+02

Mean 3.36e+01 4.57e+01 2.34e+02 4.61e+02

StErr 2.03e+00 3.15e+00 6.67e+00 7.39e+00

f12 100 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 1.81e+01 2.43e+01 1.28e+02 4.92e+02

Mean 2.03e+01 2.46e+01 1.32e+02 4.84e+02

StErr 1.01e+00 1.43e+00 4.61e+00 4.91e+00

f16 200 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 8.24e+01 1.13e+02 4.12e+02 1.09e+03

Mean 8.20e+01 1.13e+02 4.43e+02 1.08e+03

StErr 2.50e+00 4.36e+00 1.58e+01 2.30e+01

f17 200 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 8.73e+01 1.18e+02 3.59e+02 5.70e+02

Mean 1.51e+02 1.90e+02 4.43e+02 5.84e+02

StErr 3.91e+01 4.66e+01 6.08e+01 1.22e+01

CMA-ES

f11 100 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 4.66e+01 6.66e+01 1.79e+02 9.33e+02

Mean 4.44e+01 7.24e+01 1.86e+02 9.30e+02

StErr 2.17e+00 3.77e+00 7.17e+00 2.04e+01

f12 100 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 4.03e+01 5.93e+01 1.40e+02 6.85e+02

Mean 4.12e+01 6.85e+01 1.41e+02 7.02e+02

StErr 1.58e+00 4.93e+00 3.56e+00 1.06e+01

f16 200 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 2.57e+02 3.41e+02 4.10e+02 1.35e+03

Mean 2.80e+02 3.54e+02 4.28e+02 1.38e+03

StErr 5.62e+00 8.58e+00 7.23e+00 2.03e+01

f17 200 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 3.63e+02 4.41e+02 5.18e+02 9.42e+02

Mean 4.40e+02 5.42e+02 5.91e+02 9.67e+02

StErr 4.34e+01 6.98e+01 4.09e+01 1.87e+01

DynDE

f11 100 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 3.02e+01 5.29e+01 1.92e+02 3.40e+02

Mean 3.38e+01 5.96e+01 1.88e+02 3.46e+02

StErr 1.72e+00 2.78e+00 7.91e+00 7.44e+00

f12 100 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 2.33e+01 3.75e+01 9.01e+01 3.86e+02

Mean 2.36e+01 4.13e+01 9.08e+01 3.93e+02

StErr 1.46e+00 2.73e+00 3.04e+00 4.37e+00

f16 200 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 7.86e+01 1.84e+02 3.06e+02 5.97e+02

Mean 7.84e+01 1.82e+02 3.03e+02 6.07e+02

StErr 4.02e+00 7.93e+00 9.22e+00 7.29e+00

f17 200 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 8.81e+01 2.43e+02 2.62e+02 3.97e+02

Mean 1.39e+02 3.19e+02 3.51e+02 4.07e+02

StErr 2.97e+01 5.83e+01 4.86e+01 5.60e+00

jDE

f11 100 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 1.02e+02 1.42e+02 2.21e+02 2.17e+02

Mean 1.05e+02 1.40e+02 2.17e+02 2.29e+02

StErr 4.88e+00 4.55e+00 8.20e+00 9.39e+00

f12 100 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 5.56e+01 7.56e+01 1.24e+02 1.52e+02

Mean 5.57e+01 7.99e+01 1.37e+02 1.63e+02

StErr 2.65e+00 5.01e+00 6.61e+00 4.61e+00

f16 200 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 1.78e+02 3.60e+02 4.45e+02 6.44e+02

Mean 1.84e+02 3.60e+02 4.40e+02 6.33e+02

StErr 9.31e+00 1.37e+01 1.34e+01 8.90e+00

f17 200 ∈ {1 · · · 20} ∈ [0.5, 3] 500D
Median 1.90e+02 3.83e+02 3.89e+02 5.78e+02

Mean 2.28e+02 4.49e+02 5.44e+02 5.75e+02

StErr 2.06e+01 5.15e+01 9.02e+01 3.45e+00
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TABLE S-XIX
OBTAINED RESULTS BY THE FOUR FRAMEWORKS FROM TABLE II WITH DIFFERENT OPTIMIZERS INCLUDING PSO, JDE, DYNDE, AND CMAES ON f11 ,
f12 , f16 AND f17 WITH CHANGE FREQUENCY f 200D. OTHER PARAMETERS OF CMPB ARE SET AS SHOWN IN TABLE I. THE HIGHLIGHTED ENTRIES

ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

CMPB parameters Frameworks

Optimizer F D m S f Stats. CTR CT C T

PSO

f11 100 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 7.14e+01 8.44e+01 4.23e+02 6.24e+02

Mean 8.50e+01 1.16e+02 4.78e+02 6.29e+02

StErr 1.21e+01 2.16e+01 3.09e+00 1.85e+01

f12 100 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 5.68e+01 5.99e+01 2.67e+02 6.10e+02

Mean 5.55e+01 6.35e+01 2.68e+02 6.12e+02

StErr 2.87e+00 2.58e+00 8.57e+00 6.68e+00

f16 200 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 1.86e+02 2.61e+02 8.77e+02 1.43e+03

Mean 2.07e+02 2.62e+02 9.23e+02 1.42e+03

StErr 7.62e+00 4.42e+00 2.48e+01 2.00e+01

f17 200 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 2.19e+02 2.74e+02 8.85e+02 7.43e+02

Mean 4.37e+02 4.76e+02 1.02e+03 7.52e+02

StErr 9.50e+01 8.74e+01 9.88e+01 1.65e+01

CMA-ES

f11 100 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 1.47e+02 2.93e+02 2.72e+02 1.39e+03

Mean 2.09e+02 3.65e+02 3.05e+02 1.44e+03

StErr 4.50e+01 5.36e+01 2.48e+01 3.26e+01

f12 100 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 1.53e+02 2.09e+02 4.03e+02 1.19e+03

Mean 1.41e+02 2.27e+02 4.13e+02 1.16e+03

StErr 6.40e+00 1.67e+01 1.42e+01 2.13e+01

f16 200 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 6.17e+02 8.01e+02 8.89e+02 2.21e+03

Mean 6.80e+02 8.03e+02 8.95e+02 2.27e+03

StErr 2.21e+01 3.87e+01 9.98e+00 4.40e+00

f17 200 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 7.04e+02 7.57e+02 9.36e+02 1.30e+03

Mean 9.01e+02 9.35e+02 9.80e+02 1.22e+03

StErr 1.19e+02 1.07e+02 8.01e+01 4.04e+01

DynDE

f11 100 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 7.86e+01 1.31e+02 2.99e+02 4.30e+02

Mean 9.15e+01 2.01e+02 3.38e+02 4.38e+02

StErr 1.09e+01 4.24e+01 2.57e+01 9.41e+00

f12 100 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 8.33e+01 1.22e+02 2.39e+02 4.72e+02

Mean 8.02e+01 1.18e+02 2.36e+02 4.91e+02

StErr 3.53e+00 6.31e+00 8.67e+00 8.24e+00

f16 200 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 2.54e+02 4.97e+02 8.04e+02 8.58e+02

Mean 2.57e+02 5.37e+02 7.83e+02 8.92e+02

StErr 5.34e+00 1.85e+01 1.99e+01 2.16e+01

f17 200 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 3.81e+02 4.92e+02 8.26e+02 6.12e+02

Mean 4.52e+02 5.81e+02 1.16e+03 6.33e+02

StErr 3.60e+01 5.85e+01 1.55e+02 9.02e+00

jDE

f11 100 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 2.12e+02 2.69e+02 4.90e+02 3.51e+02

Mean 2.39e+02 2.99e+02 5.82e+02 3.59e+02

StErr 2.00e+01 2.76e+01 5.54e+01 6.00e+00

f12 100 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 1.37e+02 2.01e+02 3.59e+02 3.49e+02

Mean 1.41e+02 2.03e+02 3.59e+02 3.57e+02

StErr 6.42e+00 1.32e+01 1.12e+01 7.05e+00

f16 200 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 4.56e+02 5.84e+02 1.19e+03 7.59e+02

Mean 4.51e+02 5.38e+02 1.13e+03 7.82e+02

StErr 2.16e+01 2.67e+01 3.14e+01 1.68e+01

f17 200 ∈ {1 · · · 10} ∈ [0.5, 3] 200D
Median 5.75e+02 6.82e+02 9.56e+02 8.19e+02

Mean 6.17e+02 7.41e+02 1.19e+03 8.60e+02

StErr 1.48e+01 4.69e+01 1.17e+02 2.15e+01



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 18

TABLE S-XX
OBTAINED RESULTS BY THE FOUR FRAMEWORKS FROM TABLE II WITH DIFFERENT OPTIMIZERS INCLUDING PSO, JDE, DYNDE, AND CMAES ON f11 ,
f12 , f16 AND f17 WITH SHIFT SEVERITY s RANDOMIZED ∈ [0.5, 5]. OTHER PARAMETERS OF CMPB ARE SET AS SHOWN IN TABLE I. THE HIGHLIGHTED

ENTRIES ARE SIGNIFICANTLY BETTER USING PAIR-WISE WILCOXON SIGNED-RANK TEST WITH HOLM p-VALUE ADJUSTMENT (α = 0.05).

CMPB parameters Frameworks

Optimizer F D m S f Stats. CTR CT C T

PSO

f11 100 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 2.40e+01 3.35e+01 1.91e+02 5.30e+02

Mean 3.61e+01 5.31e+01 2.03e+02 5.41e+02

StErr 8.77e+00 1.31e+01 1.08e+01 1.42e+01

f12 100 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 2.38e+01 2.46e+01 1.86e+02 5.66e+02

Mean 2.27e+01 2.59e+01 1.76e+02 5.62e+02

StErr 1.24e+00 1.42e+00 6.62e+00 9.19e+00

f16 200 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 7.66e+01 1.02e+02 4.21e+02 1.21e+03

Mean 8.06e+01 1.02e+02 4.25e+02 1.20e+03

StErr 3.94e+00 2.28e+00 9.63e+00 2.17e+01

f17 200 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 8.45e+01 1.14e+02 3.65e+02 7.06e+02

Mean 2.04e+02 2.71e+02 5.45e+02 7.01e+02

StErr 5.23e+01 6.50e+01 7.94e+01 1.63e+01

CMA-ES

f11 100 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 3.04e+01 5.20e+01 1.32e+02 9.36e+02

Mean 7.67e+01 1.20e+02 1.53e+02 9.93e+02

StErr 2.83e+01 3.98e+01 7.80e+00 2.57e+01

f12 100 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 3.59e+01 6.45e+01 1.45e+02 8.89e+02

Mean 3.78e+01 6.34e+01 1.43e+02 8.45e+02

StErr 2.88e+00 3.83e+00 3.32e+00 1.83e+01

f16 200 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 1.46e+02 3.09e+02 4.12e+02 1.63e+03

Mean 1.52e+02 3.45e+02 4.34e+02 1.68e+03

StErr 3.98e+00 1.56e+01 3.63e+00 3.77e+01

f17 200 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 4.61e+02 5.09e+02 5.69e+02 9.34e+02

Mean 4.34e+02 5.78e+02 6.43e+02 9.71e+02

StErr 1.22e+01 3.81e+01 7.01e+01 2.44e+01

DynDE

f11 100 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 2.27e+01 4.15e+01 1.50e+02 3.19e+02

Mean 2.82e+01 7.51e+01 1.62e+02 3.27e+02

StErr 3.98e+00 1.77e+01 1.01e+01 7.78e+00

f12 100 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 1.65e+01 4.14e+01 1.23e+02 4.28e+02

Mean 1.84e+01 4.34e+01 1.13e+02 4.44e+02

StErr 1.47e+00 2.51e+00 4.31e+00 7.23e+00

f16 200 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 7.44e+01 1.77e+02 3.00e+02 6.48e+02

Mean 7.14e+01 1.79e+02 3.04e+02 6.82e+02

StErr 2.62e+00 4.88e+00 5.64e+00 1.93e+01

f17 200 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 8.87e+01 2.80e+02 3.14e+02 4.59e+02

Mean 1.28e+02 2.70e+02 4.93e+02 4.59e+02

StErr 3.06e+01 1.27e+01 8.49e+01 6.24e+00

jDE

f11 100 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 8.70e+01 1.35e+02 2.07e+02 2.00e+02

Mean 1.02e+02 1.52e+02 2.32e+02 2.05e+02

StErr 1.29e+01 1.41e+01 2.12e+01 8.55e+00

f12 100 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 7.68e+01 1.05e+02 1.68e+02 1.85e+02

Mean 7.82e+01 1.03e+02 1.74e+02 1.83e+02

StErr 5.60e+00 6.16e+00 9.68e+00 6.68e+00

f16 200 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 2.08e+02 3.45e+02 4.96e+02 4.52e+02

Mean 2.12e+02 3.53e+02 4.95e+02 4.51e+02

StErr 5.83e+00 1.35e+01 1.37e+01 1.04e+00

f17 200 ∈ {1 · · · 10} ∈ [0.5, 5] 500D
Median 2.22e+02 3.64e+02 4.49e+02 6.51e+02

Mean 3.83e+02 4.59e+02 7.38e+02 6.80e+02

StErr 6.32e+01 5.54e+01 9.83e+01 1.82e+01
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