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ABSTRACT

Problem decomposition plays an essential role in the success of

cooperative co-evolution (CC), when used for solving large-scale

optimization problems. The recently proposed recursive diferen-

tial grouping (RDG) method has been shown to be very eicient,

especially in terms of time complexity. However, it requires an ap-

propriate parameter setting to estimate a threshold value in order

to determine if two subsets of decision variables interact or not.

Furthermore, using one global threshold value may be insuicient

to identify variable interactions in diferent components with im-

balanced contribution to the itness value. Inspired by the diferent

grouping 2 (DG2) method, in this paper, we adaptively estimate

the threshold value based on the computational round-of error

for RDG. We derive an upper bound of the round-of error, which

is shown to be suicient to identify variable interactions across

a wide range of large-scale benchmark problems. Comprehensive

numerical experimental results showed that the proposed RDG2

method achieved higher decomposition accuracy than RDG and

DG2. When embedded into a CC framework for large-scale opti-

mization, it performed signiicantly better or as good as RDG and

DG2 based on relevant statistical signiicance tests.
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1 INTRODUCTION

The cooperative co-evolution (CC) [15] framework has been applied

with some success in scaling up evolutionary algorithms to solve

high-dimensional (large-scale) optimization problems [10, 12, 16].
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It divides a large-scale optimization problem into a number of low-

dimensional components that are solved cooperatively. The main

challenge of using the CC framework lies in problem decomposi-

tion which is the process of identifying and grouping interacting

decision variables into respective components [2, 9, 12]. A good

decomposition should relect the underlying interaction structure

of decision variables [12, 14, 20].

The recently proposed recursive diferential grouping (RDG) [20]

method achieves great computational eiciency by recursively ex-

amining the interaction between two subsets of decision variables

(instead of two variables commonly used in most decomposition

algorithms). The number of function evaluations (FEs) used by RDG

to decompose an n-dimensional problem has been shown to be less

than 6n log(n). The RDG method approximates a global threshold

value based on the magnitude of the objective value, which is then

used to identify variable interactions in a given problem. RDG re-

quires users to specify an appropriate parameter value to estimate

the threshold, however this parameter is highly dependent on the

structural property of the problem. Further, using only one thresh-

old value may be insuicient to completely identify variable inter-

actions in a given problem with imbalanced components [8, 14].

In this paper, we introduce an adaptive threshold value esti-

mation mechanism for RDG, which is inspired by the diferential

grouping 2 (DG2) [12] method. We derive an upper bound for the

computational round-of error incurred by the loating-point op-

erations, which is then used as the threshold value to diferentiate

between the separable and non-separable decision variables. The

threshold value is estimated adaptively without any need of param-

eter setting. For any two subsets of the decision variable, a diferent

threshold value is estimated to determine the interaction between

the two subsets.

We evaluated the proposed RDG2 method (RDG with parameter

adaptation) using the CEC’2010 [22] and CEC’2013 [8] large-scale

global optimization benchmark problems. Comprehensive numeri-

cal experiments conirmed the efectiveness of RDG2: 1) the decom-

position accuracy generated by RDG2 was equal to or higher than

that generated by both DG2 and RDG; and 2) when embedded into

a CC framework to solve the benchmark problems, RDG2 achieved

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


GECCO ’18, July 15ś19, 2018, Kyoto, Japan Yuan Sun, Mohammad Nabi Omidvar, Michael Kirley, and Xiaodong Li

statistically similar or signiicantly better solutions than the other

two decomposition methods.

The remainder of this paper is organized as follows. In Section

2, we briely review the existing decomposition methods in the

literature. In Section 3, the threshold value adaptation mechanism

for RDG2 is described in detail. Section 4 describes the experimental

methodology to evaluate the proposed RDG2 method, and analyzes

the experimental results. The inal section concludes the paper and

suggests possible future research directions.

2 RELATED WORK

The existing decomposition methods can be classiied into two

diferent approaches: the blind decomposition method (e.g., uni-

variable grouping [15], Sk grouping [24] and random grouping [25])

does not take the underlying structure of variable interactions into

consideration. The formal deinition of pairwise variable interaction

is described as follows.

Deinition 2.1. (Sun et al. [20, 21]) Let f : Rn → R̄ be a diferen-

tiable function. Decision variables xi and x j interact if a candidate

solution x
∗ exists, such that

∂2 f (x∗)
∂xi∂x j

, 0, (1)

which is denoted by xi ↔ x j . Decision variables xi and x j condi-

tionally interact if for any candidate solution x
∗,

∂2 f (x∗)
∂xi∂x j

= 0, (2)

and a set of decision variables {xk1 , . . . ,xkt } ⊂ X exists, such that

xi ↔ xk1 ↔ . . . ↔ xkt ↔ x j , where k1, · · · ,kt are t decision

variable indices. Decision variables xi and x j are independent if

for any candidate solution x
∗, Eq. (2) holds and a set of decision

variables {xk1 , . . . ,xkt } ⊂ X does not exist, such that xi ↔ xk1 ↔
. . . ↔ xkt ↔ x j .

In the second method, intelligent decomposition, the structure of

the components is determined by the identiied variable interactions

[3, 12, 14, 20]. Take a 6-dimensional problem as an example, where

x3 interacts with x2 and x4, and x5 interacts with x6. The prob-

lem can be decomposed into three components {x1}, {x2,x3,x4},
{x5,x6}, as shown in Figure 1. Therefore, it is of vital importance for

an intelligent decomposition method to accurately and eiciently

identify variable interactions.

The non-linearity detection [12, 23] method identiies variable

interactions by detecting the itness changes when perturbing the

decision variables. If the itness change induced by perturbing deci-

sion variable xi varies for diferent values of x j , then one concludes

that xi and x j interact. The rationale behind the non-linearity de-

tection method is shown in Theorem 2.2 and Figure 2.

Theorem 2.2. (Omidvar et al. [12]) Let f : Rn → R̄ be an objective

function. Decision variable xi interacts with x j , if there exist real

numbers a, b1, b2 and δ , 0 such that

∆δ,xi [f ](x) |xi=a,x j=b1 , ∆δ,xi [f ](x) |xi=a,x j=b2 , (3)

where

∆δ,xi [f ](x) = f (· · · ,xi + δ , · · · ) − f (· · · ,xi , · · · ). (4)

Interaction

Structure
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Figure 1: The variable interaction structure and intelligent

decomposition. The notation xi ↔ x j denotes that decision

variable xi interacts with x j .
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Figure 2: The rationale behind the non-linearity detec-

tion method when identifying (a) separable and (b) non-

separable decision variables. In the separable contour plot

(a), the itness change induced by adding a perturbation δ to

the decision variable xi is the same for diferent values of x j .

However in the non-separable contour plot (b), the itness

change induced by perturbing xi varies for diferent values

of x j .

A number of decomposition methods have been proposed based

on non-linearity detection, e.g., diferential grouping [12], extended

diferential grouping [19], global diferential grouping [11], and

DG2 [14]. These methods typically check for interactions between

pairs of decision variables, requiring O (n2) FEs to decompose an n-

dimensional problem. The fast interdependency identiication (FII)

[7] method improves the decomposition eiciency by identifying

the interaction between one decision variable with the remain-

ing decision variables. However, the number of FEs used by FII is

still in O (n2) when decomposing overlapping problems (e.g., the

Rosenbrock function [8]).

The recently proposed RDG [20] method has been shown to be

able to decompose any n-dimensional problem using O (n log(n))
FEs. It identiies the interaction between two subsets of decision

variables based on Theorem 2.3.

Notation 1. Let X be the set of decision variables {x1, . . . ,xn };
UX be the set of unit vectors in the decision space Rn . Let X1 be a

subset of decision variables X1 ⊂ X ; andUX1
be a subset ofUX such

that any unit vector u = (u1, . . . ,un ) ∈ UX1
, we have

ui = 0, if xi < X1. (5)
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Theorem 2.3. (Sun et al. [20]) Let f : Rn → R̄ be an objective

function; X1 ⊂ X and X2 ⊂ X be two mutually exclusive subsets

of decision variables: X1 ∩ X2 = ∅. If there exist two unit vectors

u1 ∈ UX1
and u2 ∈ UX2

, two real numbers l1, l2 > 0, and a candidate

solution x
∗ in the decision space, such that

f (x∗ + l1u1 + l2u2) − f (x∗ + l2u2) , f (x∗ + l1u1) − f (x∗), (6)

there is some interaction between decision variables in X1 and X2.

The RDG method identiies the interaction between two subsets

of decision variables (X1 and X2) using the following procedure:

(1) Set all the decision variables to the lower bounds (lb) of the

search space (xl,l );

(2) Perturb the decision variables X1 of xl,l from the lower

bounds to the upper bounds (ub), denoted by xu,l ;

(3) Calculate the itness diference (∆1) between xl,l and xu,l ;

(4) Perturb the decision variables X2 of xl,l and xu,l from the

lower bounds to the middle between the lower bounds and

upper bounds, denoted by xl,m and xu,m respectively;

(5) Calculate the itness diference (∆2) between xl,m and xu,m ;

(6) If the diference (λ) between ∆1 and ∆2 is greater than a

threshold ϵ , there is some interaction between X1 and X2.

The two subscripts of x denote the values ofX1 andX2 respectively:

‘l ’ is lower bound; ‘u’ is upper bound; and ‘m’ is the mean (middle)

of the lower and upper bounds. Based on this, a recursive grouping

procedure is used to decompose a problem (see supplementary

material or [20] for details).1

In theory, the threshold ϵ can be set to zero, as any positive value

of the non-linearity term (λ = |∆1 − ∆2 |) implies an interaction

between the subset of decision variables in examination. However

in practice, the value of λ for separable decision variables may be

non-zero, due to the computational round-of errors incurred by

the loating-point operations (see Section 3 for details). Therefore,

a positive threshold value (ϵ > 0) is required to diferentiate the

genuine non-zero λ values.

The RDG method estimates a threshold value based on the mag-

nitude of the objective value [11]:

ϵ := α ·min
{
| f (x1) |, · · · , | f (xk ) |

}
, (7)

where x1, · · · , xk are k randomly generated candidate solutions,

and α is the control coeicient [11]. However, it is non-trivial to

select an appropriate value for α . Moreover, RDG employs a global

threshold value to identify the interaction between all pairs of deci-

sion variable subsets in a given problem, which may be insuicient

to deal with problems with imbalanced components [8, 14].

The DG2 [14] method addresses these issues by automatically

estimating the łgreatest lower boundž (einf ) and the łleast upper

boundž (esup) of the round-of errors involved in calculating the non-

linearity term (λ). The decision variables are regarded as separable

if λ < einf , and non-separable if λ > esup. If λ falls between einf
and esup, the threshold value is set to a weighted average of einf
and esup. The weight is calculated as the relative proportion of the

separable and non-separable decision variable pairs that have been

identiied. Inspired by this, we propose a threshold value adaptation

mechanism for RDG in the next section.

1The supplementary material will be made available on our website.

3 THRESHOLD PARAMETER ADAPTATION
FOR RDG

In this section, we derive an upper bound of the round-of errors

incurred by the calculation of the non-linearity term λ, which is

then used as the threshold value to identify variable interactions.

The arithmetic performed in a modern computing device oper-

ates on loating-point instead of real numbers, which generates two

types of round-of errors: the representation error and arithmetic

error. The representation error results from rounding a real number

to the nearest loating-point number. Let f l : R→ F denote a map-

ping from the set of real numbers (R) to the set of loating-point

numbers (F). The relative representation error (δ ) of a real number

x is deined as

δ =
f l (x ) − x

x
. (8)

According to the IEEE 754 standard [1], the absolute value of the

relative representation error (δ ) is bounded by a machine dependent

constant µM, which is half of the machine epsilon ϵM: |δ | < µM.
2

Therefore, the absolute value of the absolute representation error

(|δx |) may grow with the magnitude of x .

The arithmetic error comes from the loating-point arithmetic,

for example the loating-point summation (⊕).3 The IEEE 754 stan-

dard guarantees that the loating-point sum of two real numbers

is equal to the loating-point number closest to the real sum of

the two numbers: x1 ⊕ x2 = f l (x1 + x2). However, this statement

can not be generalized to a series of loating-point sums due to

the accumulation of round-of errors. In other words, there is no

guarantee that the equality x1⊕x2⊕· · ·⊕xn = f l (x1+x2+ · · ·+xn )
is true for n ≥ 3. This property can be generalized to loating-point

subtraction, multiplication and division.

The round-of error involved in the calculation of the non-linearity

term λ =
���

(

f (xl,l ) − f (xu,l )
)

−
(

f (xl,m ) − f (xu,m )
) ��� comes from

two sources: 1) the arithmetic loating-point subtraction between

the itness values f (x), and 2) the calculation of the itness values

f (x). We irst calculate the round-of error resulted from the arith-

metic loating-point subtraction between the itness values. As the

IEEE 754 standard guarantees that: x1 ⊖ x2 = f l (x1 − x2), we have

Ã∆1 =
Ãf (xl,l ) ⊖ Ãf (xu,l ) =

(

Ãf (xl,l ) − Ãf (xu,l )
)

(1 + δ1), (9)

where |δ1 | < µM is the relative representation error. We use Ãx to

denote the loating-point number of x for the sake of simplicity.

Similarly,

Ã∆2 =
Ãf (xl,m ) ⊖ Ãf (xu,m ) =

(

Ãf (xl,m ) − Ãf (xu,m )
)

(1 + δ2). (10)

Thus,

Ãλ =
���
Ã∆1 ⊖ Ã∆2

��� =
���(
Ã∆1 − Ã∆2) (1 + δ3)

���

=
���

(

Ãf (xl,l ) − Ãf (xu,l )
)

(1 + δ1) (1 + δ3)

−
(

Ãf (xl,m ) − Ãf (xu,m )
)

(1 + δ2) (1 + δ3)
���.

(11)

In order to ind an upper bound on the accumulated arithmetic

error, the following theorem is used.

2In the numerical computing software MATLAB, ϵM = 2−52 and µM = 2−53 .
3Circled arithmetic operators (e.g., ⊕, ⊖, ⊗ and ⊘) denote loating-point operators.
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Theorem 3.1. (Corless and Fillion [4]). Given a loating-point

number system that satisies IEEE 754 Standard [1] such that |δi | <
µM, and kµM < 1, we have:

k
∏

i=1

(1 + δi )
ei
= 1 + θk , (12)

where

|θk | ≤
kµM

1 − kµM
:= γk , ei = ±1. (13)

Theorem 3.1 states that the product of k number of the form

(1 + δi )
±1 can be written as (1 + θk ), where |θk | is bounded by a

machine dependent constant γk , which is deined as kµM/(1−kµM).

In Eq. (11), k = 2 and

λ̂ =
���

(

f̂ (xl,l )− f̂ (xu,l )
)

(1+θ2)−
(

f̂ (xl,m )− f̂ (xu,m )
)

(1+θ ′2)
���, (14)

where |θ2 | ≤ γ2 and |θ ′2 | ≤ γ2.

In the next step, we estimate the round-of error associated with

the calculation of the itness value f (x). As the objective functions

are łblack-boxž, we do not know the exact order of (1 + δi ). To

overcome this diiculty, we introduce the following assumptions.

Assumption 3.2. (Higham [6]) The round-of error grows with the

square root of the number of loating-point operations (Φ) involved in

a calculation.

In other words, to calculate an upper bound on the round-of

error involved in the calculation of the itness value based on The-

orem 3.1, we assume k ≈
√
Φ. However, in black-box optimization,

the number of loating-point operations involved in the calculation

of the objective function is also unknown. To overcome this dii-

culty, we assume that the number of loating-point operations (Φ)

has a linear relationship with the dimensionality of the problem

(n) [14].

Assumption 3.3. (Omidvar et. al. [14]) The number of loating-

point operations (Φ) involved in the calculation of a black-box objective

function is in the order of Θ(n), where n is the dimensionality of the

objective function.

This linear assumption is a safe choice as 1) most polynomial

evaluations fall into this group, 2) the upper bound calculated based

on Theorem 3.1 is very conservative; the actual round-of errors are

much smaller in practice [18], and 3) over-estimating the thresh-

old value is detrimental to the detection of interacting decision

variables [14]. Additionally, the empirical evidence in [14] show

that the linear assumption is more reliable than quadratic or cubic

assumptions. Therefore, we use linear assumption, and speciically

let Φ ≈ n.

Theorem 3.4. Under Assumption 3.2 and Assumption 3.3, an upper

bound on the round-of errors associated with the calculation of the

non-linearity term λ is given by

|λ−λ̂ | ≤ γ√n+2
(

| f (xl,l ) |+ | f (xu,l ) |+ | f (xl,m ) |+ | f (xu,m ) |
)

. (15)

Proof. Under Assumption 3.2 and Assumption 3.3, we have

k =
√
n, and

f̂ (x) = (1 + θ√n ) f (x). (16)

Substituting Eq. (16) into Eq. (14),

λ̂ =
���f (xl,l ) (1 + θ

√
n ) (1 + θ2) − f (xu,l ) (1 + θ

′√
n
) (1 + θ2)

− f (xl,m ) (1 + θ̃√n ) (1 + θ
′
2) + f (xu,m ) (1 + θ̄√n ) (1 + θ

′
2)
���,

(17)

where
���θ
√
n
���,
���θ
′√
n

���,
���θ̃
√
n
��� and

���θ̄
√
n
��� are bounded by γ

√
n . In Theorem

3.1, it is true that (1 + θi ) (1 + θ j ) = (1 + θi+j ). Therefore,

λ̂ =
���f (xl,l ) (1 + θ

√
n+2) − f (xu,l ) (1 + θ

′√
n+2

)

− f (xl,m ) (1 + θ̃√n+2) + f (xu,m ) (1 + θ̄√n+2)
���.

(18)

As the inequality |x1 + x2 | ≤ |x1 | + |x2 | holds for any real numbers

x1 and x2,

λ̂ ≤ ���f (xl,l ) − f (xu,l ) − f (xl,m ) + f (xu,m )
��� +

���f (xl,l )θ
√
n+2

− f (xu,l )θ
′√
n+2
− f (xl,m )θ̃√n+2 + f (xu,m )θ̄√n+2

���.

(19)

As the inequality |∑mi=1 xi | ≤
∑m
i=1 |xi | holds for any positive inte-

germ,

λ̂ ≤ λ +
���f (xl,l )θ

√
n+2

��� +
���f (xu,l )θ

′√
n+2

���

+
���f (xl,m )θ̃√n+2

��� +
���f (xu,m )θ̄√n+2

���

≤ λ + γ√n+2
(

| f (xl,l ) | + | f (xu,l ) | + | f (xl,m ) | + | f (xu,m ) |
)

.

(20)

Therefore,

λ̂−λ ≤ γ√n+2
(

| f (xl,l ) |+ | f (xu,l ) |+ | f (xl,m ) |+ | f (xu,m ) |
)

. (21)

On the other hand, as the inequality |x1 + x2 | ≥ |x1 | − |x2 | holds
for any real numbers x1 and x2, similarly we can obtain

λ− λ̂ ≤ γ√n+2
(

| f (xl,l ) |+ | f (xu,l ) |+ | f (xl,m ) |+ | f (xu,m ) |
)

. (22)

Thus,

|λ−λ̂ | ≤ γ√n+2
(

| f (xl,l ) |+ | f (xu,l ) |+ | f (xl,m ) |+ | f (xu,m ) |
)

. (23)

□

The upper bound of the round-of error is then used as the thresh-

old value (ϵ) to distinguish between separable and non-separable

decision variable subsets:

ϵ := γ√n+2
(

| f (xl,l ) | + | f (xu,l ) | + | f (xl,m ) | + | f (xu,m ) |
)

. (24)

It is noteworthy that if the loating-point number of the non-linearity

term is greater than the upper bound of the round-of error (λ̂ > ϵ),

we can conclude that the corresponding decision variable subsets

interact. However, if λ̂ ≤ ϵ , it is not necessarily the case that the

decision variable subsets are separable. If the genuine value of the

non-linearity term (λ) is of the same magnitude as the round-of

error, such variable interaction is very challenging, if possible, to

identify. More description will be given in the experimental results

in the next section.
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4 EXPERIMENTS

4.1 Methodology

To evaluate the eicacy of the proposed RDG2method, two research

questions guide the experimental study:

Q1. Can the proposed RDG2 method be used to accurately de-

compose large-scale optimization problems?

Q2. Can the proposed RDG2 method generate good solution

quality when embedded into a CC framework to solve large-

scale optimization problems?

To answer Q1, the proposed RDG2 method was used to decom-

pose the CEC’2010 [22] and CEC’2013 [8] benchmark problems.4

Two metrics were employed to evaluate the performance of the

RDG2 method: 1) the number of FEs used to decompose a prob-

lem; and 2) the percentage of interacting decision variables that

are correctly grouped [20]. The performance of the RDG2 method

was then compared against the performance of the RDG (with

α = 10−12) [20] and DG2 [14] methods. Note that RDG2 and DG2

are parameter-free.

To answer Q2, the proposed RDG2 method was embedded into

the CMAESCC [11] framework to solve the CEC’2010 and CEC’2013

benchmark problems. The CMAESCC framework used the well-

performed CMA-ES [5] algorithm to solve each component. The

parameter settings for the CMAESCC framework were consistent

with the original paper. The maximum number of FEs was set to

3× 106, divided between the decomposition stage and optimization

stage. For each benchmark problem, the median, mean and stan-

dard deviation of the best solutions found by the CMAESCC-RDG2

algorithm based on 25 independent runs were recorded. The perfor-

mance of the RDG2 method was compared against the performance

of the RDG and DG2 methods, when embedded in the CMAESCC

framework.

The Kruskal-Wallis nonparametric one-way ANOVA test [17]

with 95% conidence interval was used to determinewhether the per-

formance of at least one algorithm was signiicantly diferent from

the others. Then a series of Wilcoxon rank-sum tests (signiicance

level α=0.05) with Holm p-value correction [17] was conducted in

a pairwise fashion to ind the best performing algorithm(s).

4.2 Experimental Results

The decomposition comparison between RDG2 and the other two

methods is presented in Section 4.2.1, while the optimization com-

parison is presented in Section 4.2.2.

4.2.1 Decomposition Comparison. The experimental results of

the RDG2, RDG and DG2 methods when used to decompose the

CEC’2013 benchmark problems are shown in Table 1. The RDG2

method consistently generated equally well or better results than

RDG and DG2 on the partially separable problems (f4 to f11).

The irst three problems (f1-f3) are fully separable. Therefore, de-

composition accuracy is not applicable to these problems [20]. The

CEC’2013 f13 and f14 are benchmark problems with overlapping

(conforming or conlicting) components. It is not yet clear what is

the best approach to decompose these problems [8, 13, 20]. The ex-

isting intelligent decomposition methods place all the overlapping

4The MATLAB source code of RDG2 will be made available on our website.

Table 1: The experimental results of the RDG2, RDG (with

α = 10−12) and DG2 methods when used to decompose the

CEC’2013 benchmark problems. ła" denotes the decomposi-

tion accuracy; łFEs" denotes the function evaluations used.

The entries with higher decomposition accuracy are high-

lighted in bold. Diferent categories of benchmark problems

are divided by the lines.

Func RDG2 RDG (α = 10−12) DG2

ID a FEs a FEs a FEs

f1 ś 2.99e+03 ś 3.00e+03 ś 5.00e+05

f2 ś 3.04e+03 ś 3.00e+03 ś 5.00e+05

f3 ś 5.99e+03 ś 6.00e+03 ś 5.00e+05

f4 100% 9.83e+03 100% 9.84e+03 100% 5.00e+05

f5 100% 9.83e+03 100% 1.01e+04 100% 5.00e+05

f6 100% 1.12e+04 100% 1.32e+04 100% 5.00e+05

f7 100% 9.81e+03 100% 9.82e+03 83.3% 5.00e+05

f8 80.0% 1.91e+04 80.0% 1.95e+04 78.5% 5.00e+05

f9 100% 1.91e+04 100% 1.92e+04 100% 5.00e+05

f10 100% 1.93e+04 82.7% 1.91e+04 100% 5.00e+05

f11 100% 1.93e+04 10.0% 1.06e+04 100% 5.00e+05

f12 100% 5.08e+04 100% 5.08e+04 100% 5.00e+05

f13 ś 1.51e+04 ś 8.39e+03 ś 4.10e+05

f14 ś 1.61e+04 ś 1.61e+04 ś 4.10e+05

f15 100% 5.99e+03 100% 6.16e+03 100% 5.00e+05

components into one group. On the other benchmark problems

where the components are independent from each other, the łidealž

decomposition can possibly be achieved [8, 13, 20]. Note that the

100% decomposition accuracy in Table 1 corresponds to the ideal

decomposition.

On f10 and f11, RDG2 achieved 100% decomposition accuracy,

while the decomposition accuracy of RDG was low. On f7 and

f8, RDG2 generated higher decomposition accuracy than DG2. It

implied that the threshold value estimated by RDG2 was more

reliable than those estimated by RDG and DG2. The DG2 method

approximated the łgreatest lower boundž (einf ) and łleast upper

boundž (esup) of the round-of errors as follows:

einf := γ2max
{
| f (xl,l ) | + | f (xu,m ) |, | f (xu,l ) | + | f (xl,m ) |

}
,

esup := γn max
{
f (xl,l ), f (xu,l ), f (xl,m ), f (xu,m )

}
.

Therefore, the threshold value used by DG2 was smaller than that

by RDG2. The RDG method calculated a global threshold value

based on Eq. (7).

To gain deeper insight into the performance of RDG2, we select

two benchmark problems: f8 and f11, each of which consists of

20 non-separable components with totally 1000 decision variables.

The contribution of each component to the overall itness value is

unbalanced. Theweight value of each component is shown in Figure

3a and Figure 3b: higher weight values indicate larger contribution

to the itness value.

We recorded the loating-point value of the non-linearity term

when the corresponding decision variable subsets interact (denoted
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Figure 3: The plots of the threshold value, non-linearity term and weight value of each component on the CEC’2013 f8 and f11.

The horizontal axis represents the indices of each component. In (a) and (b), λ̂int denotes the loating-point value of the non-

linear term (λ̂) when the corresponding decision variable subsets interact; łwž denotes the weight value, which represents the

contribution of each component to the overall itness value. In (c) and (d), λ̂0.25int denotes the 25% percentile of the λ̂int values; ϵ

and ϵ ′ denote the threshold values estimated by RDG2 and RDG respectively; λ̂max
sep denotes themaximumof the loating-point

values of the non-linearity term (λ̂) when the corresponding decision variable subsets are separable.

as λ̂int ) in the decomposition process of RDG2 on f8 and f11. The

value of λ̂int consists of the genuine λ value and the computational

round-of error. The box plots of the λ̂int value from each compo-

nent are shown in Figure 3a and Figure 3b. We observed that the

pattern of the λ̂int value was consistent with the pattern of the

weight value across each component on CEC’2013 f8 and f11.

We also recorded the loating-point value of the non-linearity

term for separable decision variable subsets (λ̂sep ). It is noteworthy

that the λ̂sep value represents the computational round-of errors,

as the genuine value of λ is zero for separable decision variable

subsets. Themaximumvalue of λ̂sep from each component is shown

in Figure 3c and Figure 3d. In Figure 3c and Figure 3d, we also plotted

the threshold values (ϵ) estimated by RDG2, the 25% percentile of

the λ̂int values and the threshold values (ϵ ′) estimated by RDG.

On f11, the threshold value estimated by RDG2 was always in

between the 25% percentile of the λ̂int value and the maximum

of λ̂sep , resulting in 100% decomposition accuracy of RDG2. On

the other hand, the RDG method used a global threshold value

(ϵ ′ = 1.52e+06), which was always lower than the maximum of

λ̂sep . That explains why RDG failed to identify the variable inter-

action structure and placed all the 1000 decision variables into one

component.

On f8, the threshold value estimated by RDG2was lower than the

25% percentile of the λ̂int value for the 11th and 13th components.

That is the reason why RDG2 identiied the 200 non-separable

decision variables in the 11th and 13th components as separable.

It is noteworthy that the 25% percentile of the λ̂int value from the

11th and 13th components is in the same magnitude of the round-

of errors (the maximum of λ̂sep ). Therefore, it is very challenging,

if possible, to identify the interacting decision variables in these two

components. However, we argue that the 11th and 13th components

are not important in terms of the optimization task, as they only

contribute marginally to the overall itness value, as indicated by

the weight values.

The number of FEs used by RDG2 was close to the one used

by the RDG method on most of the benchmark problems. On f11,

the number of FEs used by RDG2 was slightly larger than those

by RDG. The reason for this was that RDG failed to identify the

variable interaction structure by placing all the decision variables

into one group. The DG2 method used a ixed number of FEs (n2 +

n+ 2)/2 to identify the interaction matrix (all pairwise interactions)

of decision variables. Once the interaction matrix is identiied, it is

possible to generate a more efective decomposition for problems

with overlapping components, e.g., f13 and f14.
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The RDG2, RDG and DG2methods achieved 100% decomposition

accuracy on all of the CEC’2010 benchmark problems. The detailed

results were presented in the supplementary material.

4.2.2 Optimization Comparison. Table 2 lists the optimization

results of the RDG2, RDG and DG2 methods when embedded into

the CMAESCC framework to solve the CEC’2013 benchmark prob-

lems. The CMAESCC-RDG2 algorithm consistently achieved statis-

tically equally well or signiicantly better solution quality than the

other two algorithms.

On most of the benchmark problems where the decomposition

results of RDG2 and RDG were similar, CMAESCC-RDG2 and

CMAESCC-RDG performed equally well. However, when the de-

composition accuracy of RDG2 was higher than that of RDG, the

solution quality generated by CMAESCC-RDG2 could be much

better than that generated by CMAESCC-RDG, e.g., on f11. Refer

to the convergence curve shown in Figure 4c.

The CMAESCC-RDG2 algorithm outperformed CMAESCC-DG2

onmost of the benchmark problems. Themain reason for this is that

RDG2 used much less FEs than DG2 in the decomposition stage,

saving more FEs for the optimization stage. On the benchmark

problems where the decomposition accuracy of RDG2 was higher

than that of DG2, the CMAESCC-RDG2 was able to ind statisti-

cally signiicantly better solution quality than the CMAESCC-DG2

algorithm, e.g., f7 and f8 (Figure 4a and Figure 4b).

It is noteworthy that the DG2 method used more FEs than the

RDG method to decompose f11, therefore less FEs were left to actu-

ally optimize the problem (the optimization stage). However, the

CMAESCC-DG2 algorithm generated even better solution qual-

ity than CMAESCC-RDG (Figure 4c). The reason for this is that

DG2 achieved 100% decomposition accuracy on f11, while the de-

composition accuracy of RDG was low. This is while DG2 used

approximately 50 times more function evaluations than RDG in the

decomposition stage. This observation conirms that the decompo-

sition accuracy is of crucial importance in problem decomposition.

The RDG2 method consistently achieved statistically similar

or signiicantly better solution quality than the other two meth-

ods when embedded into the CMAESCC framework to solve the

CEC’2010 benchmark problems. The detailed optimization results

were placed in the supplementary material due to page limits.

5 CONCLUSION

In this paper, we have derived an upper bound on the computational

round-of errors involved in calculating the non-linearity term

(λ) for the RDG method. This upper bound was then used as the

threshold value, and was shown to be able to identify variable

interactions across a wide range of benchmark problems. However

if the value of the non-linearity term was of the same magnitude

as the computational round-of errors, the corresponding variable

interaction was diicult to identify. We found that the pattern of the

non-linearity term for interacting decision variables was consistent

with the pattern of the weight value from each component in two

benchmark problems: CEC’2013 f8 and f11. However, more research

needs to be conducted in order to draw any conclusion. Another

direction for future work is to generate an efective decomposition

for large-scale problems with overlapping components.

Table 2: The optimization results of theRDG2, RDGandDG2

when embedded into the CMAESCC framework to solve

the CEC’2013 benchmark problems. The entries with the

best solution quality are highlighted in bold according to

theWilcoxon rank-sum tests (signiicance level α=0.05) with

Holm p-value correction.

Func Stats RDG2 RDG DG2

f1

median 2.76e+05 2.84e+05 5.48e+05
mean 2.78e+05 2.89e+05 5.51e+05
std 3.16e+04 3.27e+04 5.87e+04

f2

median 4.70e+03 4.66e+03 4.69e+03
mean 4.70e+03 4.68e+03 4.68e+03
std 2.05e+02 1.77e+02 1.80e+02

f3

median 2.04e+01 2.03e+01 2.04e+01
mean 2.04e+01 2.03e+01 2.04e+01
std 4.34e-02 4.95e-02 5.21e-02

f4

median 5.81e+06 5.81e+06 8.43e+06
mean 5.83e+06 5.83e+06 8.51e+06
std 6.32e+05 6.32e+05 8.54e+05

f5

median 2.24e+06 2.34e+06 2.17e+06
mean 2.23e+06 2.40e+06 2.18e+06
std 3.22e+05 4.35e+05 3.51e+05

f6

median 9.95e+05 9.95e+05 9.95e+05
mean 9.95e+05 9.96e+05 9.96e+05
std 6.54e+01 1.47e+02 3.31e+02

f7

median 3.12e-19 2.93e-20 1.00e+03
mean 4.04e-16 8.11e-17 1.05e+03
std 1.48e-15 2.17e-16 2.78e+02

f8

median 8.15e+06 8.26e+06 3.56e+07
mean 8.70e+06 8.50e+06 3.84e+07
std 3.61e+06 2.91e+06 1.08e+07

f9

median 1.74e+08 1.57e+08 1.52e+08
mean 1.67e+08 1.65e+08 1.51e+08
std 2.65e+07 4.16e+07 2.86e+07

f10

median 9.05e+07 9.05e+07 9.05e+07
mean 9.10e+07 9.10e+07 9.13e+07
std 1.30e+06 1.29e+06 1.50e+06

f11

median 2.81e+03 1.68e+07 1.55e+05
mean 8.68e+03 1.67e+07 2.47e+05
std 1.24e+04 1.61e+06 2.36e+05

f12

median 1.01e+03 1.01e+03 1.01e+03
mean 9.81e+02 9.81e+02 1.00e+03
std 7.30e+01 7.30e+01 5.80e+01

f13

median 9.04e+05 2.48e+06 2.27e+06
mean 9.31e+05 2.46e+06 2.42e+06
std 1.60e+05 3.82e+05 3.69e+05

f14

median 2.65e+07 2.74e+07 3.65e+07
mean 2.68e+07 2.76e+07 3.58e+07
std 1.88e+06 1.80e+06 2.85e+06

f15

median 2.23e+06 2.18e+06 2.93e+06
mean 2.26e+06 2.19e+06 3.01e+06
std 2.45e+05 2.28e+05 3.29e+05
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Figure 4: The convergence curves of the RDG2, RDG andDG2methodswhen embedded into the CMAESCC framework to solve

the CEC’2013 f7, f8, f11 and f13 problems. The horizontal axis represents the number of FEs used in the evolutionary process.

The vertical axis represents the median of the best itness found. In the legends, łaž denotes the łaccuracyž of decomposition,

and łNAž denotes łnot applicablež.
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