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Abstract17

1. The recent availability of high spatial and temporal resolution optical and radar satellite imagery18

has dramatically increased opportunities for mapping land cover at fine scales. Fusion of optical and radar19

images has been found useful in tropical areas affected by cloud cover because of their complementarity.20

However, the multitemporal dimension these data now offer is often neglected because these areas are21

primarily characterised by relatively low levels of seasonality and because the consideration of multitemporal22

data requires more processing time. Hence, land cover mapping in these regions is often based on imagery23

acquired for a single date or on an average of multiple dates.24

2. The aim of this work is to assess the added value brought by the temporal dimension of optical25

and radar time series when mapping land cover in tropical environments. Specifically, we compared the26

accuracies of classifications based on (i) optical time series, (ii) their temporal average, (iii) radar time27

series, (iv) their temporal average, (v) a combination of optical and radar time series and (vi) a combination28

of their temporal averages for mapping land cover in Jambi province, Indonesia, using Sentinel-1 and29

Sentinel-2 imagery.30

3. Using the full information contained in the time series resulted in significantly higher classification31

accuracies than using temporal averages (+14.7% for Sentinel-1, +2.5% for Sentinel-2 and +2% combining32
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Sentinel-1 and Sentinel-2). Overall, combining Sentinel-2 and Sentinel-1 time series provided the highest33

accuracies (Kappa = 88.5%).34

4. Our study demonstrates that preserving the temporal information provided by satellite image time35

series can significantly improve land cover classifications in tropical biodiversity hotspots, improving our36

capacity to monitor ecosystems of high conservation relevance such as peatlands. The proposed method37

is reproducible, automated, and based on open-source tools satellite imagery.38

Key-words: cloud persistent areas, data combination, land cover mapping, remote sensing, satellite39

image time series, Sentinel-1, Sentinel-240

1 Introduction41

Information on land cover and land cover change is key for ecosystem assessment (Cihlar, 2000). Satellite42

imagery has become indispensable for producing land cover maps over large areas because of its broad spatial43

coverage. Together with supervised classification approaches, they enable the automatic production of land44

cover maps. Up until a few years ago, scientists had access to imagery that was either free of charge but45

collected at coarse to medium spatial resolution (MODIS, Landsat), or at very high spatial resolution (a few46

meters or less) but costly, limiting land cover mapping to a low level of details or restricted spatial coverage.47

Since 2014, the availability of free satellite imagery combining both high spatial (10m) and high temporal48

resolutions through the Copernicus Programme has dramatically changed what can be mapped from space,49

increasing opportunities to both detect small elements in the landscapes and capture their seasonal variation,50

thereby enhancing the definition and the classification of vegetation types (Defourny et al., 2019; Gómez,51

White, & Wulder, 2016; Lambin & Linderman, 2006; Wulder, Hall, Coops, & Franklin, 2004).52

Furthermore, the availability of co-registered optical and radar images through Copernicus facilitates the53

use of fusion for land cover mapping. Image fusion has often been shown to enhance land cover classification54

accuracy (Clerici, Calderón, & Posada, 2017; Inglada, Vincent, Arias, & Marais-Sicre, 2016; Joshi et al., 2016;55

Van Tricht, Gobin, Gilliams, & Piccard, 2018) because the information captured by optical and radar sensors56

is fundamentally different and thus complementary (Kasischke, Melack, & Dobson, 1997). In tropical and57

boreal areas, optical data availability is often limited by cloud cover leading to radar data being preferred to58

map land cover in these regions (Asner, 2001; Hoekman, Vissers, & Wielaard, 2010; Kasischke et al., 1997).59

Interestingly, the information captured by high temporal resolution sensors has often been neglected in60

tropical environments, mainly because of the low level of seasonality characterising many of these ecosystems.61

Therefore, most land cover maps generated for these regions are based on single-date (when cloud-free images62

are available) or cloud-free composites (see e.g., Crowson et al., 2018; Erinjery, Singh, & Kent, 2018). Cloud-63

free composites can, however, be difficult and time-consuming to build. Similarly, the multitemporal dimension64

is often overlooked when combining optical and radar data, mostly because of the unavailability of radar time65

2This article is protected by copyright. All rights reserved. 
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series before the launch of Sentinel-1 in 2014 but also because dealing with time series implies more processing66

time and computing power. Temporal compositing (Griffiths, van der Linden, Kuemmerle, & Hostert, 2013;67

Vancutsem, Pekel, Bogaert, & Defourny, 2007) of a time series has sometimes been considered to inform68

land cover mapping, but a large amount of temporal information is lost during this process. Hence, the69

utility of combining optical and radar satellite image time series for land cover mapping has hardly ever been70

assessed; known applications include the mapping of agricultural landscapes and the detection of deforestation71

events (Hirschmugl, Sobe, Deutscher, & Schardt, 2018; Inglada et al., 2016; Kuenzer et al., 2014; Reiche,72

Verbesselt, Hoekman, & Herold, 2015). To our knowledge, this type of approach has never been considered73

for mapping land cover in tropical regions of conservation interest with persistent cloud cover and limited74

level of seasonality. The aim of this study is to fill this gap in knowledge by assessing the added value of75

preserving the temporal dimension of optical (Sentinel-2) and radar (Sentinel-1) time series. We do so by76

comparing the outcomes of land cover classifications that consider all the images captured in a given year77

with classifications using temporal averages. Our work is part of a collaborative UK – Indonesia research78

project that focused on peatlands in the Jambi province, Indonesia.79

Tropical peatlands are very important for carbon storage and are biodiversity hotspots (Wijedasa et al.,80

2017). Peatland forests have been heavily degraded around the world through deforestation and drainage to81

make land available for agriculture, leading to carbon release and severe and damaging fires (Miettinen, Shi,82

& Liew, 2012; Posa, Wijedasa, & Corlett, 2011; Wijedasa et al., 2017). Efforts to restore degraded peatlands83

– which are part of the Sustainable Development Goals – have recently been made in Indonesia, where most of84

Southeast Asia’s peatlands are located (van Eijk, Leenman, Wibisono, & Giesen, 2009). Accurately monitoring85

land cover in the humid tropics, such as in the context of restoration efforts in tropical peatlands, is critical86

to ensure effective conservation and restoration action, and to inform ongoing policies and strategies.87

Here we test two hypotheses concerning the accuracy of land cover classification in cloud persistent areas88

using multitemporal data in the optical and radar domains. As we expect our region of interest to be mainly89

characterised by a low level of seasonality (although exceptions do exist, e.g. wetlands), the use of all the90

dates from the optical or radar time series should not significantly improve the accuracy of our land cover91

map compared to using the temporal average of optical or radar data (H1). Following on from the same92

principle, the combination of optical and radar time series should have an equivalent classification accuracy93

to the combination of the temporal averages of the optical and radar images (H2).94

3This article is protected by copyright. All rights reserved. 
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2 Materials and Methods95

2.1 Study area96

The study area is located along the eastern coast of Jambi province in Sumatra (Indonesia, Fig. 1). It covers97

an area of 12,710 km2 that is mostly flat. The climate is tropical humid, with an average annual precipitation98

of 2,400 mm (Hapsari et al., 2017). Even during the dry season (June to September), monthly precipitation is99

above 100 mm, meaning that the region is primarily subject to a low level of seasonality (Aldrian & Susanto,100

2003; Crowson et al., 2018; Karger et al., 2016).101

Our study area comprises both anthropogenic environments (agriculture, urban areas) and natural vege-102

tation (peat swamp forest, mineral soil lowland rainforest, mangrove). It is mainly dominated by plantations103

(oil palm, coconut palm, areca palm, acacia, rubber) that have replaced forests as large monoculture or small-104

holder plantations. The eastern part of the study area is dominated by Berbak National Park (about 1,850105

km2), which is a protected (IUCN category II), undrained peat swamp forest that supports a large amount of106

biodiversity (Giesen, 2004). The forest is surrounded by fern-dominated scrublands which are regrowth areas107

left unmanaged after severe fires. The Sungai Buloh Forest Reserve is located in the central part of the study108

area and covers an area of about 120 km2. Mangroves are primarily found along the coast.109

2.2 Reference data110

Reference data were generated through visual interpretation of very high spatial resolution images (2017111

Google Earth imagery and 2017 PlanetScope scenes) using prior knowledge of the region acquired during field112

visits. These reference data were generated in an opportunistic way but ensuring a good spatial distribution113

of the polygons over the whole study area (Fig. 1). We primarily used the same classes as Crowson et al.114

(2018), namely peat swamp forest, water, urban, palm trees (all combined), acacia trees, fern/scrublands,115

bare ground; only a mangrove class was added to this original list. Mangrove polygons were digitized using the116

USGS Global distribution of mangroves (http://data.unep-wcmc.org/datasets/4). In total, reference117

data comprised 1399 polygons distributed in 8 classes (Table 1), following approximately the proportion of118

area covered by each class over the study area, representing about 1.5 millions pixels (1.2% of the study area).119

2.3 Satellite imagery120

2.3.1 Sentinel-2121

We used optical images acquired by Sentinel-2 along two different orbit paths to cover the whole study area122

(7 tiles in total). We downloaded all the images acquired in 2017 presenting a maximum of 70% cloud cover ;123

this resulted in 10 to 12 dates per tile. The Level L1C images (orthorectified and radiometrically corrected to124

4This article is protected by copyright. All rights reserved. 
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Top of Atmosphere reflectance) were processed to Level L2A surface reflectances (corrected for atmospheric125

effects and slope effects) using the Sen2Cor processor (version 2.5.5) (http://step.esa.int/main/third126

-party-plugins-2/sen2cor/sen2cor_v2-5-5/). The algorithm provides a scene classification including127

pixels affected by noise such as clouds and cloud shadows. Those pixels were masked and filled using a128

temporal gap-filling method (Image Time Series Gap Filling application from the Orfeo ToolBox (version 6.6)129

; OTB (Grizonnet et al., 2017; OTB Development Team, 2018)) that replaces the masked/invalid pixels with130

a value interpolated from the valid dates of the time series. During this process, the time series of each tile131

were also resampled to the same temporal grid to facilitate the subsequent mosaicking. The temporal grid132

was chosen based on the original 10 temporal acquisitions of the main (central) tile of the study area. In the133

end, all the pixels of the study area had the same dates: 2017-02-20, 2017-03-12, 2017-07-10, 2017-07-25,134

2017-07-30, 2017-08-19, 2017-10-08, 2017-10-18, 2017-11-22, 2017-12-22. This temporal gap-filling process135

was done for each of the ten Sentinel-2 spectral bands at spatial resolutions of 10m and 20m (resampled to136

10m resolution using a nearest neighbour interpolation). Finally, the tiles from the two orbits were mosaicked137

using a mosaic technique from the OTB application (https://github.com/remicres/otb-mosaic) that138

blends all the images on the overlapping areas, resulting in a seamless unique raster covering the whole study139

area.140

2.3.2 Sentinel-1141

Since radar images are not affected by cloud cover, all the Sentinel-1 images acquired between February142

and December 2017 over the study area were used to match the temporal coverage of the optical time143

series. In total, there were 26 images, acquired every 12 days from 2017-02-03 to 2017-12-24. The images144

were acquired over the same orbit, so no mosaicking was required. The Level-1 Ground Range Detected145

High Resolution (GRDH) were radiometrically calibrated to the radar backscattering coefficient σ
0 for both146

polarizations VV and VH using OTB application SAR Radiometric Calibration (Laur et al., 2004). They147

were then orthorectified to correct for the geometric distortions using the OTB application OrthoRectification148

(Small & Schubert, 2008). The output spatial resolution was 10m per pixel. The images were subsequently149

converted from intensity to the logarithm dB scale, and the ratio VH/VV was computed as a third polarization.150

Radar data are affected by speckle effects that are often filtered for land cover mapping applications. When151

using single date images, a spatial filtering is usually done, at the cost of degrading the spatial resolution.152

When using multitemporal images, a temporal filter such as the Quegan filter (Quegan & Yu, 2001) reduces the153

speckle effects without affecting much the spatial resolution (Trouvé, Chambenoit, Classeau, & Bolon, 2003).154

Simply computing the temporal average has the advantage of drastically reducing the speckle effects (Zhao155

et al., 2019) without degrading the spatial resolution, but obviously at the cost of the temporal information.156

In this study, we thus applied the Quegan filter on the time series to exploit the temporal information and157

5This article is protected by copyright. All rights reserved. 
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computed the temporal average from the unfiltered images.158

2.4 Classification protocol159

The classification was performed using Random Forest (RF), one of the fastest algorithms for pixel-based160

classification with a large number of pixels and variables (Breiman, 2001; Pelletier, Valero, Inglada, Champion,161

& Dedieu, 2016). We used RF implemented in OTB applications with the following parameters: maximum162

depth of tree = 25; minimum number of samples in each node = 25; maximum number of trees in the forest163

= 100, chosen following Pelletier et al. (2016) recommendations, as a good compromise between classification164

accuracy and computation time. Pelletier et al. (2016) have shown that the RF parameters have little influence165

on the performance of the classification. The reference dataset was split randomly but in a stratified fashion166

into disjoint training (75%) and validating (25%) subsets, preserving the initial proportions of each class in167

the two subsets. The split was performed at the polygon level in order to ensure an independent set of pixels168

between the training and the validation steps (i.e., no pixels belonging to the same polygon in the training169

and validating subsets). The resulting classification maps were sieved to eliminate isolated pixels and thus to170

reduce the ’salt and pepper’ effect associated with a pixel-based classification. Finally, the accuracy of the171

produced land cover maps was assessed by computing the confusion matrix based on the validation subset and172

by extracting accuracy metrics (Kappa coefficient, User’s accuracy, Producer’s accuracy). The training and173

validation data are issued from the same dataset (but different polygons). As such, the resulting accuracies174

might be slightly overestimated as they are not totally independent (Olofsson, Foody, Stehman, & Woodcock,175

2013). However, this is not an issue here as the objective of this paper is to compare the performances of176

different types of inputs, produced from the same set of training and validation pixels.177

Six land cover classifications based on six different inputs were tested and compared:178

• S1a: annual temporal average of Sentinel-1 images in the 3 polarizations,179

• S1t: Sentinel-1 time series in the 3 polarizations,180

• S2a: annual temporal average of Sentinel-2 in the 10 spectral bands,181

• S2t: Sentinel-2 time series in the 10 spectral bands,182

• S1a+S2a: the combination of Sentinel-1 and Sentinel-2 annual temporal averages,183

• S1t+S2t: the combination of Sentinel-1 and Sentinel-2 time series.184

For the latter two, the combination was performed by stacking both annual temporal averages / time series185

prior to classification.186

Additionally, an a posteriori fusion of classifications based on Sentinel-2 and Sentinel-1 was performed to187

account for undetected clouds by the cloud-masking algorithm. We therefore added a supplementary "cloud"188

6This article is protected by copyright. All rights reserved. 
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class to the classifications based on Sentinel-2 data (by adding non-detected cloud polygons in the training189

dataset), so that areas of permanent non-detected cloud cover could be identified. Then, the pixels tagged190

as "clouds" in the subsequent classification were replaced with the results of the classification obtained with191

Sentinel-1. The outcomes of this a posteriori classification are only presented for the S1t+S2t classification192

(named "S1t+S2t fused S1t").193

Kappa coefficients associated with each pair of confusion matrices were compared to identify possible194

significant differences in accuracies associated with our six land cover classifications (Congalton & Green,195

1998). The test statistic Z was assessed as follows:196

Z =
|K1 − K2|
√

σ2
1

+ σ2
2

where Ki is the Kappa coefficient resulting from the i
th confusion matrix and σi is the large sample variance197

of Ki (see Congalton & Green, 1998).198

The workflow of the preprocessing of the images and of the classification process can be found in Fig. 2.199

3 Results200

Contrary to our first expectation (H1), using the optical or radar time series resulted in significantly (P-value201

< 0.001) higher Kappa coefficient than using their temporal average counterparts (82.9% for S1t against202

68.2% for S1a and 79.0% for S2t against 76.5% for S2a). Similarly, using the combination of optical and203

radar time series improved significantly (P-value < 0.001) the land cover classification compared to using the204

combination of optical and radar temporal averages (from Kappa = 86.6% for S1a+S2a to Kappa = 88.5%205

for S1t+S2t), contradicting our second hypothesis (H2).206

In terms of per-class accuracies (see Table in the Supporting Information), most of the classes benefit207

from the use of the time series, especially palm trees, fern, and mangrove. Most classes reached their highest208

accuracies when combining Sentinel-2 and Sentinel-1 time series. Mangroves were not well identified using209

Sentinel-1 compared to Sentinel-2.210

In terms of land cover maps, the maps based on the time series look visually better (less noisy) than211

the ones based on temporal averages (Fig. 3). Maps based on Sentinel-1 data only are riddled with ’salt212

and pepper’ noise, resulting in many misclassified pixels among classes such as forest and palm plantations.213

In addition, Sentinel-1 data tend to confuse palm trees, mangroves and peat swamp forest (Fig. 3, top).214

Sentinel-2 based classifications look more realistic but show big "holes" in the classes due to the presence of215

undetected clouds, often classified as palm plantations or urban area (Fig. 3, middle). The combination of216

Sentinel-1 and Sentinel-2 time series lead to visually better maps (Fig. 3, bottom), especially when fusing217

7This article is protected by copyright. All rights reserved. 
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S1t+S2t with S1t (Fig. 4, bottom).218

Overall, the best classification accuracy was obtained when replacing pixels identified as clouds by the219

classifier using S1t+S2t (Fig. 4, top) with results from S1t classification: the Kappa coefficient reached220

89.4% (S1t+S2t fused S1t, Fig. 4, bottom), significantly (P-value < 0.001) improving by 1% the accuracy221

of the S1t+S2t classification.222

4 Discussion223

Our results provide for the first time a measure of the level of accuracy gained when using all the temporal224

information of optical and radar satellite image time series to map land cover in large areas of conservation225

value with persistent cloud cover. Despite the relatively low level of seasonality characterising most of226

the habitats found in these landscapes, using time series significantly improved the discrimination between227

vegetation classes compared to using annual temporal averages, suggesting that seasonal differences occur228

among classes and should not be neglected. Combining optical and radar time series also significantly229

improved our land cover classification, with radar data nicely complementing optical data in clouded areas.230

Our results support the conclusions of Hirschmugl et al. (2018) who reported improved accuracy in the231

detection of deforestation events in Malawi using time series of Sentinel-2 and/or Sentinel-1 data compared to232

monotemporal data. Steinhausen, Wagner, Narasimhan, and Waske (2018) also found an improved accuracy233

of land cover mapping in monsoon regions in India when increasing the number of Sentinel-1 scenes to one234

Sentinel-2 scene, but Mercier et al. (2019) found little improvement when adding Sentinel-1 time series to235

the one Sentinel-2 scene considered for mapping land cover in a forest-agriculture mosaic in Brazil. For these236

two last studies, however, the use of Sentinel-2 time series was not attempted due to heavy cloud cover.237

To our surprise, the accuracy of the classification based on radar time series was 4% higher than the238

classification based on optical time series. More accurate classifications do not systematically generate,239

however, "better" maps. First, maps derived from radar data are riddled with noise due to the speckle240

effect that is typically associated with radar imagery; although filtered, this effect was still present in our241

classification and led to numerous misclassified pixels. An additional filter could be applied to reduce this242

effect, but it would be at the cost of spatial resolution, losing details such as drainage channels. Second,243

and perhaps surprisingly, mangroves were not well identified using Sentinel-1, being often confused with244

peat swamp forest. The main difference between mangroves and peat swamp forest is that mangroves are245

submerged by sea water all year long (Wikramanayake, Dinerstein, Loucks, & Pimm, 2002). Radar data are246

sensitive to soil wetness and were therefore expected to capture this difference well (Kasischke et al., 1997);247

the issue here, however, is that canopy cover is very dense, meaning that Sentinel-1 C-band might not have248

been able to penetrate it. Li, Lu, Moran, Dutra, and Batistella (2012) found that L-band provides much249

8This article is protected by copyright. All rights reserved. 
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better accuracy than C-band for land cover mapping in tropical moist regions. However, neither of them250

could separate the types of forests investigated, showing the unsuitability of radar data alone to accurately251

map the very similar vegetation classes found in their study area. In our study, Sentinel-2 was much better252

at discriminating between mangrove and peat swamp forest than Sentinel-1.253

The use of optical data in regions affected by persistent cloud cover, even as part of the fusion of optical254

and radar data, nevertheless raises technical issues. When areas particularly affected by cloud cover are255

detected, they can be automatically masked and complemented by radar data. In our case, however, many256

clouds were not detected by our chosen cloud detector algorithm, which caused important problems in the257

classification process. Specifically, the training of the classifier was made on a dataset that included "cloudy"258

Sentinel-2 pixels associated with various land cover categories, which ultimately reduced separability between259

classes. When looking at the generated land cover map, it resulted in holes in the land covers, as described in260

the results section. To overcome this issue, we had to add a supplementary class "clouds" in the classification261

involving Sentinel-2 data to identify these rogue areas. Although requiring additional steps in our overall262

classification process (Fig. 2), this approach allowed us to better detect clouds and produced the most263

accurate land cover map (Fig. 4, bottom).264

The proposed method can easily be applied to large areas and reproduced in other regions because it is265

based on freely-accessible satellite imagery and all the steps can be processed automatically in a processing266

chain reliant on open-source software tools. Unlike previous attempts to map peat land cover in the region267

creating a manual cloud-free composite (see e.g., Crowson et al., 2018), no manual inputs are required268

(except to form the reference dataset, including persistent cloud cover polygons, but this step is essential to269

all supervised classifications) ; the proposed method is thus time-saving and less sensitive to human errors.270

Altogether, this work demonstrates how the combination of recent algorithmic advances in big data pro-271

cessing and new earth observation capabilities associated with the development of the Copernicus programme272

has the potential to significantly improve our ability to monitor key ecosystems in remote regions. Combining273

optical and radar time series indeed resulted in higher accuracies for the mapping of peat swamp forests,274

allowing environmental managers and policy makers to access up-to-date, fine scale information about peat-275

land distribution, thereby supporting efforts to protect and restore these ecosystems. Combining optical276

and radar time series to map land cover can seem daunting to ecologists used to classifying single optical277

images; however, recent computational advances as well as existing spatial compatibilities between Sentinel-278

1 and Sentinel-2 imagery significantly improve the accessibility of such approaches, and our work clearly279

demonstrates that efforts to go beyond classical approaches do pay off. We therefore urge scientists and280

practitioners to start exploiting the full capacity of Sentinel-2 and Sentinel-1 to monitor sensitive habitats in281

areas of conservation interest.282

9This article is protected by copyright. All rights reserved. 
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latest version of the Orfeo Toolbox can be downloaded at https://www.orfeo-toolbox.org.303

10This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

r
ti

c
le

References304

Aldrian, E., & Susanto, R. D. (2003). Identification of three dominant rainfall regions within Indonesia and305

their relationship to sea surface temperature. International Journal of Climatology , 23(12), 1435-1452.306

doi: 10.1002/joc.950307

Asner, G. P. (2001). Cloud cover in Landsat observations of the Brazilian Amazon. International Journal of308

Remote Sensing , 22(18), 3855-3862. doi: 10.1080/01431160010006926309

Breiman, L. (2001). Random forests. Machine Learning , 45(1), 5–32.310

Cihlar, J. (2000). Land cover mapping of large areas from satellites: Status and research priorities. Interna-311

tional Journal of Remote Sensing , 21(6-7), 1093-1114. doi: 10.1080/014311600210092312

Clerici, N., Calderón, C. A. V., & Posada, J. M. (2017). Fusion of Sentinel-1A and Sentinel-2A data for313

land cover mapping: a case study in the lower Magdalena region, Colombia. Journal of Maps, 13(2),314

718-726. doi: 10.1080/17445647.2017.1372316315

Congalton, R., & Green, K. (1998). Assessing the accuracy of remotely sensed data: Principles and practices.316

CRC-Press.317

Crowson, M., Warren-Thomas, E., Hill, J. K., Hariyadi, B., Agus, F., Saad, A., . . . Pettorelli, N. (2018). A318

comparison of satellite remote sensing data fusion methods to map peat swamp forest loss in Sumatra,319

Indonesia. Remote Sensing in Ecology and Conservation. doi: 10.1002/rse2.102320

Defourny, P., Bontemps, S., Bellemans, N., Cara, C., Dedieu, G., Guzzonato, E., . . . Koetz, B. (2019).321

Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment322

of the Sen2-Agri automated system in various cropping systems around the world. Remote Sensing of323

Environment, 221 , 551 - 568. doi: https://doi.org/10.1016/j.rse.2018.11.007324

Erinjery, J. J., Singh, M., & Kent, R. (2018). Mapping and assessment of vegetation types in the tropical325

rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery.326

Remote Sensing of Environment, 216 , 345 - 354. doi: https://doi.org/10.1016/j.rse.2018.07.006327

Giesen, W. (2004). Causes of peat swamp forest degradation in Berbak NP, Indonesia, and recommendations328

for restoration (Tech. Rep.). ARCADIS Euroconsult. doi: 10.13140/RG.2.2.16544.64006329

Griffiths, P., van der Linden, S., Kuemmerle, T., & Hostert, P. (2013, Oct). A pixel-based Landsat com-330

positing algorithm for large area land cover mapping. IEEE Journal of Selected Topics in Applied Earth331

Observations and Remote Sensing , 6(5), 2088-2101. doi: 10.1109/JSTARS.2012.2228167332

Grizonnet, M., Michel, J., Poughon, V., Inglada, J., Savinaud, M., & Cresson, R. (2017). Orfeo ToolBox:333

open source processing of remote sensing images. Open Geospatial Data, Software and Standards,334

2(1), 15. doi: 10.1186/s40965-017-0031-6335

Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover336

11This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

r
ti

c
le

classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing , 116 , 55 - 72. doi:337

https://doi.org/10.1016/j.isprsjprs.2016.03.008338

Hapsari, K. A., Biagioni, S., Jennerjahn, T. C., Reimer, P. M., Saad, A., Achnopha, Y., . . . Behling,339

H. (2017). Environmental dynamics and carbon accumulation rate of a tropical peatland in Central340

Sumatra, Indonesia. Quaternary Science Reviews, 169 , 173 - 187. doi: https://doi.org/10.1016/341

j.quascirev.2017.05.026342

Hirschmugl, M., Sobe, C., Deutscher, J., & Schardt, M. (2018). Combined use of optical and synthetic343

aperture radar data for REDD+ applications in Malawi. Land , 7(4). doi: 10.3390/land7040116344

Hoekman, D. H., Vissers, M. A. M., & Wielaard, N. (2010). PALSAR wide-area mapping of Borneo:345

Methodology and map validation. IEEE Journal of Selected Topics in Applied Earth Observations and346

Remote Sensing , 3(4), 605-617. doi: 10.1109/JSTARS.2010.2070059347

Inglada, J., Vincent, A., Arias, M., & Marais-Sicre, C. (2016). Improved Early Crop Type Identification By348

Joint Use of High Temporal Resolution SAR And Optical Image Time Series. Remote Sensing , 8(5).349

Retrieved from https://www.mdpi.com/2072-4292/8/5/362 doi: 10.3390/rs8050362350

Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., . . . Waske, B. (2016). A review351

of the application of optical and radar remote sensing data fusion to land use mapping and monitoring.352

Remote Sensing , 8(1).353

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., . . . Kessler, M. (2016).354

CHELSA climatologies at high resolution for the earth’s land surface areas (Version 1.1). World Data355

Center for Climate (WDCC) at DKRZ. doi: 10.1594/WDCC/CHELSA_v1_1356

Kasischke, E. S., Melack, J. M., & Dobson, M. C. (1997). The use of imaging radars for ecological357

applications—a review. Remote Sensing of Environment, 59(2), 141 - 156. doi: https://doi.org/358

10.1016/S0034-4257(96)00148-4359

Kuenzer, C., Ottinger, M., Wegmann, M., Guo, H., Wang, C., Zhang, J., . . . Wikelski, M. (2014). Earth ob-360

servation satellite sensors for biodiversity monitoring: potentials and bottlenecks. International Journal361

of Remote Sensing , 35(18), 6599-6647. doi: 10.1080/01431161.2014.964349362

Lambin, E. F., & Linderman, M. (2006). Time series of remote sensing data for land change science. IEEE363

Transactions on Geoscience and Remote Sensing , 44(7), 1926-1928. doi: 10.1109/TGRS.2006.872932364

Laur, H., Bally, P., Meadows, P., Sanchez, J., Schaettler, B., Lopinto, E., & Esteban, D. (2004). Derivation365

of the backscattering coefficient σo in ESA ERS SAR PRI products (Calibration/Validation Document366

Nos. Issue 2, Rev. 5f). ESA.367

Li, G., Lu, D., Moran, E., Dutra, L., & Batistella, M. (2012). A comparative analysis of ALOS PALSAR368

L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region. ISPRS369

Journal of Photogrammetry and Remote Sensing , 70 , 26 - 38. doi: https://doi.org/10.1016/j.isprsjprs370

12This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

r
ti

c
le

.2012.03.010371

Mercier, A., Betbeder, J., Rumiano, F., Baudry, J., Gond, V., Blanc, L., . . . Hubert-Moy, L. (2019).372

Evaluation of Sentinel-1 and 2 time series for land cover classification of forest–agriculture mosaics in373

temperate and tropical landscapes. Remote Sensing , 11(8). doi: 10.3390/rs11080979374

Miettinen, J., Shi, C., & Liew, S. C. (2012). Two decades of destruction in Southeast Asia’s peat swamp375

forests. Frontiers in Ecology and the Environment, 10(3), 124-128. doi: 10.1890/100236376

Olofsson, P., Foody, G. M., Stehman, S. V., & Woodcock, C. E. (2013). Making better use of accuracy377

data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified378

estimation. Remote Sensing of Environment, 129 , 122 - 131. doi: https://doi.org/10.1016/j.rse.2012379

.10.031380

OTB Development Team. (2018, June 21). Orfeo toolbox 6.6.0. Zenodo. doi: 10.5281/zenodo.1294917381

Pelletier, C., Valero, S., Inglada, J., Champion, N., & Dedieu, G. (2016). Assessing the robustness of random382

forests to map land cover with high resolution satellite image time series over large areas. Remote383

Sensing of Environment, 187 , 156 - 168. doi: https://doi.org/10.1016/j.rse.2016.10.010384

Posa, M. R. C., Wijedasa, L. S., & Corlett, R. T. (2011). Biodiversity and Conservation of Tropical Peat385

Swamp Forests. BioScience, 61(1), 49-57. doi: 10.1525/bio.2011.61.1.10386

Quegan, S., & Yu, J. J. (2001). Filtering of multichannel SAR images. IEEE Transactions on Geoscience and387

Remote Sensing , 39(11), 2373-2379. doi: 10.1109/36.964973388

Reiche, J., Verbesselt, J., Hoekman, D., & Herold, M. (2015). Fusing Landsat and SAR time series to detect389

deforestation in the tropics. Remote Sensing of Environment, 156 , 276 - 293. doi: https://doi.org/390

10.1016/j.rse.2014.10.001391

Small, D., & Schubert, A. (2008). Guide to ASAR geocoding. ESA-ESRIN Technical Note RSL-ASAR-GC-392

AD, 1 .393

Steinhausen, M. J., Wagner, P. D., Narasimhan, B., & Waske, B. (2018). Combining Sentinel-1 and Sentinel-2394

data for improved land use and land cover mapping of monsoon regions. International Journal of Applied395

Earth Observation and Geoinformation, 73 , 595 - 604. doi: https://doi.org/10.1016/j.jag.2018.08.011396

Trouvé, E., Chambenoit, Y., Classeau, N., & Bolon, P. (2003). Statistical and operational performance as-397

sessment of multitemporal SAR image filtering. IEEE Transactions on Geoscience and Remote Sensing ,398

41(11), 2519-2530. doi: 10.1109/TGRS.2003.817270399

Vancutsem, C., Pekel, J., Bogaert, P., & Defourny, P. (2007). Mean compositing, an alternative strategy400

for producing temporal syntheses. concepts and performance assessment for SPOT VEGETATION time401

series. International Journal of Remote Sensing , 28(22), 5123-5141. doi: 10.1080/01431160701253212402

van Eijk, P., Leenman, P., Wibisono, I. T., & Giesen, W. (2009). Regeneration and restoration of degraded403

peat swamp forest in Berbak NP, Jambi, Sumatra, Indonesia. Malayan Nature Journal , 61 , 223-241.404

13This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

r
ti

c
le

Van Tricht, K., Gobin, A., Gilliams, S., & Piccard, I. (2018). Synergistic Use of Radar Sentinel-1 and Optical405

Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium. Remote Sensing , 10(10). doi:406

10.3390/rs10101642407

Wijedasa, L. S., Jauhiainen, J., Könönen, M., Lampela, M., Vasander, H., Leblanc, M.-C., . . . Andersen,408

R. (2017). Denial of long-term issues with agriculture on tropical peatlands will have devastating409

consequences. Global Change Biology , 23(3), 977-982. doi: 10.1111/gcb.13516410

Wikramanayake, E., Dinerstein, E., Loucks, C., & Pimm, S. (2002). Terrestrial ecoregions of the indo-pacific:411

A conservation assessment. Island Press.412

Wulder, M. A., Hall, R. J., Coops, N. C., & Franklin, S. E. (2004). High Spatial Resolution Remotely Sensed413

Data for Ecosystem Characterization. BioScience, 54(6), 511-521. doi: 10.1641/0006-3568(2004)414

054[0511:HSRRSD]2.0.CO;2415

Zhao, W., Deledalle, C., Denis, L., Maître, H., Nicolas, J., & Tupin, F. (2019, June). Ratio-based multi-416

temporal SAR images denoising: RABASAR. IEEE Transactions on Geoscience and Remote Sensing ,417

57(6), 3552-3565. doi: 10.1109/TGRS.2018.2885683418

14This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

r
ti

c
le

Tables419

Table 1: Classes used in this study (see Crowson et al. (2018) for a description of the classes).

Class Number of reference

polygons pixels

Peat swamp forest 173 353,241
Water 207 139,713
Urban 164 13,549

Palm trees 250 211,082
Acacia trees 212 360,331

Fern/scrublands 165 171,271
Bare ground 147 116,423
Mangrove 81 131,177

15This article is protected by copyright. All rights reserved. 



Figures420

Figure 1: Location of the study area (red lines) in Jambi province, Sumatra (Indonesia) and of the reference
polygons. Data: Natural Earth (https://www.naturalearthdata.com).
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Figure 2: Workflow of the processing and the classification processes. RF classif.: Random Forest classifica-
tion, LC: land cover, Conf. mat: confusion matrix.
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Figure 3: Land cover maps produced from Sentinel-1 (S1a (average): Kappa = 68.2%, S1t (time series):
Kappa = 82.9%, top), Sentinel-2 (S2a (average): Kappa = 76.5%, S2t (time series): Kappa = 79.0%,middle)
and combination of both (S1a+S2a: Kappa = 86.6%, S1t+S2t: Kappa = 88.5%, bottom).
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Figure 4: Land cover maps produced from Sentinel-1 & Sentinel-2 time series with cloud class (top) and
clouds replaced with Sentinel-1 (S1t) classification (S1t+S2t fused S1t),Kappa = 89.4, bottom).

19This article is protected by copyright. All rights reserved. 


	Introduction
	Materials and Methods
	Study area
	Reference data
	Satellite imagery
	Sentinel-2
	Sentinel-1

	Classification protocol

	Results
	Discussion

