

This is a repository copy of *Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/156114/

Version: Accepted Version

Article:

Chen, Y., Xu, C. and Vaidyanathan, S. orcid.org/0000-0003-4137-1230 (2020) Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production. Applied Energy, 261. ISSN 0306-2619

https://doi.org/10.1016/j.apenergy.2019.114420

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Influence of gas management on biochemical conversion of CO₂ by microalgae for biofuel production

Yimin Chen^a, Changan Xu^{a,*} and Seetharaman Vaidyanathan^b

^a Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005,
 People's Republic of China.

^b ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.

Correspondence: Changan Xu, E-mail: xuchangan@tio.org.cn (C. Xu); Tel.: +86-596-2195527.

ABSTRACT

The photosynthetic capacity of algae as a primary producer in nature and the relative ease of its cultivation on a large scale make it attractive to explore opportunities and develop algal technology for simultaneous sequestration of industrial and atmospheric CO_2 (to mitigate climate change), whilst developing sustainable processes for manufacturing renewable fuels alongside biochemicals of value. The development of strategies that maximise algal product yield while optimising the CO_2 gas supply is needed for the appropriate scale-up of algal technology. One of the main targets of this technology is the potential exploitation of flue gases, an inexpensive and carbon-rich source. So far, the growth of microalgae has predominantly been investigated using relatively low CO_2 concentrations that are far from the levels offered by flue gas (6-25%), which are more useful for energy generation with concomitant development of carbon neutral processes. Here, we tested a series of gas supply

strategies to investigate microalgal growth at high CO₂ levels with the aim to improve algal CO₂ fixation and lipid accumulation. Optimal growth of *Nannochloropsis salina* (a marine algae) occurred at 6% CO₂, whilst few cells grew under 20% CO₂. Excess CO₂ resulted in medium acidification, pigment reduction, and growth inhibition. However, the fixation capacity of CO₂ and the production of specific lipids were improved by O₂ removal from the inlet gas by up to 4.8-fold and 4.4-fold, respectively. These parameters were further improved by 72% and 25%, respectively, via a gradual increase in CO₂ concentration. Extremely high CO₂ levels (100%) completely inhibited cell growth, but this effect was reversed when air containing atmospheric CO₂ levels was introduced in place of 100% CO₂. These findings will allow for the future development of more effective strategies using algal biotechnology for producing biofuel while mitigating carbon emissions.

Keywords: Gas management; energy; microalgae; CO2; lipid; Nannochloropsis salina.

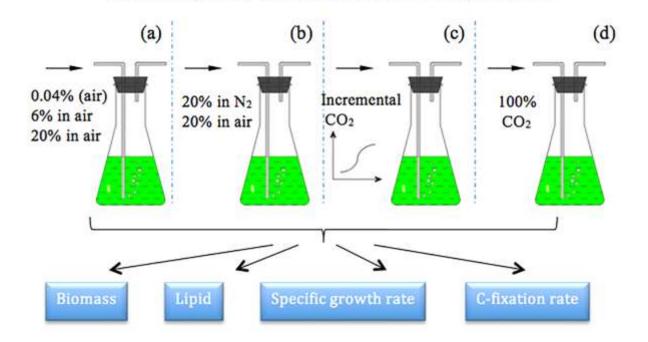
1. Introduction

Anthropogenic activities, including the burning of fossil fuels, have greatly contributed to global warming and climate change due to the resulting CO₂ emissions [1]. It is estimated that approximately 33.4 Gt of CO₂ are emitted by fossil fuel power plants each year, accounting for nearly 40% of the total CO₂ emitted into the Earth's atmosphere [2]. Global warming and ocean acidification caused by increasing atmospheric CO₂ levels have already resulted in a series of changes to marine ecosystems, such as mass coral-bleaching episodes in many of the world's reefs [3]. Carbon capture and storage (CCS) technologies and carbon neutral bioenergy have been proposed as counter measures to climate change [4, 5]. Biofuels, such as biodiesel and bioethanol, produced from agricultural crops using existing technologies, cannot sustainably replace fossil-based fuels. However, microalgae have great potential as an alternative feedstock for biofuel production [6]. Microalgae offer a means of

fixing CO₂ and generating biofuels, such as biodiesel, with the scope for developing sustainable processes for biofuel production with minimal recourse to resources. Therefore, microalgae are currently regarded as a promising source of third generation biofuels [7].

Algal photosynthesis is responsible for a large proportion (around 50%) of global carbon fixation and O₂ generation, despite accounting for no more than 1% of photosynthetic biomass. Microalgae can theoretically capture up to 9% of the incoming solar energy via photosynthesis to produce 280 tons of dry biomass ha⁻¹ year⁻¹, whilst consuming around 513 tons of CO_2 ha⁻¹ year⁻¹ [8]. The efficiency of the conversion of light energy partially depends on the species characteristics. Many algae use the C3 pathway for the acquisition of dissolved inorganic carbon (DIC: CO_2 , HCO_3^- , and CO_3^{2-}) [9]. However, different species of microalgae appear to have different preferences for the carbon species they take up, showing differences in the types and abundance of DIC transporters and carbonic anhydrases (CAs). For instance, Chlamydomonas reinhardtii prefers to take up CO₂ under a majority of experimental conditions [10, 11]. Thalassiosira pseudonana prefers CO₂, while Phaeodactylum tricornutum prefers HCO₃⁻ [12, 13]. The transfer and uptake of different DIC species in microalgae primarily depends on the microalgae species and the concentration of CO₂. Three major strategies, HCO₃⁻ transportation, conversion of HCO₃⁻ into CO₂, and the direct diffusion of CO₂ are known to be employed [14]. Different methods, such as genetic engineering and random mutagenesis, have been developed to modify the genes and the associated enzymes in order to improve of the rates of growth and CO_2 fixation [15]. In addition, domestication or adaptive laboratory evolution can also be used as strategies to enhance microalgal CO₂ fixation, particularly for the fixation of CO₂ from CO₂-rich flue gases [15].

3


Apart from the species-related factors, there are many cultivation-related factors that can influence microalgae carbon fixation and product yield. Most studies have focused on the nutrients in the medium or other cultivation conditions, such as light, while paying little attention to CO_2 and/or O_2 supply [16, 17]. O_2 accumulation in closed systems is a serious problem since O_2 can be supersaturated to concentrations as high as 400% in these systems [18]. These supersaturated O_2 concentrations not only inhibit the carboxylase activity of Rubisco, but also strengthen photorespiration. Even in those studies with increased CO_2 , the O_2 content in the inlet gas was rarely considered. As such, air is widely used to mix with CO_2 to obtain the desired CO_2 levels [19]. However, the influence of atmospheric O_2 on algal growth is insufficiently characterised and often ignored.

Increasing the CO₂ concentration can affect both lipid productivity and biodiesel quality. Many microalgae, such as *Chamydomonas* sp. [20] and *Nannochloropsis* sp. [21], have been investigated for their ability to capture CO₂ and biofuel simultaneously. *Nannochloropsis* sp. is a yellow green microalgae found in marine habitats that has been found to grow fast and accumulate lipids to high levels [19]. Remarkably, in air containing 1% CO₂, the maximum biomass productivity of *Nannochloropsis* sp. achieved was 0.9 g L⁻¹ d⁻¹ under high light intensity and complete medium, whilst lipid productivity was able to reach up to 0.297 g L⁻¹ d⁻¹ under high light intensity and low nitrogen levels [19]. It was found that the CO₂ levels from 2.5 to 10.0% could improve the quality of algal biodiesel to meet the fuel-quality standards [22]. This is due to the fact that chain size and saturation were re-balanced towards the enhancement of biodiesel ignition and cold-flow properties [22]. Moreover, due to their high lipid content, both whole alga and lipid-extracted residues of *Nannochloropsis salina* have been tested in an attempt to produce methane via anaerobic digestion [23]. However, an excess of CO₂ usually exerts a stress on cells [24]. A previous study by the authors showed that the growth of *N. salina* could be promoted by increasing the CO_2 concentration to 6% (in air). However, growth was highly inhibited by a CO_2 concentration of over 20% [25].

The present study aimed to improve our understanding of the influence of CO₂ supply at high concentrations and that of O₂ on *N. salina* growth for mitigation of CO₂ emission and for biofuel production,. Despite many reports on microalgal CO₂-acclimation/adaptation mechanisms under low CO₂ conditions, such as CO₂-concentrating mechanisms (CCM) for growth in air, our knowledge on carbon uptake by microalgae under high CO₂ conditions remains limited [26]. A better understanding of microalgal growth under high CO₂ conditions will enable the development of the appropriate strategies for applications in energy generation and carbon mitigation.

2. Materials and Methods

Scheme 1 shows the experimental designs of different gas strategies for CO_2 fixation and biofuel production by microalgae. The details for each experimental set-up are provided in the following sections.

Gas strategies for CO₂ fixation and biofuel production

Scheme 1. Strategies of gas supply tested in the investigation to study the influence of constant CO_2 in the feed gas (a); O_2 in the feed gas at 20% CO_2 (b); incremental CO_2 in the feed gas (c); and extremely high CO_2 (d).

2.1 Microalgal cultivation and growth monitoring

The phototrophic species of *Nannochloropsis salina* has been found to grow fast while accumulating lipids, making it an ideal candidate for CO₂ sequestration, as well as a source for alternative biofuel production [27, 28]. This species was cultivated in f/2 medium in Erlenmeyer flasks. Three biological replicates were included in each experiment. The cultures were exposed to a light intensity of ~70 μ E m⁻² s⁻¹ by using fluorescent lamps, aerated, and incubated at 24 ± 2°C. The cells were then harvested by centrifugation twice (3,000 ×g for 3 min coupled with 8,500 ×g for another 5 min). The resulting supernatant was used for DIC measurement. The cell pellets were frozen at –20°C until further analysis. The optical density of cultures at 680 nm (OD₆₈₀) was measured to monitor the growth curve using a UV/Visible spectrophotometer (Ultrospec 2100 Pro, GE Healthcare). The OD₆₈₀ obtained was used to deduce the dry cell weight (DCW) on the basis of the following precalibrated equation,

$$y = 0.193x + 0.0078$$
 $R^2 = 0.9914$ (1)

where y and x are biomass concentration (g L^{-1}) and OD₆₈₀, respectively. The specific growth rate (μ , d⁻¹) was measured as follows,

$$\mu = \frac{\ln(W_1/W_0)}{\Delta t} \qquad (2)$$

where W_0 and W_1 are the initial and end cell density, respectively, and Δt is the cultivation time. The resulting DCW was then used for the determination of the CO₂ fixation rate (F_{CO2}, g L⁻¹ d⁻¹) according to the following equation, which was derived from the typical molecular formula of microalgal biomass, CO_{0.48}H_{1.83}N_{0.11}P_{0.01} [29]

 CO_2 fixation rate (Fco₂) = 1.88 × biomass productivity (BP) (3)

Since the final CO₂ feeding depends on both the CO₂ concentration (%) and the volumetric gas flow rate (vvm), the real CO₂ loading of the culture (L_{CO2} , $L L^{-1} min^{-1}$) was defined as follows,

 L_{CO2} (L L⁻¹ min⁻¹) = CO₂ concentration (%) ×volumetric gas flow rate (vvm) (4)

where L_{CO2} indicates the real volume of pure CO_2 loaded per volume culture per minute. To determine the effect of CO_2 loading on lipid production, L_{CO2} was used to determine the specific lipid production as follows,

Slip
$$(g \min L^{-1} d^{-1}) = \frac{(L_2 - L_1)}{\Delta t \cdot L_{CO2}}$$
 (5)

where S_{lip} is the specific lipid production on the basis of CO₂ loading, L₁ and L₂ are the initial and end lipid content (g L⁻¹), respectively, and Δt is the cultivation time (d). In addition, dissolved inorganic carbon (DIC) was measured (as detailed below) to obtain an indication of the inorganic carbon available to the organism.

The f/2 medium used in the cultivations consisted of (per litre) 33.6 g artificial seawater salts (Ultra Marine Synthetica Sea Salt, Waterlife), 75 mg NaNO₃, 5.65 mg NaH₂PO₄·2H₂O, 1 ml trace elements stock, and 1 ml vitamin mix stock. The trace elemental solution (per litre) included 4.16 g Na₂EDTA, 3.15 g FeCl₃·6H₂O, 0.18 g MnCl₂·4H₂O, 10 mg CoCl₂·6H₂O, 10 mg CuSO₄·5H₂O, 22 mg ZnSO₄·7H₂O, and 6 mg Na₂MoO₄·2H₂O. The vitamin mix solution (per litre) included 100 mg vitamin B1, 0.5 mg vitamin B12, and 0.5 mg biotin.

2.2 Analysis of DIC species

The speciation of the dissolved inorganic carbon and the determination of its abundance were used to estimate the total available inorganic carbon in the culture medium at a given time point. To this end, a simplified "back-titration" technique was employed [25]. This method was based on the principle that the total carbonates (TCO₂) can be derived from carbonic alkalinity (CA). Briefly, the sample pH was adjusted to the bicarbonate equilibrium point (pH_{HCO3}) and subsequently subjected to two titrations, in tandem. The pH was first titrated to

around 3.5 by adding 0.1 M (or 0.5 M) HCl, the amount of which was recorded for calculating the total alkalinity (TA). This is followed by bubbling the sample with nitrogen to remove CO₂, and a second titration to the pH_{HCO3} with the addition of 0.1 M NaOH (or 0.5 M). The acid or base equivalent consumed was used to determine the non-carbonate alkalinity (NA). The alkalinities of TA and NA were calculated using the following equation,

$$A = 10^6 \times C_{H/OH} \times V_{H/OH} / m_0 \qquad (6)$$

where A is the alkalinity (μ mol kg⁻¹), C_{H/OH} (mol L⁻¹), and V_{H/OH} (L) are the concentration and volume of acid or base, and m_o (kg) is the mass of samples. The difference between TA and NA is CA (i.e. TA–NA), which was used to calculate TCO₂. The data (TCO₂, pH, temperature, and salinity) was fed into the CO2SYS program [30] to calculate the concentration of individual DIC species.

2.3 Analysis of cellular bio-components

The biochemical composition of cells, including pigments, carbohydrates, proteins, and lipids, was measured using a simultaneous assay [31]. Briefly, the harvested cell pellets were ground by glass bead-beating in an alkaline solution using a cell disruptor (DISRUPTOR GENIE[®], USA). An aliquot of the sample was used for the carbohydrate assay; meanwhile, the remaining sample was heated at 100°C for 30 min. This was followed by cooling the mixture to room temperature, after which an aliquot of the saponified sample was taken for the protein assay. Another aliquot of the sample was mixed and vortexed with an organic solvent (chloroform: methanol, 2:1). After centrifuging this mixture, the lower organic phase was used for the total carotenoids and lipid assay, while the supernatant aqueous phase was

used for the chlorophyll assay. Alternatively, a single assay of lipids in other cases was conducted by using a simplified version of the above method [32].

2.4 Influence of a constant CO₂ supply in the feed gas, at different concentrations

In order to determine the CO₂ tolerance and fixation capability of *N. salina*, the cultures were aerated in three constant CO₂ concentrations: 0.04% (air), 6%, or 20% (CO₂ in air). For 6% and 20%, pure CO₂ (100%) was mixed with air to obtain the desired CO₂ concentration by controlling the flow rates using flowmeters. The flow rate of the mixed gas was fixed at a volume ratio of 0.5 (vvm) between the gas (L min⁻¹) and the culture (L). The corresponding L_{CO2} was 2 × 10⁻⁴, 0.03, and 0.1 L L⁻¹ min⁻¹ for 0.04% (air), 6%, and 20% CO₂, respectively. The corresponding DICs were also monitored.

2.5 Influence of photorespiration

Although the O₂ concentration in the culture can be reduced to avoid oversaturation by sparging a gas, the presence of O₂ in the feeding gas has only been studied scarcely. This may explain why *N. salina* hardly grew under 20% CO₂ in the presence of O₂ (as shown in section 3.1), as reported in our previous investigation [25]. To determine the influence of O₂ on photorespiration and C-fixation, CO₂ was mixed with either air or pure N₂. The flow rates of these gases were controlled using flowmeters to obtain a constant concentration of CO₂ at 20% in the supplied gas. The flow rate of the mixed gas was fixed at a volume ratio of 0.5 (vvm) between the gas (L min⁻¹) and the culture (L), obtaining a constant L_{CO2} of 0.1 L L⁻¹ min⁻¹.

2.6 Influence of incremental CO2 levels

A high CO₂ concentration usually results in the overfeeding of algal cells due to the excess CO₂ supplied, particularly at the beginning of the cultivation period with dilute biomass, leading to growth inhibition [33]. A process of acclimation from a low to a high CO₂ levels may be used to soften the inhibition. To this end, the cultures were sparged with incremental levels of CO₂ over time. Pure nitrogen (100%) was mixed with pure CO₂ (100%) to obtain the desired level of CO₂. The low rate of the mixed gas was fixed at a gas to liquid ratio of 0.5 (vvm), while the CO₂ concentration was adjustable during cultivation. Nitrogen was used to adjust the CO₂ concentration instead of air in order to determine the influence of CO₂ and exclude the influence of oxygen in the air.

2.7 Influence of 100% CO₂

Although an excess supply of CO_2 inhibited the growth of algae, it remains unclear whether this inhibition was fatal or temporary. To examine this, the culture was supplied with either an extremely high CO_2 concentration (100%) or a low concentration of 0.04% (air). At a high CO_2 concentration, a low flow rate of the gas was controlled within the range of 0.02–0.04 vvm (L_{CO2} ranging from 0.02–0.04 L L⁻¹ min⁻¹). The inoculum for this experiment was obtained from a culture where the alga was pre-cultured and grew well in 20% CO_2 (in the absence of O_2).

3. Results and Discussion

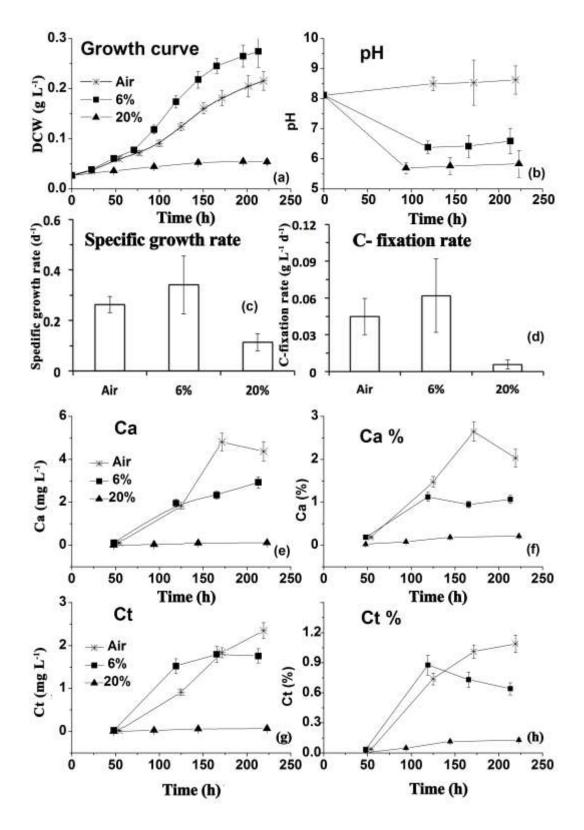
3.1 Influence of increased CO₂ concentration at a constant gas volumetric flow rate To determine the capacity of the algal species to sequester CO₂ and produce lipids, the *N*. *salina* cultures were sparged with a gaseous mixture of air and CO₂ at three constant volumetric proportions: 0.04% (only air), 6%, and 20% CO₂, forming volumetric CO₂ loadings (L_{CO2}) of 2×10^{-4} , 0.03, and 0.1 L L⁻¹ min⁻¹, respectively. These experimental

conditions have been described in a previous investigation [25], however, the results were reinterpreted by updating the data with an emphasis on the influence of an increased concentration of CO_2 on CO_2 fixation, pigments, and lipid production. The growth curves and variations in pH, pigments, DIC species, and lipids are presented in Fig. 1 and Fig. 2.

The results indicate that the fastest growth was obtained at a CO₂ concentration of 6% (Fig 1a). The maximum specific growth rates for 0.04% (air), 6%, and 20% were $0.26 (\pm 0.03)$, 0.34 (\pm 0.12), and 0.11 (\pm 0.03) d⁻¹, respectively (Fig 1c). A further increase in CO₂ from 6% to 20% significantly inhibited the algal growth (P<0.05, t-test). The average CO₂ fixation rates during the active growth phase (after the fourth day) for 0.04% (air), 6%, and 20% were $0.045 (\pm 0.015), 0.062 (\pm 0.030), \text{ and } 0.006 (\pm 0.004) \text{ g } \text{L}^{-1} \text{ d}^{-1}$, respectively (Fig 1d). The growth rate of N. salina under air conditions was similar to that reported for Nannochloropsis sp. [21], however, the optimal growth of the latter was found to be at 15% CO₂ with a higher growth rate than that of the former at 6%. The initial cell concentration reached 0.17 g L^{-1} for *Nannochloropsis* sp., whereas it only reached 0.05 g L^{-1} for *N*. salina in the present study. This may have been the cause for the differences observed between the two species. In addition, the volumetric CO₂ loading (L_{CO2}) for *Nannochloropsis* sp. was 0.015 L L⁻¹ min⁻¹ $(15\% \text{ CO}_2, 0.1 \text{ vvm})$, only half of the 0.03 L L⁻¹ min⁻¹ (6% CO₂, 0.5 vvm) for N. salina in this study. With 0.04% (air), an increase in pH was observed (Fig. 1b) due to chemical and biochemical reasons. Chemically, the photosynthetic consumption of CO₂ pushes the equilibrium towards a decrease in [H⁺], according to the following reaction,

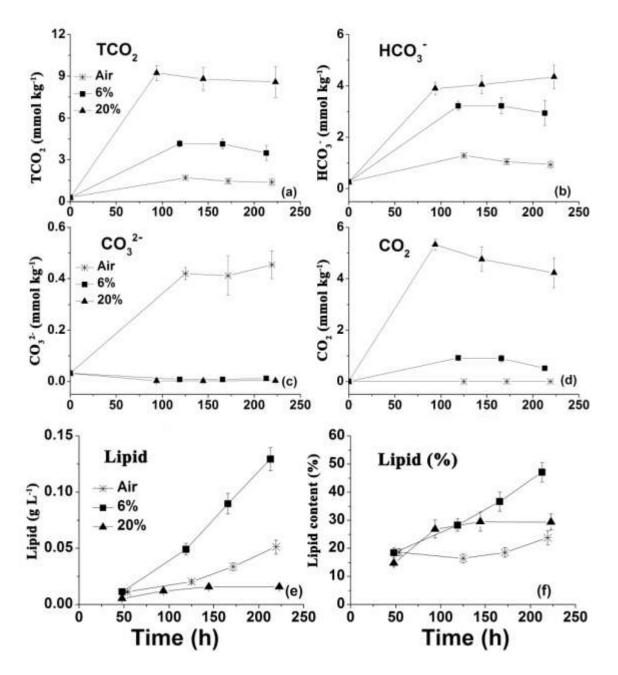
$$CO_2 + H_2O \Longrightarrow H^+ + HCO_3^- \tag{7}$$

The biochemical reason is the light-dependent alkalisation of the medium caused by the utilisation of HCO_3^- , which may occur either by direct uptake or by the conversion of HCO_3^- to CO_2 and OH^- (via the catalysis of carbonic anhydrase) external to the plasmalemma [34]. On the contrary, the pH in the medium dropped quickly to around 6.5 and 5.6 at 6% and 20% CO_2 , respectively, due to the increasing build-up of CO_2 in the medium that resulted from a higher supply of CO_2 , as compared to its uptake by algae, driving the equilibrium reaction (6) forward.


Although pigments are responsible for light harvesting, the pigment curves were not completely in accordance with the growth curves. Interestingly, cells growing at 0.04% (air) accumulated higher pigments but a lower biomass than at 6% CO₂. This is primarily due to the carbon deficiency at 0.04% CO₂. The pigment production and content (%) at 6% CO₂ was close to that at 0.04% on the first five days, and then decreased (Fig 1e-h). The decrease in the pigment production with the increase in CO₂ concentration is likely associated with a decrease in the pH. Similar results have been reported, showing that the production of chlorophyll a and carotenoids in Dunaliella bardawil and Chlorella ellipsoidea decreased with pH reduction in the range of 4–7.5 [35]. This suggests that the pigments at 6% CO₂ had a higher conversion efficiency of light energy by transferring the excitation energy to fix the increasing availability of CO₂. At higher CO₂ levels (6%), when the dissolved carbon dioxide was relatively sufficient, or even in surplus than required for growth of the algae, feedback inhibition minimised the build-up in intracellular pigment levels. Therefore, the increased growth caused by the increase in CO₂ concentration (e.g. from 0.04% to 6%) appears to result from the enhancement of the energy conversion efficiency by the pigments. A further increase in CO₂ concentration, such as up to 20%, would acidify the medium and inhibit the pigment production, leading to a lower growth rate.

In most studies, DIC speciation and the abundance of carbon species are not reported, and only the overall CO₂ levels in the supplied gas are given [36]. Monitoring the abundance of dissolved inorganic carbon species facilitates our understanding of the effects of different gas compositions on algal CO₂ fixation and the intracellular carbon flux. The profiles of the DIC species and the lipid accumulation are shown in Fig. 2. The total inorganic carbon (TCO₂) was in line with the corresponding CO₂ inlet concentration, which was nearly constant due to continuous aeration. This is due to the fact that a DIC equilibrium was reached between the gas and the medium. The concentrations of TCO₂ for 0.04%, 6%, and 20% CO₂ were around 0.067 (± 0.007), 0.172 (± 0.017), and 0.390 (± 0.015) g L^{-1} CO₂ (e), respectively. Given that the fastest CO₂ fixation rate of 0.062 g $L^{-1} d^{-1}$ was obtained at 6% CO₂, these TCO₂ would require around 1 day, 2.8 days, and 6.3 days to be fixed by N. salina, not accounting for gas escape. As such, for large-scale algal farming, the amounts of CO₂ captured by the medium are not insignificant. It is worth noting that the estimation of the CO₂ fixation rate in the present study was based on the dry biomass, which depends on the element composition of cells and varies with species and growth conditions. Moreover, many algae have been found to produce extracellular substances [37], which are not included in the biomass measurement, leading to an underestimation of the CO₂ fixation.

The concentration of carbonate (CO_3^{2-}) is expected to have a lower influence on the accumulation of biomass and lipids since it is not a significant component at 6% and 20% CO_2 . Both CO_2 and bicarbonate (HCO_3^{-}) can be utilised through interconversions by carbonic anhydrases [34], where the increase in these two species, as happens at 6% CO_2 sparging, elevates growth. However, the concentrations of these two species were found to be the highest at 20% CO_2 , despite the fact that growth was found to be inhibited at this


concentration due to excess carbon and a decreased pH. Apart from the low pH and low pigment content, oxidative stress could be another reason for the inhibition of growth [38]. It was found that the acidification of the medium and a higher CO₂ concentration may promote the generation of reactive oxygen species, including H₂O₂, phenolic compounds, and lipoperoxides [38]. However, *N. salina* is able to induce antioxidant enzymatic activities, including that of catalase, ascorbate peroxidase, and peroxiredoxine, to mitigate this oxidative stress [38].

The average specific lipid productivities at 0.04%, 6%, and 20% CO₂ was around 31.39 (\pm 14.80), 0.60 (\pm 0.15), and 0.018 (\pm 0.017) g min L⁻¹ d⁻¹, respectively. This suggests that the efficiency of CO₂ conversion to lipids declined with the increase in CO₂ loadings. However, a higher lipid content was observed at 6% and 20% CO₂ than at 0.04%, indicating that increasing the CO₂ input can induce lipid accumulation. Lipids and carbohydrates are both energy and carbon reserves, however, the former has a higher energy density than the latter (38 kJ g⁻¹ for lipids compared to 17 kJ g⁻¹ for carbohydrates) [36]. From this perspective, an increase in CO₂ concentration would increase not only the CO₂ fixation but also the efficiency of the conversion and storage of light energy.

Fig. 1. Effects of different air/CO₂ mixtures (air, 6%, 20% CO₂) at a constant gas flow rate on the growth (a), pH (b), average specific growth rate during active growth (c), maximum CO₂ fixation rate (d) and pigment levels (e-h) in *N.salina* cultivation. Mean of three biological replicates are plotted with error bars representing standard error about the mean. Ca:

Chlorophyll *a*; Ct: total carotenoids; Ca%, Ct% are the corresponding mass content on the basis of DCW.

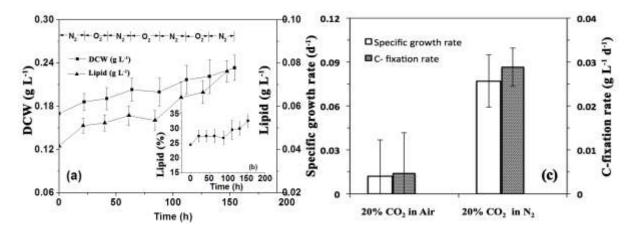


Fig. 2. Effects of different air/CO₂ mixtures (air, 6%, 20% CO₂) at a constant gas flow rate on the medium DIC species and lipids production in *N.salina* cultivations. Mean of three biological replicates are plotted with error bars representing standard error about the mean.

3.2 Influence of photorespiration

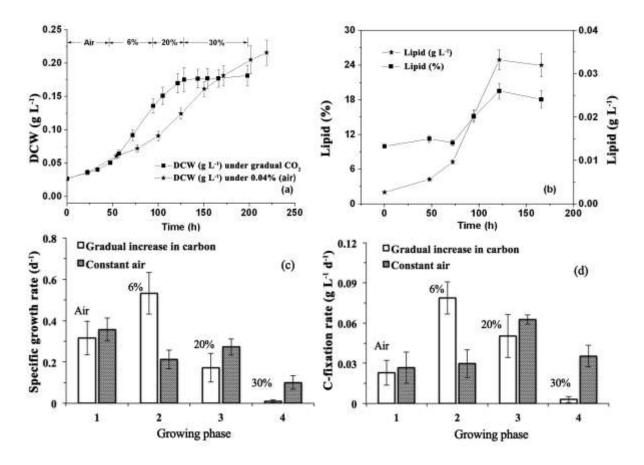
Oxygen present in the inlet gas can be a potential factor limiting cell growth [39]. This is related to the process of photorespiration, which involves the consumption of fixed carbon and has been regarded as a waste route during photosynthesis. To determine the influence of oxygen in the feeding gas at 20% CO₂, the *N. salina* culture was supplied alternately with or without oxygen. For the oxygen free condition, nitrogen was used in place of air in the mixture with 100% CO₂ to obtain a CO₂ concentration of 20%.

The growth curves and lipid production are displayed in Fig. 3. It can be clearly seen that the cells were able to grow at 20% CO₂ devoid of oxygen (Fig. 3a). However, once the feeding gas was switched to 20% CO₂ in air, the growth rate was inhibited immediately, even becoming negative at times. When the gas was turned back to 20% CO₂ in nitrogen, the growth rate was recovered. The average specific growth rates in the presence of O₂ and N₂ were 0.012 (\pm 0.025) and 0.077 (\pm 0.018) d⁻¹, whilst the average CO₂ fixation rates were 0.005 (\pm 0.009) and 0.029 (\pm 0.004) g L⁻¹ d⁻¹, respectively. The two-tail t-test showed significant differences between these two scenarios for both specific growth rates and the CO₂ fixation rate. Therefore, the capacity of CO₂ fixation was enhanced by 4.8-fold after the removal of O₂. The average specific lipid productivities in the presence of O₂ and N₂ was 0.02 (\pm 0.025) and 0.088 (\pm 0.034) g min L⁻¹ d⁻¹, respectively, indicating an increase of 4.4-fold in the CO₂ conversion efficiency to lipids after the removal of O₂. Furthermore, it was observed that the removal of O₂ also improved the lipid percentage by 32.7% (Fig. 3b) compared to 30% (Fig. 2h) of the maximum lipid with 20% CO₂ in air. There appears to be a lag in the response of lipids (% content) in the first few days compared to the biomass.

Fig. 3. Influence of oxygen in 20% CO₂ in the presence of oxygen (mixed with air (O₂)), and the absence of oxygen (mixed with nitrogen (N₂)), on the growth/lipid production (a), lipid content (%) (b), average specific growth rate and CO₂ fixation rate (c) of *N. salina*.

This experiment shows that oxygen is indeed a limiting factor for the growth of algae. As such, the flue gases can be expected to be an ideal CO₂-enriched source since most of the oxygen has been consumed for combustion. Without oxygen (or its presence in only trace amounts), *N. salina* is able to grow at a CO₂ level as high as 20% and can be expected to sequester CO₂ from exhaust gases. The increased ratio of CO₂/O₂ should help promote the carboxylase activity of Rubisco and inhibit its oxygenase activity, leading to suppressed photorespiration and enhanced net photosynthesis [40]. Moreover, the presence of CO₂ in the feed gas seems to be required to suppress photorespiration, since enhanced photorespiration has been observed only when N₂ was supplied. This has been noted with two marine microalgae, *Tetraselmis gracilis* and *Phaeodactylum tricornutum*, which were aerated with only N₂ and without CO₂, showing a higher photorespiratory flux than that in the cultures aerated with atmospheric air [41]. This is due to the fact that, under N₂ supply without CO₂, O₂ derived from photosynthesis can activate Rubisco oxygenase activity for photorespiration [41]. This is a noteworthy point since, in addition to expelling photosynthetically derived O₂ out of the algal culture, sufficient carbon supplementation is essential. The present study

shows that a high CO₂ concentration (20%) with a medium O₂ concentration (16.76%, i.e. 20.95% \times 80%) inhibited the growth of algae. Another scenario is that of a high O₂ concentration with a medium CO₂ concentration. It was found that when the O₂ increased to 84%, an increase of CO₂ from 0.7% to 2% did not exhibit any positive effects on the growth of the algae [42]. The inhibitory effect resulting from an increased O₂ was primarily caused by photorespiration. This is perhaps indicative of the role of pH, when at high CO₂ concentration, such as at 20% CO₂, the pH of the medium drops to 5.5 (Fig. 1). At these pH levels, the absence of dissolved O₂ in the medium (e.g. when 20% CO₂ in nitrogen is supplied) plays a part in facilitating carbon uptake.


3.3 Influence of incremental CO₂ levels

The above experiment shows that the growth of *N. salina* was highly inhibited at 20% CO₂ when oxygen is present, the removal of which could enhance growth as well as lipid accumulation. Another strategy exists that may be able to further improve the growth of *N. salina* under a high CO₂ concentration, i.e. a gradual increase in CO₂ levels. To this end, the cells of *N. salina* were grown initially at 0.04% (air) during lag phase, followed by the supply of 6% CO₂ in nitrogen, 20% CO₂ in nitrogen, and 30% CO₂ in nitrogen, in tandem (Fig. 4). The fastest growth rate was obtained at 6% CO₂. At 20% CO₂, the growth rate remained similar to that at 6%, with only a slight decrease. The growth then plateaued when the CO₂ level was increased to 30%, indicating that growth was limited by the stress induced by a high CO₂ concentration. Equilibrium appeared to have been reached at the level between the oxidative stress and the antioxidant protection. The specific growth rates at 0.04% (air), 6%, and 20% CO₂ were 0.316 (± 0.082), 0.532 (± 0.101), and 0.173 (± 0.070) d⁻¹, respectively. The maximal CO₂ fixation rate was 0.079 (± 0.012) g L⁻¹ d⁻¹ with 6% CO₂. In contrast, the average CO₂ fixation rate with 20% CO₂ in nitrogen was 0.050 (± 0.016) g L⁻¹ d⁻¹, which was

72% higher than that with constant 20% CO₂ in nitrogen (0.029 (\pm 0.005) g L⁻¹ d⁻¹), and was 733% higher than at constant 20% CO₂ in air (0.006 (\pm 0.004) g L⁻¹ d⁻¹). The specific lipid productivity at 20% CO₂ by this incremental method was found to be around 0.11 g min L⁻¹ d⁻¹, ¹, which was 125% higher than that at constant 20% CO₂ in nitrogen (0.088 g min L⁻¹ d⁻¹), resulting in an overall increase of 5.5-fold compared to 20% CO₂ in air (0.02 g min L⁻¹ d⁻¹). Both the amount and content of lipids (%) increased during 6% and 20% CO₂ aeration, but decreased when the gas supply was switched to 30% CO₂ in nitrogen. The extremely high concentration of CO₂ had a negative effect on both lipid production and the biomass.

While the effect of CO₂ concentration on microalgal growth has been widely studied, most of these studies have employed continuous or intermittent sparging at fixed CO₂ levels in the cultivations. For instance, N. oculata NCTU-3 was found to produce the maximal biomass and lipid productivity in a semi-continuous system with 2% CO₂ aeration [43]. The maximum rate of CO₂ fixation by *Chlorella vulgaris* P12 reached up to 2.22 g L⁻¹ d⁻¹ with 6.5% CO₂ at a flow rate of 0.5 vvm (i.e. 0.033 L L⁻¹ min⁻¹ of L_{CO2}) after seven days of cultivation at 30°C [44]. On the basis of the optimum CO₂, an increase in CO₂ levels causes stress to the cells and limits their growth rate. This is due to the fact that the algal cells do not require much CO_2 , especially at the beginning of the cultivation period when the cell numbers are low. Nevertheless, their need for CO₂ increases over time as biomass accumulates. The present study is in agreement with a report [45] that indicated that the tolerance and fixation capacity of CO₂ for *Chlorella vulgaris* UTEX259 was enhanced by a progressive increase in CO₂ concentration. Therefore, in practice, it is recommended that the inlet flow rate of CO₂enriched gas increase incrementally over time to obtain varying levels of CO₂ at different stages. This allows the cells to gradually acclimate to the high levels of CO2 and meet their increasing demand for CO₂ caused by an increased cell density.

In fact, phototrophic microalgae have developed special mechanisms to acclimate and adapt to variations in both O₂ and CO₂. Although many reports have been published on CO₂acclimation/adaptation mechanisms under limited CO₂ conditions, such as CO₂-concentrating mechanisms (CCM), our knowledge of these mechanisms under high CO₂ conditions is limited [26]. Even in reports using high CO₂ conditions, the focus has been mainly on lipid biosynthesis for biofuel production, as well as on how to obtain an optimal productivity [46], rather than on the underlying mechanisms of the algal species' behaviour or on CO₂ uptake. The microalgae that show high-CO₂-acclimation/adaptation, such as Synura petersenii, Synura uvella, and Tessellaria volvocina, are usually also acclimated to low pH environments where they are isolated and where only CO₂ is predominant as a substrate for photosynthesis [47]. These species appear to lack CCM, as no external carbonic anhydrase on the cell surface is detected and no bicarbonate uptake ability is known. However, they have the high CO₂-affinity of Rubisco and are able to maintain pH homeostasis [48]. It is worth pointing out that CO₂ enrichment is not always conducive to increased algal growth, as for those fully low-CO₂-acclimated species, CCM can be induced to enable growth with a near-maximum growth rate under air-CO₂ levels [49]. However, growth can still be considerably enhanced when the cell density is high due to their increased requirements for CO₂ availability [26], indicating that a progressive increase in CO₂ with respect to cultivation time provides a useful strategy for photosynthetic species to avoid carbon deficiency regardless of low- or high-CO₂-acclimated microalgae.

Fig. 4. Effect of gradual increase in CO_2 concentration from air to 30% CO_2 in nitrogen on the growth (a), lipid production/content (%) (b), specific growth rate (c) and CO_2 fixation rate (d) in *N.salina* cultivation. Mean of biological triplicates are plotted with standard error about the mean as error bars.

3.4 Influence of 100% CO₂ feed

The tolerance and fixation capacity of CO_2 can be improved by controlling the gas supply, such as O_2 removal, and appropriate acclimation. However, an extremely high CO_2 concentration can be destructive to the cells. To investigate this, the culture was exposed to 100% CO_2 . The resultant growth and pH curves are shown in Fig. 5. Since the CO_2 concentration was too high, the flow rate of CO_2 was controlled at a low level to reach a low volumetric ratio of gas over liquid. As can be seen from the results, the cells only grew on the first day at 10 mL min⁻¹ of gas flow rate (i.e. $0.04 \text{ L L}^{-1} \text{ min}^{-1}$ of L_{CO2}), perhaps due to the pre-cultivation at 20% CO₂ enabling them only a limited acclimatization to the high CO₂ levels. On the second day, the harmful effects of extreme CO₂ levels started to be show as the specific growth rate became negative ($-0.183 d^{-1}$). A decrease in the flow rate of CO₂ to 6 mL min⁻¹ (i.e. 0.024 L L⁻¹ min⁻¹ of L_{CO2}) slowed the decrease in growth, indicating that the stress was relieved slightly.

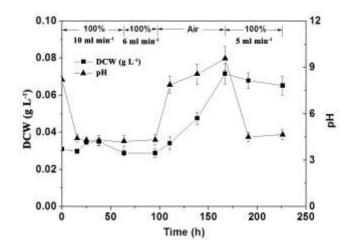


Fig. 5. Effect of 100% CO₂ on the growth and medium pH of *N.salina*.

When the feeding gas was switched to air (0.04% CO₂), a rise in the growth was observed as the stress was removed. This indicates that the inhibitory effect of 100% CO₂ was not fatal to all the cells during the first four days, although a few cells may have died. An aeration period of around three days was followed by a switch to 100% CO₂, which significantly inhibited the growth of the cells again, although the gas flow rate was reduced to 5 mL min⁻¹ (i.e. 0.02 $L L^{-1} min^{-1}$ of L_{CO2}), even lower than the optimal CO₂ concentration of 6%, as shown in section 3.1 (0.03 $L L^{-1} min^{-1}$ of L_{CO2}). This indicates that the inhibition of growth is caused not only by the high CO₂ loading, but also by the high percentage of CO₂ (and the resultant change in pH). Significant variations in pH were observed during the alternation of CO₂ and air. When using air (0.04% CO₂), the pH increased from 4.5 to over 9, with an increase in biomass. At 100% CO₂, the pH dropped down to as low as 3.5. This low pH was in favour of the dissolved inorganic carbon existing in the primary form of aqueous CO_2 and should have prevented cells from producing pigments for a light harvest.

The extremely high CO₂ concentration of 100% inhibited the growth of cells, resulting in a decreased biomass despite a low volumetric ratio. However, this did not kill all the cells, and the growth of cells was recovered by decreasing the CO₂ concentration to relieve stress. The adverse effect of a high CO₂ content on algal growth has been observed in most of the species studied [50, 51]. However, fewer studies have reported algal growth at 100% CO₂. Very few strains are able to survive at such extreme levels of CO₂. Chlorella sp. T-I [52] and Desmodemus sp. [53] are two strains that have been shown to grow at 100% CO₂. As reported in the present work, although the growth of Scenedesmus was completely inhibited at 100% CO₂, this effect was reversed (i.e. growth resumed) when the concentration of CO₂ was returned to 20% [54]. Apart from a low pH, a low pigment content, and oxidative stress, it was found that intracellular acidification caused by intracellular CA is another major reason for the inhibition of photosynthetic carbon fixation when the algae was exposed to an excess concentration of CO₂ [48]. Experimenting at 100% CO₂ enables us to develop a better understanding of microalgal CO₂ uptake, as well as assess the suitability of using microalgal cultivations for the sequestering of relatively concentrated sources of pure CO₂, such as from ethanol fermentation.

When the cells were transferred from low- to high-CO₂ conditions, the extracellular CA was found to decrease during acclimation to high-CO₂ conditions [55]. The loss of CA and active DIC transport systems are strategies employed by algae to avoid the secondary inhibitory effects caused by excess DIC accumulation. However, extracellular 43 kDa protein/Feassimilation 1 (H43/FEA1) can be induced under high-CO₂ conditions [56]. This protein acts as a substitute of CA for sensing the CO₂ signal and is the most abundant extracellular soluble protein (ESP), taking up around 26% of the total ESPs in cells grown under high CO_2 conditions [57]. Moreover, the protein can also be expressed in response to other stressful conditions, such as iron-deficiency and Cd-stress conditions, caused by fast growth under high CO_2 conditions [26].

This study investigated different gas management strategies aimed at enhancing CO₂ fixation and lipid production by algae. Our findings provide a basis for the usage of flue gases as a rich carbon source for biofuel production with concomitant CO₂ mitigation in future studies. Firstly, the growth of the algae was enhanced by the cheap and abundant CO₂ in the flue gases. Secondly, after combustion, the flue gases only contain residual O₂ (usually between 0.04-6%), which is significantly lower than the O₂ concentration (16.76%) in the gas mixtures that contain 20% CO_2 and 80% air (section 3.1). As such, photorespiration was inhibited to an extent when using flue gases. Thirdly, the biggest problem was the content of other gases in the flue gas, including SOx and NOx, which may be toxic to algae. However, this toxicity was primarily attributed to the change in the pH and was alleviated by moderating the pH without a need to pre-treat the algae for these contaminants [58, 59]. Moreover, the algae can be pre-cultured in the flue gases (for example, by gradually the increasing CO_2 load) in order to acclimatise the algae and absorb the contents of the flue gas, including CO₂. SOx and NOx may in fact act as sources of sulphur (S) and nitrogen (N), the latter being an essential nutrient, whose availability in the flue gases will allow for resource recovery options. Fourthly, a mixture of the flue gas with air or another gas resource can reduce the overall toxicity, however, this should be used with caution in order to limit the intensity of the O_2 input, unless the content of NO is high, which can be oxidised by O_2 to form NO_2^{-} . This is in turn assimilated by the algae, resulting in the detoxification of NO and the promotion of growth [60]. Finally, although the heavy metals may also be present in the flue gas due to the evaporation of the fossil fuels (e.g. coal) after combustion at high

temperatures, the microalgal biomass exhibits high metal-binding capacities for the removal of heavy metals, which would not be a major issue in the biomass if the microalgal biomass is to be used for the generation of biofuels [61].

4. Conclusion

This study offers strategies to cultivate algae for the production of biofuels under high CO₂ regimes, such as flue gases, in order to generate energy concomitantly with a reduction in CO₂ in real life applications. With a constant CO₂ concentration supplied via the inlet gas, the optimal CO₂ concentration for algal growth was generally found to be moderate (6% CO₂ for *N. salina*, i.e. 0.03 L L⁻¹ min⁻¹ of L_{CO2}). However, the growth and production of lipids was found to be enhanced by the removal of oxygen from the inlet gas, limiting photorespiration, which augurs favourably for the use of flue gases from combustion sources with low oxygen levels and a high CO₂/O₂ ratio. With gradual increases in the CO₂ concentration in the supply gas, the tolerance of algae to CO₂ was further elevated (up to 20% CO₂ in this study, i.e. 0.1 L L⁻¹ min⁻¹ of L_{CO2}). The increased CO₂ concentration did not induce pigment production, although it caused lipid accumulation. The present work is the first to identify gas supply strategies for a marine species of algae to facilitate the application of high CO₂ regimes, such as those encountered in flue gases, for the production of biofuels, whilst concomitantly facilitating CO₂ removal. The findings presented here provide a basis for the production of biofuels using other algal species in future studies.

Acknowledgment

We gratefully acknowledge EPSRC (UK) (EP/E036252/1), China APEC Foundation (HV01-190101(1)), General Financial Grant from the China Postdoctoral Science Foundation (2016M602055), and Xiamen Marine and Fishery Development Special Foundation (19CZP011HJ08) for the funding support that made this work possible.

References

[1] Khan MI, Shahrestani M, Hayat T, Shakoor A, Vahdati M. Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan.Applied Energy. 2019;242:1738-52.

[2] Singh HM, Kothari R, Gupta R, Tyagi VV. Bio-fixation of flue gas from thermal power plants with algal biomass: Overview and research perspectives. Journal of Environmental Management. 2019;245:519-39.

[3] Lough JM. Coral reefs: Turning back time. Nature. 2016;531:314-5.

[4] Griffin PW, Hammond GP. Industrial energy use and carbon emissions reduction in the iron and steel sector: A UK perspective. Applied Energy. 2019;249:109-25.

[5] Johnsson F, Kjärstad J, Rootzén J. The threat to climate change mitigation posed by the abundance of fossil fuels. Climate Policy. 2019;19:258-74.

[6] Chisti Y. Biodiesel from microalgae beats bioethanol. Trends in biotechnology.2008;26:126-31.

[7] Shuba Eyasu S, Kifle D. Microalgae to biofuels: 'Promising' alternative and renewable energy, review. Renewable and Sustainable Energy Reviews. 2018;81:743-55.

[8] Bilanovic D, Andargatchew A, Kroeger T, Shelef G. Freshwater and marine microalgae sequestering of CO₂ at different C and N concentrations – Response surface methodology analysis. Energy Conversion and Management. 2009;50:262-7.

[9] Fan J, Xu H, Li Y. Transcriptome-based global analysis of gene expression in response to carbon dioxide deprivation in the green algae *Chlorella pyrenoidosa*. Algal Research. 2016;16:12-9.

[10] Reinfelder JR, Milligan AJ, Morel FMM. The role of the C₄ pathway in carbon accumulation and fixation in a marine diatom. Plant Physiology. 2004;135:2106-11.
[11] Raven JA, Beardall J. Carbon Acquisition Mechanisms of Algae: Carbon Dioxide Diffusion and Carbon Dioxide Concentrating Mechanisms. In: Larkum AWD, Douglas SE, Raven JA, editors. Photosynthesis in Algae. Dordrecht: Springer Netherlands; 2003. p. 225-44.

[12] Hopkinson BM, Dupont CL, Matsuda Y. The physiology and genetics of CO₂
concentrating mechanisms in model diatoms. Current Opinion in Plant Biology. 2016;31:517.

[13] Chen X, Qiu CE, Shao JZ. Evidence for K⁺-Dependent HCO₃⁻ Utilization in the Marine
 Diatom *Phaeodactylum tricornutum*. Plant Physiology. 2006;141:731-6.

[14] Mackinder LCM, Chen C, Leib RD, Patena W, Blum SR, Rodman M, Ramundo S, Adams CM, Jonikas MC. A Spatial Interactome Reveals the Protein Organization of the Algal CO₂-Concentrating Mechanism. Cell. 2017;171:133-47.e14.

[15] Cheng J, Zhu Y, Zhang Z, Yang W. Modification and improvement of microalgae strains for strengthening CO₂ fixation from coal-fired flue gas in power plants. Bioresource Technology. 2019;291:121850. [16] Yang L, Chen J, Qin S, Zeng M, Jiang Y, Hu L, Xiao P, Hao W, Hu Z, Lei A, Wang J.Growth and lipid accumulation by different nutrients in the microalga *Chlamydomonas reinhardtii*. Biotechnology for Biofuels. 2018;11:40.

[17] Iasimone F, Panico A, De Felice V, Fantasma F, Iorizzi M, Pirozzi F. Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management. 2018;223:1078-85.

[18] Grobbelaar JU. Physiological and technological considerations for optimising mass algal cultures. Journal of Applied Phycology. 2000;12:201-6.

[19] Anandarajah K, Mahendraperumal G, Sommerfeld M, Hu Q. Characterization of microalga *Nannochloropsis* sp. mutants for improved production of biofuels. Applied Energy. 2012;96:371-7.

[20] Wu LF, Chen PC, Huang AP, Lee CM. The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresource Technology. 2012;113:14-8.

[21] Jiang L, Luo S, Fan X, Yang Z, Guo R. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO₂. Applied Energy. 2011;88:3336-41.

[22] Nascimento IA, Cabanelas ITD, Santos JNd, Nascimento MA, Sousa L, Sansone G.
 Biodiesel yields and fuel quality as criteria for algal-feedstock selection: Effects of CO₂ supplementation and nutrient levels in cultures. Algal Research. 2015;8:53-60.

[23] Bohutskyi P, Chow S, Ketter B, Betenbaugh MJ, Bouwer EJ. Prospects for methane production and nutrient recycling from lipid extracted residues and whole *Nannochloropsis salina* using anaerobic digestion. Applied Energy. 2015;154:718-31.

[24] Gao G, Xu Z, Shi Q, Wu H. Increased CO₂ exacerbates the stress of ultraviolet radiation on photosystem II function in the diatom *Thalassiosira weissflogii*. Environmental and Experimental Botany. 2018;156:96-105.

[25] Chen Y, Zhang L, Xu C, Vaidyanathan S. Dissolved inorganic carbon speciation in aquatic environments and its application to monitor algal carbon uptake. Science of The Total Environment. 2016;541:1282-95.

[26] Shiraiwa MBaY. High-CO₂ Response Mechanisms in Microalgae. In: Najafpour DM, editor. Advances in Photosynthesis - Fundamental Aspects: InTech; 2012. p. Available from: <u>http://www.intechopen.com/books/advances-in-photosynthesis-fundamental-aspects/high-</u> co2-response-mechanism-in-microalgae.

[27] Cai T, Park SY, Racharaks R, Li Y. Cultivation of *Nannochloropsis salina* using anaerobic digestion effluent as a nutrient source for biofuel production. Applied Energy. 2013;108:486-92.

[28] Chen Y, Tang X, Kapoore RV, Xu C, Vaidyanathan S. Influence of nutrient status on the accumulation of biomass and lipid in *Nannochloropsis salina* and *Dunaliella salina*. Energy Conversion and Management. 2015;106:61-72.

[29] Chisti Y. Biodiesel from microalgae. Biotechnology Advances. 2007;25:294-306.

[30] Xu Y-Y, Pierrot D, Cai W-J. Ocean carbonate system computation for anoxic waters using an updated CO2SYS program. Marine Chemistry. 2017;195:90-3.

[31] Chen Y, Vaidyanathan S. Simultaneous assay of pigments, carbohydrates, proteins and lipids in microalgae. Analytica Chimica Acta. 2013;776:31-40.

[32] Chen Y, Vaidyanathan S. A simple, reproducible and sensitive spectrophotometric method to estimate microalgal lipids. Analytica Chimica Acta. 2012;724:67-72.

[33] Tang D, Han W, Li P, Miao X, Zhong J. CO₂ biofixation and fatty acid composition of *Scenedesmus obliquus* and *Chlorella pyrenoidosa* in response to different CO₂ levels.
Bioresource Technology. 2011;102:3071-6.

[34] Merrett M, Nimer N, Dong L. The utilization of bicarbonate ions by the marine microalga *Nannochloropsis oculata* (Droop) Hibberd. Plant, Cell & Environment.2006;19:478-84.

[35] Khalil ZI, Asker MMS, El-Sayed S, Kobbia IA. Effect of pH on growth and biochemical responses of *Dunaliella bardawil* and *Chlorella ellipsoidea*. World Journal of Microbiology and Biotechnology. 2010;26:1225-31.

[36] Vitova M, Bisova K, Kawano S, Zachleder V. Accumulation of energy reserves in algae:From cell cycles to biotechnological applications. Biotechnology Advances. 2015;33:1204-18.

[37] Yu Z, Pei H, Hou Q, Nie C, Zhang L, Yang Z, Wang X. The effects of algal extracellular substances on algal growth, metabolism and long-term medium recycle, and inhibition alleviation through ultrasonication. Bioresource Technology. 2018;267:192-200.

[38] Yangüez KL, Carlos; Contreras-Porcia, Loretto; Ehrenfeld, Nicole. Response to oxidative stress induced by high light and carbon dioxide (CO₂) in the biodiesel producer model *Nannochloropsis salina* (Ochrophyta, Eustigmatales). Revista de Biología Marina y Oceanografía. 2015;50:163-75.

[39] Raso S, van Genugten B, Vermuë M, Wijffels RH. Effect of oxygen concentration on the growth of *Nannochloropsis* sp. at low light intensity. Journal of Applied Phycology. 2012;24:863-71.

[40] Kliphuis AM, Martens DE, Janssen M, Wijffels RH. Effect of O₂: CO₂ ratio on the primary metabolism of *Chlamydomonas reinhardtii*. Biotechnology and Bioengineering. 2011;108:2390-402.

[41] Rigobello - Masini M, Penteado JC, Tiba M, Masini JC. Study of photorespiration in marine microalgae through the determination of glycolic acid using hydrophilic interaction liquid chromatography. Journal of separation science. 2012;35:20-8.

[42] Sousa C, Compadre A, Vermuë MH, Wijffels RH. Effect of oxygen at low and high light intensities on the growth of *Neochloris oleoabundans*. Algal Research. 2013;2:122-6.

[43] Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S. Lipid accumulation and CO₂ utilization of *Nannochloropsis oculata* in response to CO₂ aeration. Bioresource technology. 2009;100:833-8.

[44] Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G. Optimization of CO₂ bio-mitigation by *Chlorella vulgaris*. Bioresource technology. 2013;139:149-54.

[45] Yun Y-S, Park JM, Yang J-W. Enhancement of CO₂ tolerance of *Chlorella vulgaris* by gradual increase of CO₂ concentration. Biotechnology techniques. 1996;10:713-6.

[46] Ho S-H, Chen C-Y, Lee D-J, Chang J-S. Perspectives on microalgal CO₂-emission mitigation systems — A review. Biotechnology Advances. 2011;29:189-98.

[47] Raven JA. Inorganic carbon acquisition by eukaryotic algae: four current questions.Photosynthesis Research. 2010;106:123-34.

[48] Ptushenko VV, Solovchenko AE. Tolerance of the photosynthetic apparatus to acidification of the growth medium as a possible determinant of CO₂-tolerance of the symbiotic microalga *Desmodesmus* sp. IPPAS-2014. Biochemistry (Moscow). 2016;81:1531-7.

[49] Watanabe M, Karatsu Y, Hanawa Y, Shiraiwa Y, Fukuzawa H. Induction of a High-CO₂ -Inducible, Periplasmic Protein, H43, and its Application as a High-CO₂ -Responsive Marker for Study of the High-CO₂ -Sensing Mechanism in *Chlamydomonas reinhardtii*. Plant and Cell Physiology. 2007;48:299-309. [50] Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A,Soccol CR. Potential carbon dioxide fixation by industrially important microalgae.Bioresource Technology. 2010;101:5892-6.

[51] Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology. 2010;101:S71-S4.
[52] Maeda K, Owada M, Kimura N, Omata K, Karube I. CO₂ fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Conversion and Management. 1995;36:717-20.

[53] Kativu E, Hildebrandt D, Matambo T, Glasser D. Effects of CO₂ on South African fresh water microalgae growth. Environmental Progress & Sustainable Energy. 2012;31:24-8.

[54] Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I. Tolerance of microalgae to high CO₂ and high temperature. Phytochemistry. 1992;31:3345-8.

[55] Baba M, Suzuki I, Shiraiwa Y. Proteomic Analysis of High-CO₂-Inducible Extracellular Proteins in the Unicellular Green Alga, *Chlamydomonas reinhardtii*. Plant and Cell Physiology. 2011;52:1302-14.

[56] Baba M, Hanawa Y, Suzuki I, Shiraiwa Y. Regulation of the expression of *H43/Fea1* by multi-signals. Photosynthesis Research. 2011;109:169-77.

[57] Suzuki I, Baba M, Shiraiwa Y. Proteomic Analysis of High-CO₂-Inducible Extracellular Proteins in the Unicellular Green Alga, *Chlamydomonas reinhardtii*. Plant and Cell Physiology. 2011;52:1302-14.

[58] Nagappan S, Tsai P-C, Devendran S, Alagarsamy V, Ponnusamy VK. Enhancement of biofuel production by microalgae using cement flue gas as substrate. Environmental Science and Pollution Research. 2019:doi: 10.1007/s11356-019-06425-y.

[59] Du K, Wen X, Wang Z, Liang F, Luo L, Peng X, Xu Y, Geng Y, Li Y. Integrated lipid production, CO₂ fixation, and removal of SO₂ and NO from simulated flue gas by oleaginous *Chlorella pyrenoidosa*. Environmental Science and Pollution Research. 2019;26:16195-209.
[60] Huang G, Chen F, Kuang Y, He H, Qin A. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review. Applied Biochemistry and Biotechnology. 2016;178:1220-38.

[61] Yen HW, Ho SH, Chen CY, Chang JS. CO_2 , NO_x and SO_x removal from flue gas *via* microalgae cultivation: a critical review. Biotechnology Journal. 2015;10:829-39.