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ABSTRACT With the fuzzy set theory, the uncertainty of nonlinear systems can be modeled using fuzzy
differential equations. The solutions of these equations are the model output, but they are very difficult to
obtain. In this paper, we first transform fuzzy differential equations into four ordinary differential equations.
Then, we construct neural models with the structure of these ordinary differential equations. Theory analysis
and simulation results show that these new models are effective for modeling uncertain nonlinear systems.

INDEX TERMS Fuzzy equation, nonlinear system modeling, neural networks.

I. INTRODUCTION
Since the uncertainty in parameters can be transformed into
fuzzy set theory [56], fuzzy set and fuzzy system theory
are good tools to address uncertainty systems. Fuzzy models
are applied to a large class of uncertain nonlinear systems,
for example Takagi-Sugeno fuzzy model [52]. When the
parameters of an equation are changeable in the manner of
a fuzzy set, this equation becomes a fuzzy equation [13].
When the parameters or the states of the differential equations
are uncertain, they can be modeled with fuzzy differential
equations (FDEs).

Many FDEs use fuzzy numbers as the coefficients of the
differential equations to describe the uncertainties [21]. The
applications of these FDEs are connected with nonlinear
modeling and control [29]–[32]. Another type of FDE uses
fuzzy variables to express the uncertainties. Studies on the
solutions of FDEs are applied to chaotic analysis, quantum
systems, and engineering problems, such as those in civil
engineering. The basic idea of the fuzzy derivative was first
introduced in [16] and was extended in [19]. The linear
first-order equation is the simplest FDE. By generalizing the
differentiability, [8] gave an analytical solution. In [35], the
first-order FDE with periodic boundary conditions was ana-
lyzed. Then, higher order linear FDEswere studied. In [6], the
analytical solutions of the second-order FDE were obtained.
The analytical solutions of third-order linear FDEs are found
in [26], while [12] and [5] proposed analytical approaches to
resolve nth-order linear FDEs.

It is more difficult to solve nonlinear FDEs. Using
the interval-valued method, [50] examined the basis of

solutions for nonlinear FDEs with generalized differentia-
bility. [44] used periodic boundary and Hukuhara differen-
tiability for impulsive FDEs. [22] suggested some suitable
criteria to fuzzify the crisp solutions. [38] used two-point
fuzzy boundary values for FDEs. [25] used homeotypic anal-
ysis technique for FDEs. However, all of above analytical
methods for the solutions of FDEs are very difficult, espe-
cially for nonlinear FDEs.

Numerical solutions of FDEs have been discussed recently
by many scientists. The numerical solutions of first-order
FDEs were proposed in [49] with an iterative technique.
[3] used Laplace transformation for second-order FDEs. By
extending classical fuzzy set theory, [28] obtained a numer-
ical solution for an FDE. The predictor-corrector approach
was applied in [4]. The Euler numerical technique was used
in [42], [53], and [43] to solve FDEs. Other numerical tech-
niques, such as the Nystrom approach [34], Taylor method [1]
and Runge-Kutta approach [45], can also be applied to solve
FDEs. However, the approximation accuracy of these numer-
ical calculations are normally lower [39].

The solutions of FDEs are uniformly continuous and inside
compact sets [11]. Neural networks can provide good estima-
tions for the solutions of FDEs. [2] showed that the solution
of an ordinary differential equation (ODE) can be approx-
imated by a neural network. [24] discussed the differences
between the exact solution and approximation solutions of
ODEs. [40] and [55] applied neural approximations of ODEs
to dynamic systems. [41] used the B-splines neural network
to estimate the solutions of nonlinear ODEs. [37] applied
dynamic neural networks to approximate first-order ODEs.
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However, there are few studies that use neural networks to
solve FDEs. [20] suggested a static neural network to solve
FDEs. Since the structure of these neural networks in the
abovementionedworks are not suitable for FDEs, the approx-
imation accuracy is poor.

In this paper, we apply a new model, the Bernstein neural
network, which uses the properties of the Bernstein poly-
nomial, to FDEs. The Bernstein polynomial has good uni-
form approximation abilities for continuous functions [18].
It also has innumerable drawing properties, homogeneous
shape-sustaining approximation, bona fide estimation, and
low boundary bias. A very important property of the Bern-
stein polynomial is that it generates a smooth estimation for
equal distance knots [17]. This property is suitable for FDE
approximation.

We use two types of neural networks, static and dynamic
models, to approximate the solutions of the FDEs. These
numerical methods use the generalized differentiability of
FDEs. The solutions of the FDEs are then substituted into
four ODEs, and the corresponding Bernstein neural networks
are applied. Finally, we use some real examples to show the
effectiveness of our approximation methods with the Bern-
stein neural networks.

II. FUZZY DIFFERENTIAL EQUATION FOR UNCERTAIN
NONLINEAR SYSTEM MODELING
Consider the following controlled unknown nonlinear system

ẋ = f1(x1, u, t) (1)

where f1(x1, u) is the unknown vector function, x1 ∈ <n is an
internal state vector, and u ∈ <m is the input vector.
In this paper, we use the following FDE to model the

uncertain nonlinear system (1),

d
dt
x = f (x, u) (2)

where x ∈ <n is the fuzzy variable that corresponds to
the state x1 in (1), f (t, x) is a fuzzy vector function that
relates to f1(x1, u), and d

dt x is the fuzzy derivative. Here, the
uncertainties of the nonlinear system (1) are in the sense of
fuzzy logic. They are defined as follows.
Definition 1: If x is: 1) normal, there exists ζ 0 ∈ R in

such a manner that x(ζ0) = 1; 2) convex, x(λζ + (1 −
λ)ζ ) ≥min{x(ζ ), x(ξ )}, ∀ζ, ξ ∈ R,∀λ ∈ [0, 1]; 3) upper
semi-continuous on R, x(ζ ) ≤ x(ζ0) + ε, ∀ζ ∈ N (ζ0),
∀ζ0 ∈ R, ∀ε > 0, N (ζ0) is a neighborhood; or 4) x+ =
{ζ ∈ R, x(ζ ) > 0} is compact, then x is a fuzzy variable, and
the fuzzy set is defined as E, x ∈ E : R→ [0, 1].
The fuzzy variable x can also be represented as

x = A
(
x, x̄

)
(3)

where x is the lower-bound variable, x̄ is the upper-bound
variable, and A is a continuous function. The membership
functions are utilized to implicate the fuzzy variable x. The

best known membership functions are the triangular function

x (ζ ) = F (a, b, c) =


ζ − a
b− a

a ≤ ζ ≤ b

c− ζ
c− b

b ≤ ζ ≤ c

0 otherwise

(4)

and trapezoidal function

x (ζ ) = F (a, b, c, d) =



ζ − a
b− a

a ≤ ζ ≤ b

d − ζ
d − c

c ≤ ζ ≤ d

1 b ≤ ζ ≤ c
0 otherwise

(5)

For the crisp variable, the fuzzy variable x possess three
essential operations: ⊕, 	 and �, which signify sum, sub-
tract, and multiply, respectively.

The fuzzy variable x that contains the dimension of ζ is
dependent on the membership functions, where (4) includes
three variables and (5) includes four variables. To demon-
strate the consistency of operations, the application initially
lies within the α−level operation of the fuzzy number.

A fuzzy number x associates with a real value with
α-level as

[x]α = {a ∈ R : x(a) ≥ α} (6)

where 0 < α ≤ 1, x ∈ E .
If x, y ∈ E, λ ∈ R, the fuzzy operations are as follows:
Sum,

[x ⊕ y]α = [x]α + [y]α = [xα + yα, x̄α + ȳα] (7)

subtract,

[x 	 y]α = [x]α − [y]α = [xα − yα, x̄α − ȳα] (8)

or multiply,

zα ≤ [x � y]α ≤ zα or [x � y]α = A
(
zα, zα

)
(9)

where zα = xαv1 + x1yα − x1y1, zα = x̄α ȳ1 + x̄1ȳα − x̄1ȳ1,
and α ∈ [0, 1].

Therefore, [x]0 = x+ ={ζ ∈ R, x(ζ ) > 0}. Since α ∈
[0, 1], [x]α is a bounded interval such that xα ≤ [x]α ≤ x̄α.
The α-level of x in the midst of xα and x̄α is given as

[x]α = A
(
xα, x̄α

)
(10)

Definition 2: The fuzzy derivative of f at x0 is expressed as

d
dt
f (x0) = lim

h→0

1
h
[f (x0 + h)	gH f (x0)] (11)

where 	gH is the Hukuhara difference [9], defined by

x 	gH y = z⇐⇒

{
1) x = y⊕ z
2) y = x ⊕ (−1)z

(12)

The α−level of the fuzzy derivative is

f (x, α) = [f (x, α), f (x, α)]

where x ∈ E for each α ∈ [0, 1].
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If we apply the α−level (10) to f (x, u) in (2)

[x 	gH y]α = [min{xα − yα, x̄α − ȳα},

max{xα − yα, x̄α − ȳα}]

Then, we obtain two functions: f
[
u, x(ζ, α), x̄(ζ, α)

]
and

f
[
u, x(ζ, α), x̄(ζ, α)

]
. Thus, the fuzzy differential equa-

tion (2) can be equivalent to the following four ordinary
differential equations (ODE)

1)


d
dt
x = f

[
u, x(ζ, α), x̄(ζ, α)

]
d
dt
x̄ = f

[
u, x(ζ, α), x̄(ζ, α)

]
2)


d
dt
x = f

[
u, x(ζ, α), x̄(ζ, α)

]
d
dt
x̄ = f

[
u, x(ζ, α), x̄(ζ, α)

] (13)

The fuzzy model of (1) can be regarded as four ordinary
differential equations (13).

In this paper, we use the fuzzy differential equation (2) to
model the uncertain nonlinear system (1), such that the output
of the plant x can follow the plant output x1,

min
f
‖x − x1‖ (14)

This modeling object can be considered as finding f and
f in the fuzzy equations of (13), or as fining the solutions of
these models. It is impossible to obtain analytical solutions,
but in this paper, we use neural networks to approximate
them, as shown in Figure 1.

FIGURE 1. Nonlinear system modeling with fuzzy differential equations.

The following theorems give theoretical support to nonlin-
ear system modeling via fuzzy differential equations.
Theorem 1: If the fuzzy function f and its derivative ∂f

∂x
are on the rectangle [−p, p] × [−q, q], where p, q ∈ E , E is
a fuzzy set and there exists an unique fuzzy solution for the
following fuzzy differential equation

d
dt
x = f (t, x), x(t0) = x0 (15)

for all t ∈ (−b, b), b ≤ p

Proof: We utilize Picard’s iteration technique [10] to
develop a sequence of fuzzy functions ϕn(t) as

ϕn+1(t) = ϕ0 ⊕
∫ t

0
f (s, ϕn(s))ds

= ϕ0 	H (−1)
∫ t

0
f (s, ϕn(s))ds

We first validate that ϕn(t) is continuous and prevails for
all n. Obviously, if ϕn(t) prevails, then ϕn+1(t) also prevails
as

ϕn+1(t) = ϕ0 ⊕
∫ t

0
f (s, ϕn(s))ds

= ϕ0 	H (−1)
∫ t

0
f (s, ϕn(s))ds

Since f is continuous, there exists N ∈ E such that |f (t, x)| ≤
N for all t ∈ [−p, p], as well as all x ∈ [−q, q]. If
we set t ∈ [−b, b] for b ≤ min(q/N , p), then it is
possible

‖ϕn+1 	 ϕ0‖ = ‖

∫ t

0
f (s, ϕn(s))ds‖ ≤ N |t| ≤ Nb ≤ q

This validates that ϕn+1(t) acquires values in [−q, q].
Because

ϕn(t) =
n∑

k=1

(ϕn(t)	 ϕn−1(t))

for any γ < 1, we select t ∈ (−b, b) such that | ϕk (t) 	
ϕk−1(t) |≤ γ k for all k . This signifies that there exists
γ < 1 [33]

| ϕk (t)	 ϕk−1(t) |≤ γ k

From the mean value theorem [48],

ϕk (t)	 ϕk−1(t) =
∫ t

0
[f (s, ϕk−1(s))	 f (s, ϕk−2(s))]ds

Applying the mean value theorem to the fuzzy function
h(x) = f (s, x) at the two points ϕk−1(s) and ϕk−2(s),

h(ϕk−1(s))	 h(ϕk−2(s)) = h′(ψk (s))(ϕk−1(s))	 ϕk−2(s))

Taking into consideration h′(x) = ∂f
∂x , we obtain

ϕk (t)	 ϕk−1(t) =
∫ t

0

∂f
∂x

(s, ψk (s))(ϕk−1(s)	 ϕk−2(s))ds

(16)

Because | ϕk−1(s) 	 ϕk−2(s) |≤ γ k−1 for s ≤ t , and b <
γ/N , by substituting the above relation in (16) and bounding
∂f
∂x by N we have ,

| ϕk (t))	 ϕk−1(t) |≤
∫ t

0
Nγ k−1ds = Ntγ k−1 ≤ Nbγ k−1

To validate that x is continuous, it is necessary to show that for
any given ε > 0 there exists a δ > 0 such that | t2 − t1 |< δ
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implies | ϕ(t2) 	 ϕ(t1) |< ε. For notation convenience, we
suppose that t1 < t2. It follows that

ϕ(t2)	 ϕ(t1) = limn→∞ ϕn(t2)	 limn→∞ ϕn(t1)

= limn→∞(ϕn(t2)	 ϕn(t1))

= limn→∞

∫ t2

t1
f (s, ϕn(s))ds

There exists N such that | f (s, x) |≤ N . Hence

| ϕ(t2)	 ϕ(t1) |≤
∫ t2

t1
Nds = N | t2 − t1 |≤ Nδ

Thus, by selecting δ < ε/N it is observed that | ϕ(t2) 	
ϕ(t1) |< ε. So limn→∞ ϕn(t) prevails for all t .
Now we demonstrate that limn→∞ ϕn(t) is continuous.

Since

ϕ(t) = limn→∞ ϕn(t) = limn→∞

∫ t

0
f (s, ϕn−1(s))ds

=

∫ t

0
limn→∞ f (s, ϕn−1(s))ds

=

∫ t

0
f (s, limn→∞ ϕn−1(s))ds

where the last step (moving the limit inside the function)
follows from the fact that f is continuous in each variable.
Hence it is clear that

ϕ(t) =
∫ t

0
f (s, ϕ(s))ds

because all functions are continuous,

d
dt
ϕ = f (s, ϕ(t))

If there exists another solution φ(t),

ϕ(t)	 φ(t) =
∫ t

0
(f (s, ϕ(t))	 f (s, φ(t)))ds

Since the two functions are different, there exists ε > 0 and
| ϕ(t)	 φ(t) |> ε. We define

m = max
0≤t≤b

| ϕ(t)	 φ(t) |

N is the bound for ∂f
∂x . Utilizing the mean value theorem,

| ϕ(t)	 φ(t) |≤
∫ t

0
N | ϕ(t)− φ(t) | ds ≤ N | t | m ≤ Nbm

If we select b < ε/2mN , it signifies that for all t < b, |
ϕ(t) − φ(t) |< ε/2, indicating that the least difference is ε.
Therefore, there exists a unique fuzzy solution.
Theorem 2: If the following fuzzy differential equation

d
dt
x = f (t, x) (17)

where f ∈ J̄ab and J̄ab is the set of linear strongly bounded
operators, for every operators f there exists a function τ ∈
L([a, b];E+) such that |f (ν)(t)| ≤ τ (t)‖ν‖G, t ∈ [a, b] and
ν ∈ G([a, b];E), and there prevail f0, f1 ∈ ϕab, where ϕab is

a set of linear operators f ∈ J̄ab from the set G([a, b];E+) to
the set L([a, b];E+), such that

|f (t, ν, ν)+ f
1
(t, ν, ν)| ≤ f

0
(t, |ν|, |ν|), t ∈ [a, b]

|f (t, ν, ν)+ f 1(t, ν, ν)| ≤ f 0(t, |ν|, |ν|), t ∈ [a, b]

(18)

then (15) has an unique solution.
Proof: If x is a solution of (17) and − 1

2 f1 ∈ Jab(a),

d
dt
β = −

1
2
f1(t, β)⊕ f0(t, |x|)⊕

1
2
f1(t, |x|) (19)

contains a unique solution β. Moreover, as f0, f1 ∈ ϕab

β(t) ≥ 0, t ∈ [a, b]

β(t) ≥ 0, t ∈ [a, b] (20)

According to (18) and the condition f1 ∈ ϕab, from (19) we
have

d
dt
β ≥ −

1
2
f
1
(t, β, β)+ f (t, x, x)+

1
2
f
1
(t, x, x)

d
dt
β ≥ −

1
2
f1(t, β, β)+ f (t, x, x)+

1
2
f 1(t, x, x)

thus t ∈ [a, b]

d
dt
(−β) ≤ −

1
2
f
1
(t,−β,−β)+ k(t, x, x)+

1
2
k1(t, x, x)

d
dt
(−β) ≤ −

1
2
f 1(t,−β,−β)+ f (t, x, x)+

1
2
f 1(t, x, x)

The last two inequalities are due to the presumption − 1
2 f1 ∈

Jab(a)

|x(t)| ≤ β(t) t ∈ [a, b]

|x(t)| ≤ β(t) t ∈ [a, b] (21)

According to (21) and the conditions f0, f1 ∈ ϕab, (19) results
in

d
dt
β ≤ f

0
(t, β, β), t ∈ [a, b]

d
dt
β ≤ f0(t, β, β), t ∈ [a, b]

As f0 ∈ Jab(a), the last inequality with β(a) = 0 yields β(t) ≤
0 and β(t) ≤ 0 for t ∈ [a, b]. (20) implies β ≡ 0. Thus, based
on (21) we have x ≡ 0.

In fact, the nonlinear system can be modeled by the neu-
ral network directly. However, this data-driven black box
identification method does not use the model information.
Conversely, the fuzzy differential equation uses the model
information of the nonlinear system, such as the brief form
of the differential equation.

III. SOLVING FUZZY DIFFERENTIAL EQUATION
WITH NEURAL NETWORKS
In general, it is difficult to solve the four equations (13) or (2).
In this paper, we use a special neural network, the Bernstein
neural network, to approximate the solutions of the fuzzy
differential equation (2).
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The Bernstein neural network use the following Bernstein
polynomial,

B(x1, x2) =
∑N

i=0

∑M

j=0

(
Ni
) (M

j

)
Wi,jx1i(T − x1i)N−ix2j(1− x2j)M−j (22)

where
(N
i

)
=

N !
i!(N−i)! ,

(
M
j

)
=

M !
j!(M−j)! , Wi,j is the coefficient.

This two-variables polynomial can be regarded as a neural
network, which has two inputs x1i and x2j, and one output y,

y =
N∑
i=0

M∑
j=0

λiγjWi,jx1i(T − x1i)N−ix2j(1− x2j)M−j (23)

where λi =
(N
i

)
, γj =

(
M
j

)
.

Because the Bernstein neural network (23) has similar
forms as (13), we use the Bernstein neural network (23) to
approximate the solutions of four ODEs in (13).

If x1 and x2 in the Bernstein polynomial are defined as the
time interval t and the α-level, respectively, the solution of
(2) in the form of the Bernstein neural network is

xm(t, α) = xm(0, α)⊕ t
∑N

i=0

∑M

j=0
λiγjWi,jti(T − ti)N−i

×αj(1− αj)M−j (24)

where xm(0, α) is the initial condition of the solution.
Thus, the derivative of (23) is

1)


d
dt
xm = C1 + C2

d
dt
x̄m = D1 + D2

2)


d
dt
xm = C1 + C2

d
dt
x̄m = D1 + D2

(25)

where t ∈ [0,T ], α ∈ [0, 1], tk = kh, h = T
k , k = 1, ...,N ,

αj = jh1, h1 = 1
M , j = 1, ...,M ,

C1 =
∑N

i=0

∑M

j=0
λiγjW i,jti(T − ti)

N−iαj(1− αj)M−j

D1 =
∑N

i=0

∑M

j=0
λiγjW i,jti(T − ti)N−iαj(1− αj)M−j

C2 = tk
∑N

i=0

∑M

j=0
λiγjW i,j[iti−1,j(T − ti)

N−i

− (N − i) ti,j(T − ti)N−i−1]αij(1− αj)
M−j

D2 = tk
∑N

i=0

∑M

j=0
λiγjW i,j[iti−1,j(T − ti)N−i

− (N − i) ti,j(T − ti)N−i−1]αij(1− αj)
M−j

The above equations can be regarded as the neural network
form, as shown in Figure 2. The output is

N (t, α) =
N∑
i=0

M∑
j=0

(ai,jλif 1i (t)f
2
i (t)γjg

1
j (α)g

2
j (α)))

FIGURE 2. Bernstein neural network.

where f 1i = t i, f 2i = (T − t)N−i, λi = 1
TN
(N
i

)
, g1j = αj,

g2j = (1− α)M−j, and γj =
(
M
j

)
.

We define the training errors between (25) and (13) as

1)

{
e1 = C1 + C2 − f

ē1 = D1 + D2 − f̄

2)

{
e2 = C1 + C2 − f̄
ē2 = D1 + D2 − f

(26)

The standard back-propagation learning algorithm is utilized
to update the weights with the above training errors

W i,j (k + 1) = W i,j (k)− η1(
∂e21
∂W i,j

+
∂e21
∂W i,j

)

W i,j (k + 1) = W i,j (k)− η2(
∂e22
∂W i,j

+
∂e22
∂W i,j

) (27)

where η1 and η2 are positive learning rates.

FIGURE 3. A dynamic Bernstein neural network.

The momentum terms, γ1W i,j (k−1) and γ1W̄i,j (k−1),
can be added to stabilize the training process. The above
Bernstein neural network can be converted to a recurrent
(dynamic) form, as shown in Figure 3. The dynamic Bernstein
neural network is
d
dt
xm(t, α) = P(t, α)A(xm(t, α), x̄m(t, α))+ Q(t, α)

d
dt
x̄m(t, α) = P(t, α)A(xm(t, α), x̄m(t, α))+ Q(t, α)

(28)
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FIGURE 4. Vibration mass.

Obviously, this dynamic network has the form of

f (t, x) = P(t)x + Q(t)

and it is closed to (2). The training algorithm is similar to (27)
and only the training errors are changed as

1)

{
e1 = C1 + C2 − PA(xm, x̄m)− Q
ē1 = D1 + D2 − PA(xm, x̄m)− Q

2)

{
e2 = C1 + C2 − PA(xm, x̄m)− Q
ē2 = D1 + D2 − PA(xm, x̄m)− Q

(29)

IV. APPLICATIONS
In this section, we use several real applications to show how to
use fuzzy differential equations (FDEs) and Bernstein neural
networks (BNNs) to model the nonlinear systems.
Example 1: The vibration mass system shown in Figure 4

can be modeled by the ordinary differential equation (ODE),

d
dt
v(t) =

k
m
x(t), v(t) =

d
dt
x(t) (30)

where the spring constant k = 1, and the mass m is change-
able in fuzzy number (0.75, 1.125). The ODE (30) becomes
the FDE, and x(t) becomes a fuzzy variable. If the initial
position is x(0) = (0.75+0.25α, 1.125−0.125α), α ∈ [0, 1] ,
then the exact solutions of (30) are [27]

x(t, α) =
[
(0.75+ 0.25α)et , (1.125− 0.125α)et

]
(31)

where t ∈ [0, 1].We use the static Bernstein neural network
(24), SNN, to approximate the solution (31)

xm(t, α) = (0.75+ 0.25α)

+t
∑N

i=0

∑M

j=0
λiγjW i,jti(T − ti)

N−iαj(1− αj)M−j

x̄m(t, α) = (1.125− 0.125α)

+t
∑N

i=0

∑M

j=0
λiγjW̄i,jti(T − ti)N−iαj(1− αj)M−j

We also use the dynamic Bernstein neural network (28),
DNN, to approximate the solutions. The learning rates are
η = 0.01 and γ = 0.01. To compare our results, we use
the other two popular methods: Max-Min Euler method and
Average Eulermethod [53]. The results are compared in Table
1. Corresponding solution plots are shown in Figure 5.

TABLE 1. Approximation errors.

FIGURE 5. Comparison plot of SNN, DNN, Max-Min Euler, Average Euler
and the exact solution.

Example 2: The heat treatment system in welding can be
modeled as [14]:

d
dt
x(t) = 3Ax2(t) (32)

where the transfer area A is uncertain as A = (1+ α, 3− α),
α ∈ [0, 1]. Therefore, (32) is a fuzzy differential equation.
The initial condition is x(0) = (0.5

√
α, 0.2

√
1− α + 0.5).

The static Bernstein neural network (24) has the form of

xm(t, α) = 0.5
√
α

+t
∑N

i=0

∑M

j=0
λiγjW i,jti(T − ti)

N−iαj(1− αj)M−j

x̄m(t, α) = 0.2
√
1− α + 0.5

+t
∑N

i=0

∑M

j=0
λiγjW̄i,jti(T − ti)N−iαj(1− αj)M−j

With the learning rates η = 0.002 and γ = 0.002. The
approximation results are shown in Table 2.

TABLE 2. Approximation errors of BNN.

Example 3: A tank system is shown in Figure 6. Assume
I = t + 1 to be inflow disturbances of the tank, which
generates vibration in liquid level x, where R = 1 is the flow
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TABLE 3. Solutions of different method.

FIGURE 6. Liquid tank system.

obstruction that can be curbed using the valve. A = 1 is the
cross section of the tank. The liquid level can be described
as [51],

d
dt
x(t) = −

1
AR

x(t)+
I
A

(33)

The initial condition is x(0) = (0.96+ 0.04α, 1.01− 0.01α).
The static Bernstein neural network (24) has the form of

xm(t, α) = (0.96+ 0.04α)

+t
∑N

i=0

∑M

j=0
λiγjW i,jti(T − ti)

N−iαj(1− αj)M−j

xm(t, α) = (1.01− 0.01α)

+t
∑N

i=0

∑M

j=0
λiγjW̄i,jti(T − ti)N−iαj(1− αj)M−j

where t ∈ [0, 1]. We also use the dynamic Bernstein neural
network (28) to approximate the solutions. To compare our
results, we use the other generalization of the neural network
method [20]. The comparison results are shown in Table 4.
The specifications quoted here are η = 0.001 and γ = 0.001.
Corresponding errors are shown in Figure 7.

FIGURE 7. Errors between the exact solution and the approximations.

Example 4: A tank with a heating system is shown in
Figure 8, where R = 0.5 and the thermal capacitance is
considered to be C = 2. The temperature is x. The model
is [46],

d
dt
x(t) = −

1
RC

x(t) (34)

FIGURE 8. Thermal system.

where t ∈ [0, 1] and x is the amount of sinking in each
moment. If the initial position is u(0) = (α − 1, 1 − α) and
α ∈ [0, 1], then the exact solutions of the fuzzy differential
equation (34) are

x(t, α) = [(α − 1)et , (1− α)et ] (35)

We use the static Bernstein neural network (24) to approxi-
mate the solution (35)

xm(t, α) = (α − 1)

+t
N∑
i=0

M∑
j=0

λiγjW i,jti(T − ti)
N−iαj(1− αj)M−j

xm(t, α) = (1− α)

+t
N∑
i=0

M∑
j=0

λiγjW̄i,jti(T − ti)N−iαj(1− αj)M−j

where η = 0.001 and γ = 0.001. We also use the dynamic
Bernstein neural network (28) to approximated the solutions.
The errors related to SNN and DNN are illustrated in Table 4.

TABLE 4. NN approximation errors.

TABLE 5. Different NNs.

For different number of learning steps τ = 100, τ = 200,
and τ = 300, and hidden neurons n = 10, n = 15, and
n = 20, the results are shown in Table 5 and Figure 9.
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FIGURE 9. Different neural elements for τ = 300.

Both static neural network and dynamic neural network
are suitable for solving the fuzzy differential equation. The
leaning process of the dynamic Bernstein neural network (28)
is faster than the static Bernstein neural network (24). The
robustness of (24) is better than (28), because the weights
of the dynamic Bernstein neural network are difficult to
converge.

V. CONCLUSIONS
In this paper, we use fuzzy differential equations (FDEs)
to model unknown nonlinear systems. The existence condi-
tions of FDEs are given. Since the solutions of the fuzzy
differential equations are difficult to obtain, we use static
and dynamic Bernstein neural networks to approximate the
solutions. We first transform the FDEs into four ODEs with
Hukuhara differentiability. Then, we construct neural mod-
els with the structure of the ODEs. With a modified back-
propagation method for the fuzzy variables, the neural net-
works are trained. Some real examples are given to show
the effectiveness of our methods. Future works will involve
the application of these methods to fuzzy partial differential
equations.
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