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Recently, there has been a considerable amount of interest and practice in solving many problems of several 
applied fields by fuzzy polynomials. In this paper, we have designed an artificial fuzzified feed-back neural 
network. With this design, we are able to find a solution of fully fuzzy polynomial with degree n. This 
neural network can get a fuzzy vector as an input, and calculates its corresponding fuzzy output. It is clear 
that the input–output relation for each unit of fuzzy neural network is defined by the extension principle 
of Zadeh. In this work, a cost function is also defined for the level sets of fuzzy output and fuzzy target. 
Next a learning algorithm based on the gradient descent method will be defined that can adjust the fuzzy 
connection weights. Finally, our approach is illustrated by computer simulations on numerical examples. It 
is worthwhile to mention that application of this method in fluid mechanics has been shown by an example.

Keywords: fully fuzzy polynomials; fuzzy feed-forward neural networks; fuzzy feed-back neural 
networks; learning algorithm; cost function

1. Introduction

Several problems in various areas such as economics, finance, engineering and physics boil

down to the solution of a fuzzy polynomial. When the estimation of the system coefficients is

imprecise and only some vague knowledge about the actual value of the parameters is available,

it may be convenient to represent some or all of them with interval values. The fuzzy polynomial

A1x + · · · + Anxn = A0, where the elements, Ai intervals, is called an interval fuzzy polynomial.

When using plain intervals, cautiousness leads to a severe overestimation of the interval width.

Therefore, if some expert judgement is available, about the actual value of the parameters, it is

possible to assign a degree of membership greater than a given threshold to some values within

the interval. Moreover, if the knowledge is more precise, by increasing the threshold level, it is

possible to find a nested set of subintervals, within which one or more values have membership

equal to one, i.e. a fuzzy number (for a detailed discussion on the relation between nested intervals

and fuzzy sets see [19]).
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In the last years, various approaches for solving fuzzy polynomials have been reported. Many

researchers have studied on methods for the solution of fuzzy polynomials. Abbasbandy and

Asady [2] have considered Newton’s method for solving fuzzy nonlinear equations. Linear and

nonlinear fuzzy equations are solved by Asady et al. [8]. They have proposed a general model for

solving a system of fuzzy linear equations with m variables and n equations. The original system

is replaced by a crisp linear system which is solved by the least squares method.

Abbasbandy and Ezzati [3] have suggested numerical solving method for fuzzy nonlinear

equations instead of standard analytical techniques which are not suitable everywhere. They

wrote fuzzy nonlinear equation in a parametric form and then solved it by Newton’s method.

They have also proposed an efficient and iterative method for solving a system of fuzzy linear

equations with n variables. They replaced the original n × n system with a 2n × 2n crisp systems

and called it parametric form of fuzzy linear system. The solution vector is symmetric solution if

the right-hand side vector is symmetric.

Rouhparvar [23] has proposed a new method for solving fuzzy polynomial equation based on

the ranking method. The ranking method was first introduced by Delgado et al. [11]. This work

interested the readers in finding real roots of polynomial equation like A1x + · · · + Anxn = A0,

where the elements, Ai, are fuzzy numbers. They introduced three real indices called value,

ambiguity and fuzziness to obtain simple fuzzy numbers that could be used to represent more

arbitrary fuzzy numbers. Therefore these parameters were used for transform fuzzy polynomial

equation to a system of crisp polynomial equations. By solving this system, real roots of fuzzy

polynomial equation can be found. By little change in this method Noorani et al. [20] solved dual

fuzzy polynomials.

Allahviranloo et al. [6] used the Newton–Raphson method for solving fuzzy polynomials

and Otadi and Mosleh [22] investigated the Adomian decomposition method for solving these

polynomials.

One approach to indirect solution is using fuzzy neural networks (FNNs). During the past

few years, neural networks has received much attention [7,10,14,25]. First time, Buckley and

Qu [9] applied a structure of FNNs for solving fuzzy equations. Ishibuchi et al. [16] defined a cost

function for each pair of fuzzy output vector and its corresponding fuzzy target vector, and have

proposed a learning algorithm of FNNs with triangular fuzzy weights. Hayashi et al. [15] used

fuzzy delta learning rule for training FNN with fuzzy signals and weights. Some application of

fuzzy polynomials have been considered by Abbasbandy and Amirfakhrian [1]. Abbasbandy et al.

[4] have also proposed an architecture of feed-forward neural network for finding solution to fuzzy

polynomials, but the neural network that has been presented by Abbasbandy was only able to find

a crisp solution of fuzzy polynomials, and this neural network was not able to find a fuzzy solution.

Jafarian et al. [18] solved fuzzy polynomials by using the neural networks with a new learning

algorithm. It is noted in [18] that the presented neural network in comparison with Abbasbandy’s

was better in the speed of adjusting the weights, which caused the high speed of convergence.

Jafarian and Jafari [17] applied fuzzy feed-back neural network method for approximation of the

crisp solution of dual fuzzy polynomials. We refer the reader to [21,24] for more information on

fuzzy polynomials.

As the suggested neural networks by previous authors were not able to find fuzzy solution of

fuzzy polynomials, we propose a fuzzified feed-back neural network, which is able to solve a

fuzzy polynomial like

A1x + · · · + Anxn = A0, (1)

where A0, A1, . . . , An and x are fuzzy numbers. In this paper, we have proposed a learning algorithm

for training fuzzified feed-back neural network with the identity activation function. In computer

simulations, such a fuzzified neural network is trained so that, the input–output relation of each

unit is defined by the extension principle of Zadeh [26]. By using this neural network, we can



obtain an approximate fuzzy solution of FFP to any degree of accuracy. Furthermore, a feed-

forward neural network is also proposed to solve these polynomials. In this paper, the feed-back

neural network is compared with feed-forward neural network, and we discuss the advantages of

feed-back neural network over feed-forward.

This paper is organized as follows: In Section 2, we present the foundations of our work. In this

section, we propose an architecture of FNN3 (FNN with fuzzy input signals and fuzzy weights

and fuzzy target) to find approximate solution to fully fuzzy polynomial (FFP). Output from the

FNN (with fuzzy input signals and fuzzy weights and real target), is numerically calculated by

interval arithmetic [5] for fuzzy weights and level sets (i.e. α-cuts) of fuzzy inputs. Next, we

define a cost function for the level sets of fuzzy output and fuzzy target. Then, a fuzzy learning

algorithm is derived from the cost function to find the fuzzy solutions of the FFP. In Section 3, we

have collected some examples. It is worthwhile to mention that the examples have been solved

by two methods, one with feed-forward FNN that we called them FFFNN3 and the other by

feed-back FNN (FBFNN3). Our goal is solving the examples by using two methods, and discuss

the advantages of FFFNN3 over FBFNN3. Finally, Section 4 presents concluding remarks.

2. Foundations

In the past years various approaches for solving fuzzy equations have been proposed. Buckley and

Qu [9] in their work by using the classical method, which was based on the extension principle,

of investigating solutions to linear and quadratic equations when the coefficients were real or

complex fuzzy numbers have led to the fact that these equations too often do not have a solution.

As the particular case of fuzzy equation is fuzzy polynomial, we describe about it in the following

sections.

2.1 Fully fuzzy polynomials

In this part, we want to find a fuzzy solution of

A1x + · · · + Anxn = A0, (2)

where Aj, xεE1 (for j = 0, . . . , n). For getting an approximate solution, two architectures of feed-

forward and feed-back neural nets equivalent to Equation (2) have been presented in Figures 1

and 2, respectively.

As the transfer function is identity, the input neurons make no change in their inputs, therefore

the output neuron is Y = A1x + A2x2 + · · · + Anxn. For solving the fuzzy polynomials by using

FFFNN3 and FBFNN3, we propose a learning algorithm from the cost function for adjusting

fuzzy weights.

2.2 Calculation of fuzzy output in feed-forward FNNs

Let us fuzzify a two-layer feed-forward neural network with n inputs and one output unit. Input

vectors, target vector and connection weights are fuzzified (i.e., extended to fuzzy numbers). In

order to derive a learning rule, we restrict fuzzy weights within triangular fuzzy numbers while

we can use any type of fuzzy numbers for fuzzy inputs and fuzzy target. The input–output relation

of each unit can be written as follows:
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1

Figure 1. Feed-forward FNN to solve fuzzy polynomials.

Input unit:

Oj = Aj, j = 1, 2, . . . , n. (3)

Output unit:

Y = f (Net),

Net =

n
∑

j=1

wj.Oj.
(4)

The fuzzy output of neuron in the second layer is numerically calculated for fuzzy weights and

level sets of fuzzy inputs. The input–output relations of the FNN which is shown in Figure 1 can

be written for the α-level sets as follows:

Input unit:

[Oj]α = [Aj]α , j = 1, . . . , n. (5)

Output unit:

[Y ]α = f ([Net]α),

[Net]α =

n
∑

j=1

[wj.Oj]α .
(6)

From Equations (5) and (6), we see that the α-level sets of the fuzzy output Y are calculated from

those of the fuzzy inputs and fuzzy weights. The above relations are written as follows when the

α-level sets of the fuzzy input Aj are nonnegative, i.e., 0 ≤ [Aj]
α
l ≤ [Aj]

α
u for all j:

Input unit:

[Oj]α = [[Oj]
l
α , [Oj]

u
α] = [[Aj]

l
α , [Aj]

u
α], j = 1, . . . , n.

Output unit:

[Y ]α = [[Y ]l
α , [Y ]u

α] = [f ([Net]l
α), f ([Net]u

α)],

[Net]α = [[Net]l
α , [Net]u

α],

[Net]l
α =

∑

jǫM

[wj]
l
α .[Oj]

l
α +

∑

jǫC

[wj]
l
α .[Oj]

u
α ,

[Net]u
α =

∑

jǫM ′

[wj]
u
α .[Oj]

u
α +

∑

jǫC′

[wj]
u
α .[Oj]

l
α ,

(7)

where M = {j| [wj]
l
α ≥ 0}, C = {j| [wj]

l
α < 0}, M ′ = {j| [wj]

u
α ≥ 0}, C′ = {j| [wj]

u
α < 0}, M ∪

C = {1, . . . , n} and M ′ ∪ C′ = {1, . . . , n}.



Figure 2. Feed-back FNN to solve fuzzy polynomials.

2.3 Calculation of fuzzy output in feed-back FNNs

In the previous section the description about the calculation of fuzzy output in feed-forward FNNs

is given, now in this part, we have given a short review on learning of fuzzified feed-back neural

networks. First consider a three-layer FBFNN3 with one input unit, n neuron in hidden layer and

one output unit. In a given structure, we assume that the corresponding connection weights to

output layer and target output are triangular fuzzy numbers. Figure 2 shows the input signal x0, the

input–output relation of each unit and the fuzzy output Y . These relations are written as follows:

Input unit:

o = x0. (8)

Hidden unit:

Oj∗ = f (netj),

netj = o.wj, j = 1, . . . , n.

Output unit:

Y = f (Net),

Net =

n
∑

j=1

(Oj.Aj),
(9)

where f is the identical activation function. The input–output relations of the FNN which is shown

in Figure 2 can be written for the α-level sets as follows:

[o]α = [x0]α .

Hidden unit:

[Oj]α = f ([netj]α),

[netj]α = [o.wj]α , j = 1, . . . , n.

Output unit:

[Y ]α = f ([Net]α),

[Net]α =

n
∑

j=1

([Oj.Aj]α).

The above relations are written as follows when the α-level sets of the fuzzy input Aj are

nonnegative, i.e., 0 ≤ [Aj]
α
l ≤ [Aj]

α
u for all j:
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Input unit:

[o]α = [[o]l
α , [o]u

α] = [[x0]
l
α , [x0]

u
α].

Hidden unit:

[Oj]α = [[Oj]
l
α , [Oj]

u
α] = [f ([netj]

l
α), f ([netj]

u
α)].

Output unit:

[Y ]α = [[Y ]l
α , [Y ]u

α] = [f ([Net]l
α), f ([Net]u

α)],

[Net]l
α =

∑

jǫM

[Oj]
l
α .[Aj]

l
α +

∑

jǫC

[Oj]
l
α .[Aj]

u
α ,

[Net]u
α =

∑

jǫM ′

[Oj]
u
α .[Aj]

u
α +

∑

jǫC′

[Oj]
u
α .[Aj]

l
α ,

(10)

where M = {j| [Oj]
l
α ≥ 0}, C = {j| [Oj]

l
α < 0}, M ′ = {j| [Oj]

u
α ≥ 0}, C′ = {j| [Oj]

u
α < 0}, M ∪

C = {1, . . . , n} and M ′ ∪ C′ = {1, . . . , n}.

2.4 Cost function

Let the α-level sets of the fuzzy target output A0 be denoted by

[A0]α = [[A0]
l
α , [A0]

u
α], α ∈ [0, 1],

where [A0]
l
α denotes the left-hand side and [A0]

u
α denotes the right-hand side of the α-level sets

of the desired output. A cost function to be minimized is defined for each α-level set as follows:

eα = el
α + eu

α , (11)

where

el
α = α.

([A0]
l
α − [Y ]l

α)2

2
, (12)

eu
α = α.

([A0]
u
α − [Y ]u

α)2

2
. (13)

In the cost function, el
α and eu

α can be viewed as the squared errors for the lower limits and the

upper limits of the α-level sets of the fuzzy output Y and target output A0, respectively. Then the

total error of the given neural network is obtained as

e =
∑

α

eα .

2.4.1 Learning algorithm of feed-forward FNNs

Let us derive a learning algorithm of the FNN from the cost function e defined for the α-level sets

in the last subsection, and let the triangular fuzzy weight wj is denoted by its three parameters



as wj = (wl
j, wc

j , wu
j ) where l, u, c denote the lower, center and upper limits of a triangular fuzzy

number, respectively. Let us assume that the fuzzy weight wj is symmetric, i.e.,

wc
j =

wl
j + wu

j

2
. (14)

Our main aim is in adjusting w1 by using the learning algorithm which is introduced below. The

weight is updated by the following rule [5,16]:

wl
1(t + 1) = wl

1(t) + �wl
1(t),

wu
1(t + 1) = wu

1(t) + �wu
1(t),

(15)

�wl
1(t) = −η.

∂eα

∂wl
1

+ γ .�wl
1(t − 1), (16)

�wu
1(t) = −η.

∂eα

∂wu
1

+ γ .�wu
1(t − 1), (17)

where t is the number of adjustments, η is the learning rate and γ is the momentum term constant.

As the weights are symmetric triangular fuzzy numbers, the following relation hold for its α-level

set:

∂eα

∂wl
1

=
∂eα

∂[w1]l
α

.
(

1 −
α

2

)

+
∂eα

∂[w1]u
α

.
α

2
, (18)

∂eα

∂wu
1

=
∂eα

∂[w1]l
α

.
α

2
+

∂eα

∂[w1]u
α

.
(

1 −
α

2

)

. (19)

The derivatives ∂eα/∂wl
1 and ∂eα/∂wu

1 in Equations (16) and (17) can be calculated from the

input–output relation of the FNN, as follows:

∂eα

∂wl
1

=
∂eα

∂[Y ]l
α

.
∂[Y ]l

α

∂[Net]l
α

.
∂[Net]l

α

∂[wj]l
α

.
∂[wj]

l
α

∂[w1]l
α

.
(

1 −
α

2

)

+
∂eα

∂[Y ]u
α

.
∂[Y ]u

α

∂[Net]u
α

.
∂[Net]u

α

∂[wj]u
α

.
∂[wj]

u
α

∂[w1]u
α

.
α

2
,

∂eα

∂wu
1

=
∂eα

∂[Y ]l
α

.
∂[Y ]l

α

∂[Net]l
α

.
∂[Net]l

α

∂[wj]l
α

.
∂[wj]

l
α

∂[w1]l
α

.
α

2
+

∂eα

∂[Y ]u
α

.
∂[Y ]u

α

∂[Net]u
α

.
∂[Net]u

α

∂[wj]u
α

.
∂[wj]

u
α

∂[w1]u
α

.
(

1 −
α

2

)

.

The other case can be calculated similarly. We can update other weights as follows:

wj = w
j

1, j = 2, . . . , n. (20)

2.4.2 Learning algorithm of feed-back FNNs

Consider the learning algorithm of the three-layer fuzzy feed-back neural network with one input

unit, n neuron in the hidden layer and one output unit as shown in Figure 2. Let x0 be a triangular

fuzzy number that is denoted by its three parameters as x0 = (xl
0, xc

0, xu
0) where l, u, c denote the

lower, center and upper limits of a triangular fuzzy number, respectively. Let us assume that the
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x0 is symmetric, i.e.,

xc
0 =

xl
0 + xu

0

2
. (21)

Our main aim is in adjusting the parameter x0 by using the learning algorithm which is introduced

below. For fuzzy parameter x0 adjustment rule can be written as

xl
0(t + 1) = xl

0(t) + �xl
0(t),

xu
0(t + 1) = xu

0(t) + �xu
0(t),

(22)

�xl
0(t) = −η.

∂eα

∂xl
0

+ γ .�xl
0(t − 1), (23)

�xu
0(t) = −η.

∂eα

∂xu
0

+ γ .�xu
0(t − 1), (24)

where t is the number of adjustments, η is the learning rate and γ is the momentum term constant.

As x0 is symmetric triangular fuzzy number, the following relations hold:

∂eα

∂xl
0

=
∂eα

∂[x0]l
α

.
(

1 −
α

2

)

+
∂eα

∂[x0]u
α

.
α

2
, (25)

∂eα

∂xu
0

=
∂eα

∂[x0]l
α

.
α

2
+

∂eα

∂[x0]u
α

.
(

1 −
α

2

)

. (26)

The derivatives ∂eα/∂xl
0 and ∂eα/∂xu

0 in Equations (23) and (24) can be calculated from the

input–output relation of the FNN, as follows:

∂eα

∂xl
0

=
∂eα

∂[Y ]l
α

.
∂[Y ]l

α

∂[Net]l
α

.
∂[Net]l

α

∂[netj]l
α

.
∂[netj]

l
α

∂[x0]l
α

.
(

1 −
α

2

)

+
∂eα

∂[Y ]u
α

.
∂[Y ]u

α

∂[Net]u
α

.
∂[Net]u

α

∂[netj]u
α

.
∂[netj]

u
α

∂[x0]u
α

.
α

2
,

∂eα

∂xu
0

=
∂eα

∂[Y ]l
α

.
∂[Y ]l

α

∂[Net]l
α

.
∂[Net]l

α

∂[netj]l
α

.
∂[netj]

l
α

∂[x0]l
α

.
α

2
+

∂eα

∂[Y ]u
α

.
∂[Y ]u

α

∂[Net]u
α

.
∂[Net]u

α

∂[netj]u
α

.
∂[netj]

u
α

∂[x0]u
α

.
(

1 −
α

2

)

.

The other case can be calculated similarly. The connection weights are updated as follows:

wj = x
j−1

0 , j = 1, . . . , n. (27)

2.4.3 Convergence analysis

For the convergence analysis of FNN3 (it is the general case of FNN) it is sufficient to show that

the neural network is Universal approximators. Feuring [12] shows that these neural networks

can approximate any fuzzy continuous monotonic function on a compact domain to any degree of

accuracy. We should mention that our definition of fuzzy function is as in [13], and these functions

can be described as a spatial form and it leads us to present a universal approximation theorem

for these neural networks.

Theorem 1 Let U be a compact set in E (the set of all fuzzy number) and F(U) the set of all

fuzzy functions on U, then for every f ∈ F(U) and for every ǫ > 0 there exists a p in all fuzzy

pseudopolynomials such that

d(f (x), p(x)) < ǫ, ∀x ∈ U. (28)



Proof See [12].

The corollary of this theorem is the universal approximation of FNN.

Monotony of FNNs has some further advantages. FNNs operate monotonic relative to the

supports of the triangular fuzzy numbers. This means that for the output b = (b1, . . . , bn) of FNN

with input data a = (a1, . . . , am). For all input data, whose supports are subsets of the support

of a, the support of the corresponding output data will be subsets of the support of b. This fact

enables us to gain information about the reaction of the net on yet unknown input data. We only

have to cover the input space of the net with the supports of the data of the training set This effect

can be used to diminish the risk of overtraining [13]. �

3. Applications and methodologies

This section contains three examples of FFPs. In these examples, we illustrate the use of feed-back

neural network technique to approximate the solutions of the given polynomials. For each example,

the computed values of the approximate solution are calculated over a number of iterations and the

cost function is plotted. Also the present method is compared with feed-forward neural network.

We start by the application of this method in fluid mechanics. All example programs are written

in Matlab 2012 and run with computer CORE I7.

Example 1 (An example of fluid mechanics) A pump is in a pipeline from a suction reservoir to

a junction to which three reservoirs are connected with pipes at a constant H , as in Figure 3. There

is a check valve at the pump. Assume that the pump is operating with flow through the pump. The

pump equation is given by

H = A0 + A1Q + A2Q2 + A3Q3,

where H is the height and A0, A1, A2 and A3 are the characteristic coefficients of the pump.

Where

A0 = (90, 100, 110), A1 = (0.1, 0.2, 0.3), A2 = (0.02, 0.03, 0.04),

A3 = (0.006, 0.007, 0.008), H = (99.768831, 175.232772, 378.97805),

Figure 3. Pumping from one reservoir to the other two reservoirs.
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Table 1. The approximate solutions with error analysis for
Example 1 by FFFNN3 and FBFNN3.

t Q0(t) by FFFNN3 Error for FFFNN3

1 (6.9724, 17.5164, 28.4604) 22461.4290

2 (7.1932, 17.9974, 28.8015) 3633.7638

3 (7.4067, 18.4572, 29.1077) 734.04810

4 (7.7929, 18.7237, 29.5544) 470.69450

5 (7.9880, 19.0756, 29.9924) 396.85044
.
.
.

.

.

.
.
.
.

62 (10.2886, 20.3121, 30.3190) 0.0259697

63 (10.2911, 20.3130, 30.3199) 0.0198803

64 (10.2934, 20.3138, 30.3207) 0.0135884

65 (10.2959, 20.3147, 30.3215) 0.0109384

66 (10.2979, 20.3154, 30.3220) 0.0088052

t Q0(t) by FBFNN3 Error for FBFNN3

1 (6.9906, 17.7698, 28.6974) 22461.429

2 (7.3906, 18.2698, 29.0974) 1013.4442

3 (7.6004, 18.7926, 29.4316) 567.90418

4 (7.9267, 19.1782, 29.8704) 343.68958

5 (8.1348, 19.4102, 30.1510) 143.65824
.
.
.

.

.

.
.
.
.

37 (10.2864, 20.3094, 30.3234) 0.0235290

38 (10.2910, 20.3113, 30.3236) 0.0172635

39 (10.2951, 20.3129, 30.3238) 0.0111748

40 (10.2986, 20.3144, 30.3240) 0.0100014

41 (10.3018, 20.3156, 30.3241) 0.0065356
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Figure 4. The cost function for Example 1 on the number of iterations with both methods (FFFNN3 and FBFNN3).

and the exact solution is Q = (10.325, 20.325, 30.325). Before starting calculations, we assumed

that Q0 = (6.325, 17.325, 28.325), η = 2 × 10−3 and γ = 2 × 10−3. Numerical results can be

found in Table 1. The right section of the table is related to the feed-back neural network and

the left section is related to the feed-forward neural network. Figure 4 shows the accuracy of the

solution Q0(t) where t is the number of iterations, its noticeable that by increasing the iterations



the cost function goes to zero. In this figure the curve with line is related to feed-forward neural

network and the curve with line and plot is related to feed-back neural network. The cost function

of FBFNN3 goes to zero faster than FFFNN3.

Example 2 Let the fuzzy equation be as follows:

(3, 4, 5)x + (2, 3, 4)x2 + (1, 2, 3)x3 + (1, 3, 4, 5)x4 = A0,

where

(A0(r), Ā0(r)) = (2r5 + 42r4 + 337r3 + 1253r2 + 2003r + 815,

− r5 + 34r4 − 459r3 + 3071r2 − 10162r + 13265), 0 ≤ r ≤ 1.

The exact solution is x = (5, 6, 7). Before starting calculations, we assumed that x0 = (3, 4, 5),

η = 5 × 10−3 and γ = 5 × 10−3. Similarly Table 2 shows the approximated solution over a

number of iterations. The right section of the table is related to the feed-back neural network and

the left section is related to the feed-forward neural network. Figure 5 shows the accuracy of the

solution x0(t), where t is the number of iterations, it is noticeable that by increasing the iterations

the cost function goes to zero. In this figure the curve with a line is related to feed-forward neural

network and the curve with a line and a plot is related to the feed-back neural network. The cost

function of FBFNN3 goes to zero faster than FFFNN3.

Table 2. The approximate solutions with error
analysis for Example 2 by FFFNN3 and FBFNN3.

t x0(t) by FFFNN3 Error for FFFNN3

1 (3.3568, 4.2366, 5.2576) 2124422.8410

2 (3.6167, 4.5395, 5.6532) 924799.2631

3 (3.9854, 4.9348, 5.9012) 325899.1532

4 (4.0049, 5.4603, 6.2565) 98695.46686

5 (4.2257, 5.6878, 6.6156) 65248.42598
.
.
.

.

.

.
.
.
.

54 (4.9997, 5.9994, 7.0002) 0.352426384

55 (4.9998, 5.9995, 7.0003) 0.252373257

56 (4.9998, 5.9997, 7.0004) 0.180724779

57 (4.9999, 5.9998, 7.0005) 0.129417063

58 (4.9999, 5.9999, 7.0005) 0.092675511

t x0(t) by FBFNN3 Error for FBFNN3

1 (3.4053, 4.3280, 5.5477) 2124422.84100

2 (3.7857, 4.7280, 5.8478) 777333.86400

3 (4.0360, 5.3623, 6.0507) 165348.47820

4 (4.3165, 5.6547, 6.6515) 74618.137540

5 (4.5282, 5.8973, 6.8886) 44406.909510
.
.
.

.

.

.
.
.
.

33 (4.9981, 5.9993, 7.0003) 0.5460984210

34 (4.9984, 5.9995, 7.0003) 0.3542778220

35 (4.9988, 5.9996, 7.0004) 0.2298205110

36 (4.9990, 5.9997, 7.0005) 0.1490770750

37 (4.9992, 5.9997, 7.0005) 0.0966973540
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Figure 5. The cost function for Example 2 on the number of iterations with both methods (FFFNN3 and FBFNN3).

Table 3. The approximated solutions with error analysis by
FFFNN3 and FBFNN3 for Example 3.

t x0(t) by FFFNN3 Error for FFFNN3

1 (−3.8751, −2.9129, −1.9507) 210260.833

2 (−3.7681, −2.8376, −1.9071) 96524.5550

3 (−3.6754, −2.7719, −1.8684) 6887.66709

4 (−3.5238, −2.6630, −1.8021) 9065.77973

5 (−3.4614, −2.6174, −1.7735) 5877.84571
.
.
.

.

.

.
.
.
.

110 (−2.9999, −2.0017, −1.0044) 0.14273388

111 (−2.9998, −2.0016, −1.0043) 0.13286556

112 (−2.9998, −2.0015, −1.0041) 0.12076212

113 (−2.9997, −2.0014, −1.0039) 0.10976250

114 (−2.9997, −2.0013, −1.0037) 0.09976587

t x0(t) by FBFNN3 Error for FBFNN3

1 (−3.7956, −2.8495, −1.9032) 210260.833

2 (−3.5957, −2.7495, −1.8538) 73796.8014

3 (−3.4103, −2.6320, −1.7939) 3977.03671

4 (−3.2936, −2.5030, −1.6950) 7605.97683

5 (−3.1515, −2.3507, −1.4876) 3941.37686
.
.
.

.

.

.
.
.
.

56 (−2.9997, −2.0024, −1.0056) 0.13392917

57 (−2.9996, −2.0022, −1.0052) 0.11566727

58 (−2.9995, −2.0020, −1.0048) 0.11566727

59 (−2.9994, −2.0019, −1.0044) 0.10368734

60 (−2.9994, −2.0017, −1.0040) 0.09294612

Example 3 Consider the following fuzzy equation problem:

(2, 3, 4)x + (1, 2, 3)x2 + (5, 6, 7)x3 = A0,
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Figure 6. The cost function for Example 3 on the number of iterations with both methods (FFFNN3 and FBFNN3).

where

(A0(r), Ā0(r)) = (−r4 + 17r3 − 88r2 + 226r − 200, −r4 − 9r3 − 10r2 − 46r + 20),

0 ≤ r ≤ 1.

The exact solution is x = (−3, −2, −1). This problem is solved by helping the feed-forward

and feed-back FNNs as described in this paper. Let x0 = (−4, −3, −2), η = 2 × 10−3 and γ =

2 × 10−3. Table 3 shows the approximated solution over a number of iterations. The right section

of the table is related to the feed-back neural network and the left section is related to the feed-

forward neural network. We see that the FBFNN3 convergence is faster than FFFNN3 to the exact

solution. Figure 6 shows the accuracy of the solution x0(t) where t is the number of iterations, its

noticeable that by increasing the iterations the cost function goes to zero. In this figure the curve

with a line is related to feed-forward neural network and the curve with a line and a plot is related

to the feed-back neural network. The cost function of FBFNN3 goes to zero faster than FFFNN3.

4. Concluding remarks

The topics of FNNs which have been attracting growing interest for some time are being developed

in recent years. In this paper, a FFNN3 model equivalent to the fuzzy polynomial is built, and

a learning algorithm of feed-back FNN is introduced on the basis of the input–output relations

defined by the extension principle, to find the fuzzy root of fuzzy polynomial. In this work, we

assumed the signals and weights are fuzzy numbers. The model is also compared with the feed-

forward model. The comparison of these two models have shown us the advantage of feed-back

neural network to feed-forward in the speed of adjusting fuzzy weights. The analysed examples

illustrated the ability and reliability of feed-back neural network. As the development of FNNs

has suffered greatly from the lack of training method, we believe that our approach fills this void

and hope that it leads to many new applications.
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