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The uncertain nonlinear systems can bemodeled with fuzzy equations by incorporating the fuzzy set theory. In this paper, the fuzzy
equations are applied as the models for the uncertain nonlinear systems. The nonlinear modeling process is to find the coefficients
of the fuzzy equations.We use the neural networks to approximate the coefficients of the fuzzy equations.The approximation theory
for crisp models is extended into the fuzzy equation model. The upper bounds of the modeling errors are estimated. Numerical
experiments along with comparisons demonstrate the excellent behavior of the proposed method.

1. Introduction

Since the uncertainties in the nonlinear systems can be
transformed into fuzzy set theory [1], the fuzzy systems are
good models for uncertainty systems. The fuzzy models are
based on fuzzy rules. These fuzzy rules give information
of the uncertain nonlinear systems. Any nonlinear system
can be approximated by several piecewise linear systems
(Takagi-Sugeno fuzzy model [2]) or known nonlinear sys-
tems (Mamdani fuzzy model [3]). The uncertain nonlinear
systems can be modeled by the fuzzy models with simple
linear or nonlinear models.

The nonlinear systems can be also modeled with differ-
ence equations and algebraic systems. Interpolation method-
ology has been broadly utilized for function approximation
as well as system identification [4, 5]. In [6], the fuzzy
polynomial interpolation is applied for systemmodeling.The
coefficients of the polynomials are the fuzzy numbers [7],
such that the uncertainties are interpolated with the fuzzy set
theory.The theory problem associatedwith polynomial inter-
polation is discussed in [8]. It concludes that the interpolation
of the function 𝑓(𝑥) includes 𝑂(𝑛) time complexity at 𝑛 data
points.

In [9], two-dimensional polynomial interpolation is
demonstrated. The constraint associated with multivariable

interpolation has been investigated in [6], where theNewton-
form interpolation is employed. In [10], themultivariate Van-
dermondematrix is utilized. Smooth function approximation
has been broadly implemented currently [11, 12]. It yields
a model by utilizing Lagrange interpolating polynomials at
the points of product grids [7, 13]. However if it involves
uncertainties in the interpolation points, the above suggested
techniques will not work appropriately.

The fuzzy equation can be regarded as a generalized form
of the fuzzy polynomial. Compared with the normal fuzzy
systems, the fuzzy equations are more easy to be applied,
because the uncertainties are direct fuzzy parameters of the
fuzzy equations. However, these parameters are not easy to
be obtained. There are several approaches to construct the
fuzzy equations. Reference [14] utilized the parametric form
of fuzzy numbers and restored the original fuzzy equations
using crisp linear systems. In [15], the extension principle is
implemented and it suggests that the coefficients can be either
real or complex fuzzy numbers. Whatsoever, the validation
of the solution is not assured. Reference [16] prescribed the
homeotypic analysis methodology. Reference [17] inducted
Newton’s technique. In [18], the solution of fuzzy equations
is extracted using the fixed point methodology. One of the
well-known methods is termed as 𝛼-level [19]. By using the
method of superimposition of sets, fuzzy numbers can be
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solved. Recently, fuzzy fractional differential and integral
equations have been extensively studied in [20–22]. However,
the above methods are very complex.

The numerical solution associated with fuzzy equation
can be fetched using the iterative technique [23], interpo-
lation technique [24], and Runge-Kutta technique [25]. It
can also be implemented to fuzzy differential equations [26].
These methods are also difficult to be applied. Both neural
networks as well as fuzzy logic are considered to be the uni-
versal estimators which can estimate any nonlinear function
to any notified precision [27]. Current outcomes demonstrate
that the fusionmethodology of these two different techniques
appears to be highly efficient for nonlinear systems iden-
tification [28]. Neural networks can also be implemented
for resolving the fuzzy equation. In [29], the simple fuzzy
quadratic equation is resolved by the neural networkmethod.
References [30, 31] elaborated the outcomes of [29] into fuzzy
polynomial equation. In [32, 33], the solution of dual fuzzy
equations is obtained by neural networks. A matrix pattern
associated with the neural learning has been quoted in [34].
However, these techniques are not general; they cannot give
the fuzzy coefficients directly with neural networks [35, 36].

We use the neural network method to approximate the
coefficients of the fuzzy equations as in our previous paper
[37]. In this paper, the standard backpropagation method is
modified, such that the fuzzy numbers in the fuzzy ideations
can be trained.The approximation theory of the crisp models
is extended into the fuzzy equations.The upper bounds of the
modeling errors with fuzzy equations are estimated. Finally,
we use some real examples to show the effectiveness of our
approximation method.

2. Nonlinear System Modeling with
Fuzzy Equations

A general discrete-time nonlinear system can be described as

𝑤𝑟+1 = 𝜌 [𝑤𝑟, V𝑟] ,
𝑧𝑟 = 𝜑 [𝑤𝑟] . (1)

Here we consider V𝑟 ∈ R𝑢 as the input vector, 𝑤𝑟 ∈ R𝑙

is regarded as an internal state vector, and 𝑧𝑟 ∈ R𝑚 is the
output vector. 𝜌 and 𝜑 are noted as generalized nonlinear
smooth functions 𝜌, 𝜑 ∈ 𝐶∞. Define 𝑍𝑟 = [𝑧𝑇𝑟+1, 𝑧𝑇𝑟 , . . .]𝑇 and𝑉𝑟 = [V𝑇𝑟+1, V𝑇𝑟 , . . .]𝑇. Supposing 𝜕𝑍/𝜕𝑤 is nonsingular at the
instance 𝑤𝑟 = 0, 𝑉𝑟 = 0, this will create a path towards the
following model:

𝑧𝑟 = Ω [𝑧𝑇𝑟−1, 𝑧𝑇𝑟−2, . . . , V𝑇𝑟 , V𝑇𝑟−1, . . .] , (2)

where Ω(⋅) is a nonlinear difference equation exhibiting
the plant dynamics and V𝑟 and 𝑧𝑟 are computable scalar
input and output, respectively.The nonlinear system which is
represented by (2) is implied as a NARMA model. The input
of the system with incorporated nonlinearity is considered to
be

𝑤𝑟 = [𝑧𝑇𝑟−1, 𝑧𝑇𝑟−2, . . . , V𝑇𝑟 , V𝑇𝑟−1, . . .]𝑇 . (3)

Taking into consideration the nonlinear systems as men-
tioned in (2), it can be simplified as the following linear-in-
parameter model:

𝑧𝑟 = 𝑛∑
𝑖=0

𝑐𝑖𝑤𝑖𝑟, (4)

where 𝑐𝑖 is considered to be the linear parameter and 𝑤𝑖𝑟 is
nonlinear function. The variables related to this function are
quantifying input and output.

Many nonlinear systems can be expressed by linear-
in-parameter models such as Lagrangian mechanical sys-
tems. The parameters of these models are uncertain and
the uncertainties satisfy the fuzzy set theory [1]. In this
way, the inconvenience problems in nonlinear modeling
such as complexity and uncertainty are solved by the fuzzy
logic theory and linear-in-parameter structure.Themodeling
processwith the fuzzy equation is to find the fuzzy coefficients
of the linear-in-parametermodel such that the fuzzy equation
can represent the uncertain nonlinear system.

We assume that themodel of the nonlinear system (4) has
uncertainties in the parameter 𝑐𝑖. The following definitions
will be used in this paper.

Definition 1 (fuzzy number). A fuzzy number 𝐴 is a function𝐴 ∈ 𝐸 : R → [0, 1]; in such a way, (1) 𝐴 is normal, (there
prevail𝑤0 ∈ R in such away that𝐴(𝑤0) = 1); (2) 𝐴 is convex,𝐴(𝜆𝑤+ (1 − 𝜆)𝑧) ≥ min{𝐴(𝑤), 𝐴(𝑧)}, ∀𝑤, 𝑧 ∈ R, ∀𝜆 ∈ [0, 1];(3) 𝐴 is upper semicontinuous onR; that is,𝐴(𝑤) ≤ 𝐴(𝑤0)+𝜀, ∀𝑤 ∈ 𝑁(𝑤0), ∀𝑤0 ∈ R, ∀𝜀 > 0,𝑁(𝑤0) is a neighborhood;(4) the set 𝐴+ = {𝑤 ∈ R, 𝐴(𝑤) > 0} is compact.

In order to demonstrate the fuzzy numbers, the mem-
bership functions are utilized. The most widely discussed
membership functions are noted to be the triangular function

𝜇𝐴 = 𝐹 (𝑎, 𝑏, 𝑐) =
{{{{{{{

𝑤 − 𝑎𝑏 − 𝑎 𝑎 ≤ 𝑤 ≤ 𝑏
𝑐 − 𝑤𝑐 − 𝑏 𝑏 ≤ 𝑤 ≤ 𝑐

otherwise 𝜇𝐴 = 0
(5)

and trapezoidal function

𝜇𝐴 = 𝐹 (𝑎, 𝑏, 𝑐, 𝑑) =
{{{{{{{{{{{{{

𝑤 − 𝑎𝑏 − 𝑎 𝑎 ≤ 𝑤 ≤ 𝑏
𝑑 − 𝑤𝑑 − 𝑐 𝑐 ≤ 𝑤 ≤ 𝑑
1 𝑏 ≤ 𝑤 ≤ 𝑐

otherwise 𝜇𝐴 = 0.

(6)

On a par with crisp variable, the fuzzy variable 𝐴
possesses three essential operations: ⊕, ⊖, and ⊙. They signify
these operations: sum, subtract, and multiply.

The fuzzy variable 𝐴 which contains the dimension of𝑤 is dependent on the membership function, (5) has three
variables, and (6) has four variables. In order to define
consistency operations, we first apply 𝛼-level operation to the
fuzzy number.
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Definition 2 (𝛼-level). The 𝛼-level associated with a fuzzy
number 𝐴 is stated as

[𝐴]𝛼 = {𝑤 ∈ R, 𝐴 (𝑤) ≥ 0} , (7)

where 0 < 𝛼 ≤ 1, 𝐴 ∈ 𝐸.
Therefore [𝐴]0 = 𝐴+ = {𝑤 ∈ R, 𝐴(𝑤) > 0}. Since 𝛼 ∈[0, 1], [𝐴]𝛼 is bounded mentioned as 𝐴𝛼 ≤ [𝐴]𝛼 ≤ 𝐴𝛼. The𝛼-level of 𝐴 between 𝐴𝛼 and 𝐴𝛼 is explained as

[𝐴]𝛼 = Φ(𝐴𝛼, 𝐴𝛼) . (8)

Definition 3 (fuzzy operations). If 𝐴1, 𝐴2 ∈ 𝐸, 𝜆 ∈ R, the
fuzzy operations are as follows:

Sum:

[𝐴1 ⊕ 𝐴2]𝛼 = [𝐴1]𝛼 + [𝐴2]𝛼
= [𝐴1𝛼 + 𝐴2𝛼, 𝐴1𝛼 + 𝐴2𝛼] . (9)

Subtract:

[𝐴1 ⊖ 𝐴2]𝛼 = [𝐴1]𝛼 − [𝐴2]𝛼
= [𝐴1𝛼 − 𝐴2𝛼, 𝐴1𝛼 − 𝐴2𝛼] . (10)

Multiply:

(𝐴1 ⊙ 𝐴2)𝛼
= Φ (min {𝐴1𝛼𝐴2𝛼, 𝐴1𝛼𝐴2𝛼, 𝐴1𝛼𝐴2𝛼, 𝐴1𝛼𝐴2𝛼} ,
max {𝐴1𝛼𝐴2𝛼, 𝐴1𝛼𝐴2𝛼, 𝐴1𝛼𝐴2𝛼, 𝐴1𝛼𝐴2𝛼}) .

(11)

Scalar multiplication: 𝛼 ∈ [0, 1].
[𝜆𝐴]𝛼 = 𝜆 [𝐴]𝛼 = {{{

Φ(𝜆𝐴𝛼, 𝜆𝐴𝛼) 𝜆 ≥ 0
Φ (𝜆𝐴𝛼, 𝜆𝐴𝛼) 𝜆 < 0. (12)

Definition 4 (absolute value). Absolute value of a triangular
fuzzy number 𝐴(𝑤) = 𝐹(𝑎, 𝑏, 𝑐) is

|𝐴 (𝑤)| = |𝑎| + |𝑏| + |𝑐| . (13)

Now we utilize the following fuzzy equation to model the
uncertain nonlinear system (1):

𝑧𝑟 = 𝑐1𝑓1 (𝑤𝑟) ⊕ 𝑐2𝑓2 (𝑤𝑟) ⊕ ⋅ ⋅ ⋅ ⊕ 𝑐𝑛𝑓𝑛 (𝑤𝑟) . (14)

Because 𝑐𝑖 is fuzzy number, we apply the fuzzy operation ⊕.
Taking into consideration a particular case, 𝑓𝑖(𝑤𝑟) has

polynomial form,

𝑧𝑟 = 𝑐1𝑤𝑟 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑐𝑛𝑤𝑛𝑟 . (15)

Equation (15) is termed as fuzzy polynomial.
Modeling with fuzzy equation (or fuzzy polynomial) can

be regarded as fuzzy interpolation. In this paper, we utilize the
fuzzy equation (14) to model the uncertain nonlinear system
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Figure 1: Fuzzy equation in the form of a neural network.

(1), in such a manner that the output related to the plant 𝑧𝑟
can approach the desired output 𝑧∗𝑟 ,

min
𝑐𝑟

𝑧𝑟 − 𝑧∗𝑟  . (16)

This modeling object can be regarded as a way to detect𝑐𝑟 for the following fuzzy equation:
𝑧∗𝑟 = 𝑐1𝑓1 (𝑤𝑟) ⊕ 𝑐2𝑓2 (𝑤𝑟) ⊕ ⋅ ⋅ ⋅ ⊕ 𝑐𝑛𝑓𝑛 (𝑤𝑟) , (17)

where 𝑤𝑟 = [𝑧𝑇𝑟−1, 𝑧𝑇𝑟−2, . . . , V𝑇𝑟 , V𝑇𝑟−1, . . . ]𝑇.
3. Fuzzy Parameter Estimation with

Neural Networks

We design a neural network to represent the fuzzy equation
(14); see Figure 1. The input to the neural network is 𝑤𝑟 and
the output is the fuzzy number 𝑧𝑟. The weights are 𝑐𝑖. The
main idea is to detect appropriate weight of neural network𝑐𝑖 in such a manner that the output of the neural network 𝑧𝑟
converges to the desired output 𝑧∗𝑟 .

In order to simplify the operation of the neural network,
we use the triangular fuzzy number (5) in this paper. The
input fuzzy number 𝑤𝑟 is first applied to 𝛼-level as in (7):

[𝑤𝑟]𝛼 = Φ(𝑤𝑟𝛼, 𝑤𝑟𝛼) 𝑟 = 0 ⋅ ⋅ ⋅ 𝑛. (18)

Then we have

[𝑂𝑖]𝛼 = Φ𝑓𝑖(𝑤𝑟)𝛼, 𝑓𝑖(𝑤𝑟)𝑎 𝑖 = 1 ⋅ ⋅ ⋅ 𝑛. (19)

The neural network output is

[𝑧𝑟]𝛼 = Φ{∑
𝑖∈𝑀

𝑂𝑖𝛼𝑐𝑖𝛼 + ∑
𝑖∈𝐶

𝑂𝑖𝛼𝑐𝑖𝛼 + 𝑐0𝛼, ∑
𝑖∈𝑀

𝑂𝑖𝛼𝑐𝑖𝛼

+ ∑
𝑖∈𝐶

𝑂𝑖𝛼𝑐𝑖𝛼 + 𝑐0𝛼} ,
(20)

where𝑀 = {𝑖 | 𝑐𝑖𝛼 ≥ 0}, 𝐶 = {𝑖 | 𝑐𝑖𝛼 < 0},𝑀 = {𝑖 | 𝑐𝑖𝛼 ≥ 0},
and 𝐶 = {𝑖 | 𝑐𝑖𝛼 < 0}.
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In order to train the weights, we need to define a cost
function for the fuzzy numbers. The error of the training is

𝑒𝑟 = 𝑧∗𝑟 − 𝑧𝑟, (21)

where [𝑧∗𝑟 ]𝛼 = Φ(𝑧∗𝑟 𝛼, 𝑧∗𝑟 𝛼), [𝑧𝑟]𝛼 = Φ(𝑧𝑟𝛼, 𝑧𝑟𝛼), and [𝑒𝑟]𝛼 =Φ(𝑒𝑟𝛼, 𝑒𝑟𝛼).The cost function is defined as

Ψ𝑟 = Ψ𝛼 + Ψ𝛼,
Ψ𝛼 = 12 (𝑧∗𝑟 𝛼 − 𝑧𝑟𝛼)

2 ,
Ψ𝛼 = 12 (𝑧∗𝑟 𝛼 − 𝑧𝑟𝛼)

2 .
(22)

Ψ𝑟 is considered to be a scalar function. It is quite obvious thatΨ𝑟 → 0means [𝑧𝑟]𝛼 → [𝑧∗𝑟 ]𝛼.
The vital positiveness that lies within the least mean

square (22) is that it has a self-correcting feature that makes it
suitable to function for arbitrarily vast durationwithout shift-
ing from its constraints. The mentioned gradient algorithm
is subjected to cumulative series of errors and is convenient
for long runs in absence of an additional error rectification
procedure. It is more robust in statistics, identification, and
signal processing [38].

Now we use gradient method to train the weight 𝑐𝑖 =[𝑐1𝑖 , 𝑐2𝑖 , 𝑐3𝑖 ] defined in (5), or 𝑐𝑘𝑖 , 𝑘 = 1, 2, 3. We compute𝜕Ψ𝑟/𝜕𝑐𝑘𝑖 as
𝜕Ψ𝑟𝜕𝑐𝑘𝑖 =

𝜕Ψ𝛼
𝜕𝑐𝑘𝑖 +

𝜕Ψ𝛼
𝜕𝑐𝑘𝑖 . (23)

According to the chain rule

𝜕Ψ𝛼
𝜕𝑐𝑘𝑖 =

𝜕Ψ𝛼𝜕𝑧𝑟𝛼
𝜕𝑧𝑟𝛼𝜕𝑐𝑖𝛼

𝜕𝑐𝑖𝛼
𝜕𝑐𝑘𝑖 = (𝑧

∗
𝑟

𝛼 − 𝑧𝑟𝛼)Υ, (24)

where 𝑖 = 0, and
𝜕Ψ𝛼
𝜕𝑐𝑘𝑖 =

𝜕Ψ𝛼𝜕𝑧𝑟𝛼
𝜕𝑧𝑟𝛼𝜕𝑐𝑖𝛼

𝜕𝑐𝑖𝛼
𝜕𝑐𝑘𝑖

= (𝑧∗𝑟 𝛼 − 𝑧𝑟𝛼){{{
𝑂𝑖𝛼Υ, 𝑐𝑖𝛼 ≥ 0
𝑂𝑖𝛼Υ, 𝑐𝑖𝛼 < 0,

(25)

where 𝑖 = 1, . . . , 𝑛 , and

Υ =
{{{{{{{{{

1 − 𝛼 𝑘 = 1
𝛼 𝑘 = 2
0 𝑘 = 3,

(26)

also we have

𝜕Ψ𝛼
𝜕𝑐𝑘𝑖 =

𝜕Ψ𝛼𝜕𝑧𝑟𝛼
𝜕𝑧𝑟𝛼𝜕𝑐𝑖𝛼

𝜕𝑐𝑖𝛼𝜕𝑐𝑘𝑖 = (𝑧∗𝑟
𝛼 − 𝑧𝑟𝛼) Υ1, (27)

where 𝑖 = 0, and
𝜕Ψ𝛼
𝜕𝑐𝑘𝑖 =

𝜕Ψ𝛼𝜕𝑧𝑟𝛼
𝜕𝑧𝑟𝛼𝜕𝑐𝑖𝛼

𝜕𝑐𝑖𝛼𝜕𝑐𝑘𝑖
= (𝑧∗𝑟 𝛼 − 𝑧𝑟𝛼){{{

𝑂𝑖𝛼Υ1, 𝑐𝑖𝛼 ≥ 0
𝑂𝑖𝛼Υ1, 𝑐𝑖𝛼 < 0,

(28)

where 𝑖 = 1, . . . , 𝑛 , and

Υ1 =
{{{{{{{{{

0 𝑘 = 1
𝛼 𝑘 = 2
1 − 𝛼 𝑘 = 3.

(29)

The coefficient 𝑐𝑖 is updated as

𝑐𝑘𝑖 (𝑟 + 1) = 𝑐𝑘𝑖 (𝑟) − 𝜂𝜕Ψ𝑟𝜕𝑐𝑘𝑖 , (30)

where 𝑘 = 1, 2, 3 and 𝜂 is the training rate 𝜂 > 0. For the
requirement of increasing the training process, the adding of
the momentum term is mentioned as

𝑐𝑘𝑖 (𝑟 + 1) = 𝑐𝑘𝑖 (𝑟) − 𝜂𝜕Ψ𝑟𝜕𝑐𝑘𝑖 + 𝛾 [𝑐
𝑘
𝑖 (𝑟) − 𝑐𝑘𝑖 (𝑟 − 1)] , (31)

where 𝛾 > 0.
Learning Algorithm

(1) Step 1: choose the training rates 𝜂 > 0, 𝛾 > 0, and
the stop criterion Ψ > 0.The initial fuzzy vector 𝐶 =(𝑐1, . . . , 𝑐𝑛) is selected randomly. The initial learning
iteration is 𝑟 = 1, and the initial learning error Ψ = 0.

(2) Repeat the following steps for 𝛼 = 𝛼1, . . . , 𝛼𝑚, until all
training data are applied.

(a) Forward calculation: calculate the 𝛼-level of the
fuzzy output 𝑧𝑟 with the 𝛼-level of the fuzzy
input 𝑤𝑟, and the fuzzy connection weight 𝐶.

(b) Backpropagation: adjust fuzzy parameters 𝑐𝑖, 𝑖 =1, . . . , 𝑛, by using the cost function for the 𝛼-
level of the fuzzy output 𝑧𝑟, and the fuzzy target
output 𝑧∗𝑟 .

(c) Stop criterion: calculate the cycle error Ψ𝑟, Ψ =Ψ + Ψ𝑟. 𝑟 = 𝑟 + 1. If Ψ > Ψ, let Ψ = 0; a new
training cycle is initiated. Go to (a).

4. Upper Bounds of the Modeling Errors

In this section, we extend some well-known approximation
theories into fuzzy equation modeling. We first define the
modeling error in the sense of fuzzy number.

Definition 5. Thedistance between two fuzzy numbers, 𝑢, V ∈𝐸, is defined as the Hausdorff metric 𝑑𝐻(𝑢, V):
𝑑𝐻 (𝑢, V) = max{sup

𝑥∈𝑢
inf
𝑦∈V
𝑥 − 𝑦 , sup

𝑦∈V
inf
𝑥∈𝑢

𝑥 − 𝑦} . (32)
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Lemma 6. If 𝜃 ⊂ 𝐸 is a compact set, then 𝜃 is uniformly sup-
port-bounded; that is, there is a compact set 𝑈 ⊂ R, such that,∀𝑢 ∈ 𝜃,

Supp (𝑢) ⊂ 𝑈. (33)

Lemma 7. Let 𝑢, V ∈ 𝐸, and 𝛼 ∈ (0, 1], 𝜆 ∈ (0, +∞]; then
one has (i) if 𝑓 : R → R is continuous, [𝑓(𝑢)]𝛼 = 𝑓([𝑢𝛼])
holds; (ii) if 𝑓 : R → R is continuous, then 𝑓(Supp(𝑢)) =
Supp(𝑓(𝑢)).
Proof. We need to only prove (ii) since (i) comes from [39].
At first, we demonstrate 𝑓(𝐴) = 𝑓(𝐴) for 𝐴 ⊂ R. In fact,
since 𝑓(𝐴) ⊂ 𝑓(𝐴), and 𝑓(𝐴) is closed by the continuity of 𝑓,
hence 𝑓(𝐴) ⊂ 𝑓(𝐴). On the other hand, for arbitrarily given𝑦 ∈ 𝑓(𝐴), there is a sequence {𝑥𝑛 | 𝑛 ∈ 𝑁} ⊂ R and a 𝑥 ∈ R,
such that 𝑥𝑛 → 𝑥 (𝑛 → +∞), 𝑦 = 𝑓(𝑥). The continuity of𝑓 implies lim𝑛→+∞𝑓(𝑥𝑛) = 𝑓(𝑥) = 𝑦. But 𝑓(𝑥𝑛) ∈ 𝑓(𝐴), so𝑦 ∈ 𝑓(𝐴). Hence 𝑓(𝐴) ⊂ 𝑓(𝐴). Thus 𝑓(𝐴) = 𝑓(𝐴).

Considering

Supp (𝑓 (𝑢)) = {𝑦 ∈ R | 𝑓 (𝑢) (𝑦) > 0},
𝑓 (Supp (𝑢)) = 𝑓 ({𝑥 ∈ R | 𝑢 (𝑥) > 0}) , (34)

we obtain the fact that

𝑓 (Supp (𝑢)) = 𝑓 ({𝑥 ∈ R | 𝑢 (𝑥) > 0})
= {𝑓 (𝑥) ∈ R | 𝑢 (𝑥) > 0} (35)

holds. Since it may be easily proved that {𝑦 ∈ R | 𝑓(𝑢)(𝑦) >0} = {𝑓(𝑥) | 𝑢(𝑥) > 0}, therefore,
Supp (𝑓 (𝑢)) = 𝑓 (Supp (𝑢)) (36)

which implies the lemma.

Lemma 8. Let 𝐵 ⊂ R be a compact set and𝑓, 𝑔 be continuous
on 𝐵, ℎ > 0; moreover

𝑓 (𝑥) − 𝑔 (𝑥) < ℎ, ∀𝑥 ∈ 𝐵. (37)

Then, for each compact set 𝐵1 ⊂ 𝐵, we have |sup𝑥∈𝐵1𝑓(𝑥) −
sup𝑥∈𝐵1𝑔(𝑥)| < ℎ.
Proof. Because of the facts that 𝐵1 is a compact set and 𝑓, 𝑔
are continuous on 𝐵1, then there are 𝑥0 ∈ 𝐵1, 𝑦0 ∈ 𝐵1, such
that

𝑓 (𝑥0) = sup
𝑥∈𝐵1

𝑓 (𝑥) ,
𝑔 (𝑦0) = sup

𝑥∈𝐵1

𝑔 (𝑥) . (38)

Supposing |𝑓(𝑥0) − 𝑔(𝑦0)| ≥ ℎ, we have
𝑓 (𝑥0) − 𝑔 (𝑦0) ≤ −ℎ,

or 𝑓 (𝑥0) − 𝑔 (𝑦0) ≥ ℎ. (39)

In the first case of (39), because 𝑓(𝑦0) ≤ 𝑓(𝑥0),
𝑓 (𝑦0) − 𝑔 (𝑦0) ≤ 𝑓 (𝑥0) − 𝑔 (𝑦0) ≤ −ℎ ⇒𝑓 (𝑦0) − 𝑔 (𝑦0) ≥ ℎ (40)

holds, which contradicts (37). In the second case of (39), since𝑔(𝑥0) ≤ 𝑔(𝑦0), we obtain
𝑓 (𝑥0) − 𝑔 (𝑥0) ≥ 𝑓 (𝑥0) − 𝑔 (𝑦0) ≥ ℎ ⇒𝑓 (𝑥0) − 𝑔 (𝑥0) ≥ ℎ (41)

which also contradicts (37). Therefore, (39) is not true; hence−ℎ < 𝑓(𝑥0) − 𝑔(𝑦0) < ℎ, so |𝑓(𝑥0) − 𝑔(𝑥0)| < ℎ; that is,|sup𝑥∈𝐵1𝑓(𝑥)−sup𝑥∈𝐵1𝑔(𝑥)| < ℎ.The proof is completed.

Theorem 9. Let 𝑓 : R → R be a continuous function; then
for each compact set 𝜃 ⊂ 𝐸0 (the set of all the bounded fuzzy
set) and 𝜓 > 0, there are 𝑛 ∈ 𝑁 and 𝑎0, 𝑎𝑖 ∈ 𝐸0, 𝑖 = 1, 2, . . . , 𝑛,
such that

𝑑(𝑓 (�̃�) , 𝑛∑
𝑖=1

𝑓𝑖 (𝑥) 𝑎𝑖 + 𝑎0) < 𝜓, ∀𝑥 ∈ 𝜃, ∀�̃� ∈ R, (42)

where 𝜓 is a finite number.

Proof. The proof of the theorem can be followed from the
results below.

If the function 𝑓 : R → R, we can extend 𝑓 by the
extension principle to the fuzzy functionwhich is alsowritten
as 𝑓 : 𝐸0 → 𝐸 as follows:

𝑓 (𝑢) (𝑦) = ⋁
𝑓(𝑥)=𝑦

{𝑢 (𝑥)} , 𝑦 ∈ R, ∀𝑢 ∈ 𝐸0, (43)

where 𝑓 is called the extended function. Moreover, 𝑐𝑐(R)
stands for the set of bounded closed intervals ofR. Obviously

[𝑢]𝛼 ∈ 𝑐𝑐 (R) , 𝑢 ∈ 𝐸0 ⇒ ∀𝛼 ∈ (0, 1] . (44)

Moreover

Supp (𝑢) ∈ 𝑐𝑐 (R) . (45)

So from now on, we suppose

Supp (𝑢) = [𝑠1 (𝑢) , 𝑠2 (𝑢)] . (46)

Theorem 10. Let 𝑓 : R → R be a continuous function; then
for each compact set 𝜃 ⊂ 𝐸0,  > 0, and arbitrary 𝜀 > 0, there
are 𝑛 ∈ 𝑁 and 𝑎0, 𝑎𝑖 ∈ 𝐸0, 𝑖 = 1, 2, . . . , 𝑛, such that

𝑑(𝑓 (𝑥) , 𝑛∑
𝑖=1

𝑓𝑖 (𝑥) 𝑎𝑖 + 𝑎0) < , ∀𝑥 ∈ 𝜃, (47)

where  is a finite number.The lower and the upper limits of the𝛼-level set of fuzzy function diminish to , but the center goes
to 𝜀.
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Proof. Because 𝜃 ⊂ 𝐸0 is a compact set, hence, by Lemma 6,
we consider 𝑈 ⊂ R to be the compact set corresponding to𝜃. ∀𝜀 > 0, by the conclusions in [27], there are 𝑛 ∈ 𝑁 and𝑎0, 𝑎𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑛, such that

𝑓 (𝑥) −
𝑛∑
𝑖=1

𝑓𝑖 (𝑥) 𝑎𝑖 + 𝑎0
 < 𝜀, ∀𝑥 ∈ 𝑈, (48)

holds. Let 𝑔(𝑥) = ∑𝑛𝑖=1 𝑓𝑖(𝑥)𝑎𝑖 + 𝑎0, 𝑥 ∈ R; then

𝑓 (𝑥) − 𝑔 (𝑥) < 𝜀, ∀𝑥 ∈ 𝑈. (49)

ByTheorem 11, we imply that (47) holds.

Theorem 11. Supposing 𝜃 ⊂ 𝐸0 is compact, 𝑈 the correspond-
ing compact set of 𝜃 and 𝑓, 𝑔 : R → R are the continuous
functions which satisfy the condition that, for given ℎ > 0,

𝑓 (𝑥) − 𝑔 (𝑥) < ℎ, ∀𝑥 ∈ 𝑈, (50)

holds. Then, ∀𝑢 ∈ 𝜃, 𝑑(𝑓(𝑢) − 𝑔(𝑢)) ≤ ℎ.
Proof. Let 𝑢 ∈ 𝐸 and 𝛼 ∈ (0, 1]. Because 𝑓, 𝑔 are continuous,
hence [𝑓(𝑢)]𝛼 = 𝑓([𝑢𝛼]), [𝑔(𝑢)]𝛼 = 𝑔([𝑢𝛼]) holds by
Lemma 7. Therefore, we obtain the following facts by the
conclusions from [40]:

𝑑𝐻 ([𝑓 (𝑢)]𝛼 − [𝑔 (𝑢)]𝛼) = 𝑑𝐻 (𝑓 ([𝑢𝛼]) − 𝑔 ([𝑢𝛼]))
= sup
|𝑝|=1

{𝑠 (𝑝, 𝑓 ([𝑢𝛼])) − 𝑠 (𝑝, 𝑔 ([𝑢𝛼]))} . (51)

Because, for 𝑝 ∈ R: |𝑝| = 1, we have that
𝑠𝑝, 𝑓 ([𝑢𝛼]) − 𝑠 (𝑝, 𝑔 ([𝑢𝛼]))
= sup {𝑝𝑦 | 𝑦 ∈ 𝑓 ([𝑢𝛼])}
− sup {𝑝𝑦 | 𝑦 ∈ 𝑔 ([𝑢𝛼])}
= sup {𝑝𝑓 (𝑥) | 𝑥 ∈ [𝑢]𝛼}
− sup {𝑝𝑔 (𝑥) | 𝑥 ∈ [𝑢]𝛼}

(52)

holds. And considering the conditions in the theorem, we
obtain

𝑝𝑓 (𝑥) − 𝑝𝑔 (𝑥) = 𝑓 (𝑥) − 𝑔 (𝑥) < ℎ, ∀𝑥 ∈ [𝑢]𝛼 . (53)

Therefore, by (51), (52), and Lemma 8, the following

𝑑𝐻 ([𝑓 (𝑢)]𝛼 , [𝑔 (𝑢)]𝛼) < ℎ ⇒
𝑑 (𝑓 (𝑢) , 𝑔 (𝑢)) = sup

𝛼∈(0,1]

{𝑑𝐻 ([𝑓 (𝑢)]𝛼 , [𝑔 (𝑢)]𝛼)}
≤ ℎ, ∀𝛼 ∈ (0, 1] ,

(54)

holds, which proves the theorem.
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Figure 2: Pumping water from one tank to the other two tanks [37].

5. Numerical Examples

In this section, we use four examples to show how to apply
fuzzy equations to model uncertain nonlinear systems. Here
the learning rate in (30) is 𝜂 = 0.001; themomentum constant
in (31) is 𝛾 = 0.001.
Example 1. There are three tanks connected to a pipeline at a
constant 𝐻; see Figure 2. We want to pump water from one
tank to the other two tanks.This system satisfies the following
fuzzy relation

𝐻 = 𝐴0 ⊕ 𝐴1𝐹1 ⊕ 𝐴2𝐹2 ⊕ 𝐴3𝐹3, (55)

where 𝐹1 = √2𝑥, 𝐹2 = 𝑥√𝑥, and 𝐹3 = 𝑥3 are the quantity
of flow and 𝑥 is the elapsed time. 𝐻 is the high of the pipe,𝐴0, 𝐴1, 𝐴2, and 𝐴3 are the characteristic coefficients of the
pump; they satisfy triangular uncertainty (5):

𝐴0 = (1, 5, 8) ,
𝐴1 = (3, 7, 8) ,
𝐴2 = (1, 2, 4) ,
𝐴3 = (1, 3, 4) .

(56)

We use four types of input to train the neural network, whose
weights are the fuzzy parameters of (55). The input data are

𝑥 = {2, (2, 4, 5) , (3, 5, 6, 7) , (1, 2, 4)} , (57)

where (2, 4, 5) and (1, 2, 4) satisfy the triangle function (5),(3, 5, 6, 7) is the trapezoidal function (6), and 2 is a crisp
number. These inputs are applied to (55); the corresponding
outputs data are

𝐻 = {(17.82, 48.65, 67.31) , (17.82, 224.79, 544.47) ,
(40.54, 413.31, 691.94, 1344.45) ,
(7.24, 48.65, 318.62)} .

(58)

Now these input/output pairs are used repeatedly to train the
neural network. The weights are 𝐴0, 𝐴1, 𝐴2, and 𝐴3. The
training results are shown in Table 1.We can see that the fuzzy
characteristic coefficients converge to their real values.
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Table 1: Neural network approximation for the coefficients.

𝑡 𝐴0 𝐴1 𝐴2 𝐴31 (3.9, 7.9, 10.9) (5.9, 9.8, 10.9) (2.91, 3.9, 5.9) (3.9, 5.9, 6.9)2 (3.7, 7.7, 10.6) (5.7, 9.6, 10.7) (2.7, 3.71, 5.8) (3.7, 5.7, 6.8)... ... ... ... ...75 (1.0, 5.0, 8.0) (3.0, 7.0, 8.0) (1.0, 2.0, 4.0) (1.0, 3.0, 4.0)

A B C D R

KA KB KC KD

Figure 3: Heat source by insulating materials [37].

Example 2. The heat source is on the left of the insulating
materials; see Figure 3. The conductivity coefficients of these
materials are 1/𝐾𝐴 = 𝑒𝑥, 1/𝐾𝐵 = 𝑥√2𝑥, and 1/𝐾𝐶 = √𝑥;
here 𝑥 is the elapsed time. The thermal balance is as follows
[41]:

𝑅 = 𝐴𝐾𝐴 ⊕
𝐵𝐾𝐵 ⊕

𝐶𝐾𝐶 . (59)

The real parameters are

𝐴 = (3, 4, 6) ,
𝐵 = (1, 4, 5) ,
𝐶 = (2, 3, 4) .

(60)

We have the following three types of input:

𝑥 = {(2, 3, 4) , (3, 5, 6) , (1, 3, 5, 7)} , (61)

where (2, 3, 4) and (3, 5, 6) satisfy the triangle function (5) and(1, 3, 5, 7) is the trapezoidal function (6). The corresponding
outputs data are

𝑅 = {(28.99, 114.93, 392.15) , (71.06, 663.6, 2534.29) ,
(11.56, 95.96, 616.17, 6616.37)} . (62)

We repeat them for neural network training. The approx-
imation errors are shown in Figure 4. After 99 times, the
parameters 𝐴, 𝐵, and 𝐶 converge.

Example 3. The water in the pipe 𝑑1 is divided into three
pipes 𝑑2, 𝑑3, and 𝑑4; see Figure 5. The areas of the pipes are
uncertain; they satisfy the triangle function (5).𝐴2 = (1, 3, 5),𝐴3 = (3, 5, 6), and 𝐴4 = (2, 4, 5). The water velocities in
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Figure 4: Neural network approximation errors.
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Figure 5: Water channel system.

the pipes are controlled by the valves parameters 𝑥, V2 = 𝑒𝑥,
V3 = 𝑥, and V4 = √𝑥 [42]. The discharge of the water cross in
pipe 𝑑1 is

𝑄 = 𝐴2V2 ⊕ 𝐴3V3 ⊕ 𝐴4V4. (63)

We have the following three types of input:

𝑥 = {(1, 2, 3) , (2, 3, 5) , (3, 4, 6)} , (64)

where (1, 2, 3), (2, 3, 5), and (3, 4, 6) satisfy the triangle func-
tion (5). The corresponding outputs data are

𝑄 = {(7.71, 59.99, 327.94) , (23.6, 202.69, 3751.51) ,
(72.72, 683.17, 12151.11)} . (65)
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Table 2: Neural network approximation for the coefficients.

𝑡 𝐴2 𝐴3 𝐴41 (3.9, 5.9, 7.9) (5.8, 7.9, 8.9) (4.9, 6.8, 7.8)2 (3.7, 5.6, 7.7) (5.7, 7.7, 8.7) (4.7, 6.6, 7.7)3 (3.5, 5.4, 7.5) (5.6, 7.5, 8.6) (4.6, 6.4, 7.5)... ... ... ...57 (1.0, 3.0, 5.0) (3.0, 5.0, 6.0) (2.0, 4.0, 5.0)
Table 3: Neural network approximation for the coefficients.

𝑡 −𝐿1/(𝐴 ∗ 𝐸𝐸) −𝐿2/(𝐴 ∗ 𝐸𝐸) −𝐿3/(𝐴 ∗ 𝐸𝐸)
1 (−8.8, −6.9, −5.8) (−9.9, −8.9, −5.91) (−6.8, −5.7, −4.9)2 (−8.7, −6.7, −5.7) (−9.7, −8.7, −5.8) (−6.6, −5.6, −4.8)3 (−8.5, −6.6, −5.5) (−9.6, −8.6, −5.6) (−6.5, −5.5, −4.7)... ... ... ...69 (−5.0, −3.0, −2.0) (−6.0, −5.0, −2.0) (−3.0, −2.0, −1.0)

N B
A M

d

L1L2

F1F2

(a)
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C M

d

L3

F3

(b)

Figure 6: Two solid cylindrical rods.

We repeat the above input/output 57 times. The neural
approximation results of𝐴2,𝐴3, and𝐴4 are shown in Table 2.
Example 4. The deformation of a solid cylindrical rod made
of special foam depends on stiffness 𝐸, three different forces
on it 𝐹1, 𝐹2, and 𝐹3, the positions of the forces 𝐿1, 𝐿2, and 𝐿3,
and the diameter of the rod 𝑑 [36]; see Figure 6. The area of
the rod is 𝐴 = (𝜋/4)𝑑2.The external forces are the function
of , 𝐹1 = 𝑥2, 𝐹2 = √𝑥, and 𝐹3 = 2𝑥 [43]. According to the
tension relations [43],

−𝐿1 (𝐹1 + 𝐹2 + 𝐹3)𝐴 ∗ 𝐸𝐸 ⊕ −𝐿2 (𝐹2 + 𝐹3)𝐴 ∗ 𝐸𝐸 ⊕ −𝐿3𝐹3𝐴 ∗ 𝐸𝐸 = 𝑁, (66)

where 𝑑 = 0.02, 𝐸𝐸 = 2 × 103, and
−𝐿1𝐴𝐸 = (−5, −3, −2) ,
−𝐿2𝐴𝐸 = (−6, −5, −2) ,
−𝐿3𝐴𝐸 = (−3, −2, −1) .

(67)

We have the following three types of input:

𝑥 = {(1, 3, 4) , (5, 6, 7) , (2, 3, 5)} , (68)

where (1, 3, 4), (5, 6, 7), and (2, 3, 5) satisfy the triangle func-
tion (5). The corresponding outputs data are

𝑁 = {(−77, −36, −5) , (−194, −105, −37) ,
(−110, −36, −10)} . (69)

We use a neural network to approximate −𝐿1/𝐴𝐸, −𝐿2/𝐴𝐸,
and −𝐿3/𝐴𝐸. Convergence is reached after 69 times training.
The results are shown in Table 3. To compare our method
with the other numerical methods, we use the fuzzy cubic
spline method [44] to approximate the solutions of the
fuzzy equation (66). The comparison results are shown in
Figure 7. We can see that both the neural networks based
algorithm (our method) and the fuzzy cubic spline method
can approximate the solutions of the fuzzy equations. The
approximation errors of the neural networks based algorithm
are much smaller than the fuzzy cubic spline method.
Also the convergence speed of the neural networks based
algorithm is faster. The fuzzy cubic spline method is not
robust at the beginning stage.

6. Conclusion

In this paper, the uncertainties in nonlinear systems are
modeled by the fuzzy equations and fuzzy numbers.However,
the parameters of the fuzzy numbers and fuzzy equations
cannot be obtained directly.We construct neuralmodels with
the similar structure as the fuzzy equations. Bymodifying the
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Figure 7: Approximation errors of neural network and fuzzy cubic
spline.

backpropagation method, the neural networks are trained.
The coefficients of the fuzzy equations are approximated
by the neural networks. The upper bounds of the fuzzy
modeling errors are proven. We successfully extend the
approximation theory of crisp models to fuzzy equation
model. The novel modeling method is validated with four
benchmark examples.
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