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Numerical solution of fuzzy equationswith Z-numbersusing neural
networks

In this paper, the uncertainty property is represented by the Z-number as the
coefficients of the fuzzy equation. This modification for the fuzzy equation is
suitable for nonlinear system modeling with uncertain parameters. We also

extend the fuzzy equation into dual type, which is natural for limeparameter
nonlinear systems. The solutions of these fuzzy equations are the controllers

when the desired references are regarded as the outputs. The existence conditions
of the solutions (controllability) are proposed. Two types of neural networks are
implemented to approximate solutions of the fuzzy equations with Z-number

coefficients. Type or paste your abstract here.
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Introduction

Uncertainties are inevitable in real systems. Control of uncertain system is classified in
two methodologies: direct and indirect techniques (Feng, 2006). The methodology
involves the direct control incorporates uncertain system as a controlling mechanism,
whereas the indirect uncertain model is used to approximate the nonlinear system as a
first step, then proceeds controller design based on uncertain model. The indirect fuzzy
controller works on the principle of generalized topological structure as well as
universal approximation capacity associated to fuzzy model. It has been utilized
primarily, considering the case of uncertain nonlinear system control. This paper utilizes

the indirect control method.

Since the uncertainty in parameters can be transformed into fuzzy set theory (Zadeh,
2005), fuzzy set and fuzzy system theory are good tools to deal with uncertain systems.
Fuzzy models are applied for a large class of uncertain nonlinear systems. Fuzzy
method is a highly favorable tool for uncertain nonlinear system modeling. The fuzzy

models approximate uncertain nonlinear systems with several linear piecewise systems



(Takagi-Sugeno method) (Takagi & Sugeno, 1985). Mamdani models use fuzzy rules to
achieve a good level of approximation of uncertainties (Mamdani, 1976). In recent days,
many methods involving uncertainties have used fuzzy numbers (Buckiry £990)

(Jafari & Yu, 2015) (Jafarian & Jafari, 2012) (Jafarian, Jafari, Mohamed Al Qurashi, &
Baleanu, 2016), where the uncertainties of the system are represented by fuzzy

coefficients.

The application of the fuzzy equations is in direct connection with the nonlinear control.
Given a fuzzy equation, the control incorporated in the equation is in fact a solution of
the equation. There are number of techniques to study the solutions of fuzzy equations.
(Friedman, Ming, & Kandel, 1998) used the fuzzy number on parametric shapes and
replaced the original fuzzy equations with crisp linear systems. A survey on the
extension principle is proposed by (Buckley & Qu, 1990) and it suggests that the
coefficients can be either real or complex fuzzy numbers. Nevertheless, there will be no
guarantee that the solution exists. (Abbasbandy, 2006) proposed the homeotypic
analysis technique. (Abbasbandy & Ezzati, 2006) used the Newton methodology. In
(Allahviranloo, Otadi& Mosleh, 2007) the solution associated to the fuzzy equations is
studied by the fixed point technique. One of the most popular methodsas-teeel
(Goetschel & Voxman, 1986). By applying the technique of overlay of sets, fuzzy
numbers can be resolved (Mazandarani & Kamyad, 2013). The fuzzy fractional
differential and integral equations have been investigated extensively in (Agarwal,
Lakshmikantham& Nieto, 2010) (Arshad & Lupulescu, 2011) (Salahshour,
Allahviranloo, & Abbasbandy, 2012) (Wang & Liu, 2011). In (Khastan, Ni&to,
Rodriguez-lopez, 2013), the first-order fuzzy differential equation with periodic
boundary conditions is analyzed. Then, higher order linear fuzzy differential equations

is studied. In (Allahviranloo, Kian& Barkhordari, 2009), the analytical solutions of



the second-order fuzzy differential equation is obtained. The analytical solutions of
third-order linear fuzzy differential equations are found in (Hawrra & Amal, 2013),
while (Buckley & Feuring, 2001) proposed analytical approach to resolve nth-order
linear fuzzy differential equations. Nevertheless, the analytical solutions of fuzzy
equations are difficult to obtain and the aforementioned techniques involve greater

complexity.

The numerical solution associated to the fuzzy equation and the fuzzy differential
equations (Lupulescu, 2009)] can be extracted by iterative technique (Kajani, Asady, &
Vencheh, 2005), interpolation technique (Wa&irMajid, 2012) and the Runge-Kutta
technique (Pederson & Sambandham, 2008). However, the implementation of these
techniques are difficult. Both neural networks as well as fuzzy logic are considered to
be the universal estimators which can estimate any nonlinear function to any notified
precision (Cybenko, 1989). Recent results show that the fusion of the neural networks
and the fuzzy logic gives remarkable success in nonlinear system modeling (Yu & Li,
2004). The neural networks may also be used to solve fuzzy equations. (Buckley &
Eslami, 1997) used a neural network with three neurons to estimate the second degree
fuzzy equation. (Jafarian, Jafari, Khalili, & Baleanu, 2015) and (Jafarian &
Measoomynia, 2011) extended the result of (Buckley & Eslami, 1997) to fuzzy
polynomial equations. In (Jafarian & Jafari, 2012), the solution of dual fuzzy equation is
obtained by neural networks. (Mosleh, 2013) gave a matrix form of the neuronal
learning. By extending classical fuzzy set theory, (Hullermeier, 1997) obtained a
numerical solution for an fuzzy differential equation. The predictorector approach

is applied in (Allahviranloo, Ahmadi, & Ahmadi, 2007). The Euler numerical technique
is used in (Tapaswini & Chakraverty, 2014) to solve fuzzy differential equations.

Whatsoever, these techniques are not general, they cannot give the fuzzy coefficients



directly with neural networks (Tahavvor & Yaghoubi, 2012).

The decisions are carried out based on knowledge. In order to make the decision
fruitful, the knowledge acquired must be credible. Z-numbers connect to the reliability
of knowledge (Zadeh, 2006). Many fields related to the analysis of the decisions use the
ideas of Z-numbers. Z-numbers are much less complex to calculate when compared to
nonlinear system modeling methods. The Z-number is abundantly adequate number
than the fuzzy number. Although Z-numbers are implemented in many literatures, from
theoretical point of view this approach is not certified completely. There are few
structure based on the theoretical concept of Z-numbers (Gardashova, 2014). (Aliev,
Alizadeh, & Huseynov, 2015) gave an inception which results in the extension of the Z-
numbers. (Kang, Wei, L& Deng, 2012) proposed a theorem to transfer the Z-numbers
to the usual fuzzy sets. In (Zadeh, 2006) a novel approach was followed for the

conversion of Z-number into age old fuzzy number.

Normal fuzzy equations contain fuzzy numbers just on one side of the equation.
Nevertheless, dual fuzzy equations contain fuzzy numbers on both sides of the equation.
Whereas the fuzzy numbers are not able to move between the sides of the equation
(Kajani, Asady, & Venchech, 2005), dual fuzzy equations can be considered to be more

general and complicated.

In this paper, we use dual fuzzy equations (Waziri & Majid, 2012) to model the
uncertain nonlinear systems, where the coefficients are Z-numbers and the Z-numbers
are on both sides of the equation. The Z-number is a novel idea that is subjected to a
higher potential in order to illustrate the information of the human being as well as to
use in information processing (Zadeh, 2006). Z-numbers can be regarded as to answer

questions and carry out the decisions (Kang, Wei, Li, & Deng, 2012).



This paper is one of the first attempts in finding the solution of dual fuzzy equations
based on Z-numbers. We first discuss the existence of the solutions of the dual fuzzy
equations. It corresponds to controllability problem of the fuzzy control (Chen, 1994).
After that, we use two types of neural networks, feed-forward and feedback networks,
to approximate the solutions (control actions) of the dual fuzzy equation. At the end
several examples are utilized in order to demonstrate the affectivity of our fuzzy control

design methods.

Nonlinear system modeling with dual fuzzy equationsand Z-numbers

In order to utilize dual fuzzy equations and Z-numbers, we first introduce some
concepts of discrete-time nonlinear system and Z-numbers.

A general discrete-time nonlinear system can be described as
%1 = fXoud ve=g%] (1)

Here we considen, e R" as the input vectory, € R' is regarded as an internal state
vector andy, € R™ is the output vectorf andg are noted as generalized nonlinear
smooth functionsf, g e C*. Define, = [ylﬂ, yl]T andU, = [uLl,uI,m]T. Suppose

2 is non-singular at the instandg =0, U, =0, this will create a path towards the

following model
Yie = PIYe1 Yeor - Ug  Ug g, (2)

where¥(-) is an nonlinear difference equation exhibiting the plant dynarajcand

Yy, are computable scalar input and output respectivklig noted to be time delay.



The nonlinear system which is represented by (2) is implied as a NARMA model. The
input of the system with incorporated nonlinearity is considered to be as

Xe =[Yiws Yior U U T

Taking into consideration the nonlinear systems as mentioned in (2), it can be

simplified as the following lineair-parameter model

4=iaﬂ&) ©)
or
4+ibgmo=iaﬁMJ @)

herea andb are considered to be the linear parametéfs, ) and g,(x,) are
nonlinear functions. The variables related to these functions are quantifying input and
output. A popular example of this pattern of model is considered to be a robot

manipulator (Spong & Vidyasagar, 1989)

M(p) p+C(p. p) p+ Bo+9g(p)=7 (5)
(5) can be explained as
> (p.p.p)0, = ¢ ©)

The modeling of uncertain nonlinear systems can be achieved by utilizing the

linearin-parameter models linked to fuzzy parameters. We assume the model of the

nonlinear systems (3) and (4) have uncertainties in the pararaetdb . These

uncertainties are in the sense of Z-numbers (Zadeh, 2011).

Definition 1: A fuzzy numberA is a functionAc E : R —[0,1], in such a way, 1A
is normal, (there prevai, € R in such a wayA(x,) =1; 2) A is convex,

AAX+ (L—A)y) > Min { A(X), Aly)}, VX, yeR,VA1e[0]1]; 3) A is upper semi-



continuous o , i.e., A(X) < A(X,) +¢&, VXe N(X,), VX eR, Ve>0, N(x,) isa

neighborhood; 4) The sék” ={xe R, A(X) >0} is compact.

Definition 2: A Z-number has two componenfs=[A(x), p]. The primary component
A(x) is termed as a restriction on a real-valued uncertain variabléne secondary
componentp is a measure of reliability oA. p can be reliability, strength of belief,
probability or possibility. Whem(x) is a fuzzy number ang is the probability
distribution of x , the Z-number is defined & -number. When bottA(x) and p are

fuzzy numbers, the Z-number is definedZasnumber.
The Z" -number carries more information than the-number. In this paper,
we use the definition of " -number, i.e..Z = [A, p], A is a fuzzy numberp is a

probability distribution.
In order to demonstrate the fuzzy numbers, the membership functions are
utilized. The most widely discussed membership functions are noted to be the triangular

function

x-a

b2 asx<b ,
uy=F(abo)=1"" o< y < otherwisau, =0 (7)

cb

as well as trapezoidal function

2 a<x<b
Uy = F(a,b,c,d)z &x c<x<dotherwiseu, =0 (8)
1 b<x<c

The probability measure is expressed as
P = | 1,0 p(dx 9)
where p is the probability density ok and R is the restriction onp. For discrete Z-

numbers, we have



P(A) =Y 412(%) P(X) (10)

The space of discrete fuzzy sets is denote& bﬁ[ ap denotes the space of discrete

fuzzy sets of a b] = R . Signifying 7 the space of discrete Z-numbers as
Z={Z=(Ap)|AcE, peEyy} (11)
Definition 3: The o -level associated to a fuzzy numbgrns stated as

[Al” ={xeR: AX)>a} (12)
also,0<a <1. Or

(A" = (a7, A7)

In order to operate the Z-number, we propose the following definition.

Definition 4: The « -level of the Z-numbe&Z = (A, p) is demonstrated as

[21° =([A*[p]°) (13)

whereO< a <1. [p]“ is calculated by the Nguyen's theorem

[p1* = p(AI) = pUA", A°]) =[P

where p([A]“) = {p(x)|XG[A]”‘}. So[Z]“ can be expressed as the fomrevel of a
fuzzy number
(21" = (z°,z7)= (. p*) (A7) (14)
where P“ = A“p(x “), P = A“p(x "), [x] = (x“.x").

Similarly with the fuzzy numbers (Jafari & Yu, 2015), the Z-numbers are also
incorporated with four primary operatior®, ©, © and . These operations are
exhibited by: sum, subtract, multiply and division. The operations in this paper are

different from that mentioned in (Zadeh, 2011). Thdevel of Z-numbers is applied to

simplify the operations.



Let us consideZ, = (A, p,) andZ, =(A,, p,) be two discrete Z-numbers
illustrating the uncertain variables and x,, also >}, p,(x,) =1 and >}, p,(x,) =1 .
The operations are defined as
Z,=2Z*Z,=(A*A,Pi*Py)
where € {P,6,0,0}.

The operations for the fuzzy numbers are defined as (Jafari & Yu, 2015)

(4,04, = |45 + A% 4] + 43 | (15)
—a —a

[Al © Az]a = [A? - _g'Al - Az]

[A; © A,]* = [ATAS + ATAZ — ATAS, A\ A, + Ay Ay — A1 4y ]

For all p, * p, operations, we use convolutions for the discrete probability distributions

PP, = Z pl(xj,i)pz(xz,(n—i)) = Pio(X)

The above definitions satisfy the Hukuhara difference (Alieva, Pedryczb, Kreinovich, &
Huseynov, 2016)

Zy Oy Zy =2y

Z1=7Z,DZ,

Here ifZ; ©y Z, prevall, thea -level is

(2, On 221" = (28 = 28,7, — 7]

Obviously,Zz, ©y 72, =0,Z, ©Z, # 0.

If A is atriangle function, the absolute value of the Z-nunaer(A, p) is

iz =(a [+1b [+]c | p(a, [+1b, |+]c, 1) (16)

Now we utilize fuzzy equations (3) or (4) to model the uncertain nonlinear
system (2). The parameters of the fuzzy equations (3) or (4) are in the form of Z-

numbers

Vi = a10f1 (X ) D, Of (x1)® ... Da, O fy, (x1) (17)



or
a,10f1 () Ba, Of (x1)® ... Ba, Ofy (x) =
b1® g1 (x)Bb, O g, (X, )D ... Bby, O gom (x1) D Vi (18)
wherea andb are Z-numbers. (18) is considered to be more general as compared to
(17), itis termed as dual fuzzy equation.

Taking into consideration a particular cagg(x,) has polynomial pattern,
(a,0x) @ ... ® (a,Oxf) = (b1Oxy) @ ... D (b, Oxi) D yi (19)
(19) is termed as dual polynomial based on Z-number.

The main intention associated with the modeling is to diminish error in midst of

two outputy, and z. As Y, is noted as a Z-number argd is considered to be crisp Z-
number, hence we apply the minimum of every points as the model mentioned below

maxk|yk - Zk| = maxk|ﬂk|
Yie = (1K), U, (K), U5 (K)), p(va (K), v, (K), V5 (K)) (20)
B = (2,(K), p2(K), 3 (K)), Pl (K), 2, (K), 95(K)))

By the definition of absolute value (abs), we conclude

max, | B| = max[(| u (k) = T (x ) [+ u, (k) = f (%)

+1Us(K) = £ (5D, (| Py (K)) = £ (%) [+ PV, (K)) = T (%) [+ ] p(va(K)) = T (%) D]

pu(K) =max [u (K) = F(X) ], (k) =max |uy(K) = T (X)), (21)
Ps(K) = max [us(K) - f ()]

P(e.(K)) = max, | p(vy(K)) = T (X) |, P(e,(K)) = max, | p(v,(K)) = T (),

P(es(k)) = max, | p(vs(K)) = f(x )]

The modelling constraint (20) is to uncowe(k), u,(k), U;(K), p(v,(k)), p(v,(k)) and

p(v;(K)) in such a manner

q(kmi&?(k»imﬁ)w"”: q(kmi(q(k)){mMyk - f(xk)”’ 1=123 (22)

k

Considering (21), we have



P (K)2[u(K) = F(X) |, P (K)2|uy(K) = T (%) |, o5 (K) 2] us(k) = (%)
Pl (k) 2| p(vi(K)) = T (X)) |, P, (K)) 2| p(v,(K)) = T (X))
P(s(K)) 2| p(v5(K)) = f (%) |

(22) can be resolved by the application of linear programming methodology

( min p; (k)
100 + {304 Ox} Oy (T=o b OX) = [ (%)
(k) — {Z7-p a; Ox1} On (TT=0 b Ox1)) = —f (x0)
min ¢, (k)
(1) + [XT0 4 Ox} On (Tj=o b Ox)) = f (xi)
subject: . .
\ p(p1(k) = {X7-0a; Ox} Oy (Xfoo by Ox;) = —f (xi)

subject
(23)

min pz(k) .
subject:ngg;[oi?—oéjxi S3ab, x| (%)
0,(K) >
(0, (K) ~ [Z02, %~ 570b X! | (%)

subject:
p(p,(K)) =0

min p; (k) o
oK) = [Z10a %) - 3" oBi%! > F(%,)
py(K)=0
ming,() 29
B(p3(K)) = [Z708, %) — X0oB %! |2 £ (%)
p(5(K)) > 0

subject:

subject:

herea,, b

=j

X, &, EJ and X, are explained as mentioned in (13). Henceforth, the
superior way of approximatind (X,) at the juncturex, is y, . The minimization of
the approximation error which is termed sis achieved.

The process involved in order to design the controller is to obtaim such a

manner that the output related to the plgptcan approach to the desired outgyit or

the trajectory tracking error diminishes

(26)

minly, ~¥;
Uy



This control entity can be regarded as to detect a solutidor the following
dual equation on the basis of Z-number
(a1®f1(xk))®(a2®f2(xk))® ®(an®fn(xk)) =
(b10g1 (X)) B (b0 g, (i ))® ... B (b, OGm (%)) D yi (27)

T T T T T
where X, =[Y, 1, Yior U U gs ]

Controllability of uncertain nonlinear systemsvia dual fuzzy equations and

Z-numbers

As the primary concern of control is finding ayt as mentioned in (18) which is relied
on Z-number, the controllability constraint signifies that the dual fuzzy equatipn (18
involves solution.

We need the following lemmas for displaying the solution of (18)
Lemma 1: If the coefficients of the dual equation (18) are Z-numbers, then the solution
u, satisfies
{~", domair] f, (x)[}~ {~™, domair]g, (x)]} = ¢ (28)
Proof. Assumeu, € Z is considered to be a solution of (18), the dual equation which

relies on Z-numbers turns out to be
(a1®f1(uo))@ @(aann(uo)) = (b10g1 (1)) ... (b, Ogm (uy)) @ yi

As f,(u,) andg;(u,) prevails,u, € domain|f,(x)} u, € domain|g, (x)] .
Subsequently, it can be inferred thgte A", domain| f;(x)|=C, andu, e A\,
domain|g, (x)|=C, . Hence there prevail,, in such a mannetl, e C,"C, = ¢. m

Let two Z-numbersp,, q,Z , P, <0, . We define a seD(x)={xeZ,

P, <X<Qq,} and an operatoV : D —» D as

W(p,)= Py, W(0p)< (29)



in which W is condensing and continuous, also it is boundet/ég < r(z), z< D
and r(2) > 0. r(z) can be considered as the evaluatiorz.of
Lemma 2: We defineq :W(qi_l) and p, :W(pi_l) ,i=212,..., and the upper and

lower bounds ofNV arew and w, then

w=Ilmgqg, w=Ilm p, (30)
and
PB<P=.<p, <20, L...2¢, <0, (31)

Proof. As long asW is uprising, it is quite obvious from (29) that (31) prevalil. In this
case we verify thafp.} conjoins to someve Z andW(w) =w. The set

B={p,, P, P,,..-} is enclosed an® =W(B)U{ p,} , thusr(B) =r(W(B)), herer(B)
denotes the quantification of non-compactnesB ofit is observed fronW that

r(B)=0, i.e., B is a proportionally compact set. Thus, there prevail an outflow of

{p,} ={p,} insuchamannerthag, — w foranywe Z (take into consideration

that Z is complete). Distinctlyp, <w<(, (n=1212,...). As in casem> n,, according
to (Aliev, Huseynov, Aliyev& Alizadeh, 2015) the supremum metrics
Dw, p,) <D(w, p,) . Hence,p,, > W asm— oo . Considering limitn— oo on
either sides of the equalitp, =W(p,_,), we find w=W(w), as a resulV is
continuous and is closed.

Similarly, we can conclude théj,} converges to som@ e Z andW(w) =w .
So we confirm thatv andw are the maximal and minimal fixed point related/foin
D respectively. Assum&/e D andW(w) =w. As W is in the increasing tend, it is

obvious from p, < W< q, thatW(p,) <W(w) <W(q,), i.e., p, < W< q,. Utilizing the



similar logic, we obtainp, < W< q,, and formally,p, <w<q, (n=123,...). Here,
considering limitn — oo, we extractw< w<w.

The fixed point will result inx, inside D, the consecutive iterates =W(x ),
i =12,... will result in convergency towards, i.e.,lim,__ D(X,%,)=0. m
Theorem 1: Let us consideZ = g“,Z“), whereZ” = (d,, (@),d, (@),
z =(dy, (@),d,, (@), «<[01]. If & andb; (i=1--n j=1.--m)in (18) are Z-
numbers and they suffice the Lipschitz condition

(dy, @), dy, (@)~ (dy, (@), dy, (@) < Hia (My) &, (M,)|+ Hla, (M) ~a (M) (32)
(dy, (8),du, (8)) — (dy, (&), d, ()| < Ha (U,) — &, Uy)]+ Hla U,) -, (U,)]

also, the upper bounds of the functiohsand g, are|f|< f, ‘gj‘ < g, then the dual
fuzzy equation (18) has a solutianin the set mentioned below

a(al,ﬂl) _g(az,ﬁz) < (nf @ ng)(H |a1 — a2| +H |ﬁ1 —ﬂ2|)} (33)

Ky = {J e Z,
Proof. Sincea andb, are Z-numbers and from (32) we have
dy(a,B) = ((a1M1(a):a1M2(ﬁ)) © f1(x)> D .0 ((aan(a), Anm, (ﬁ)) ©

fn(x>) O (bua, (@), b1y, (B)) © 91(%)) Ot - Ot (Brana, (@), byaps, (B)) © g (%))
Hence

ldu (@, B) — dy (@, p)| = (1,10 (arn, (@), @1as, (B) O (aras, (), azn, (0))])
- @ (150010 (@nu, (@), B, (B) O (@nas, (9, Gas, (0))]) B

(19, CO1O| b1y, (@), byp, (B) On By, (@), byas, (P)]) D .. B

(lgm €3] ®| (brmm, (), Amm, (B)) ©Ou (b, (®), bmm, (p) |) (34)

With respect to the Lipschitz condition (32), (34) is



dy (@. )= dy (9. )| < T(H Zslar — |+ H £4| - ) @ g(H £l — )
+HEN|B-p) = (nf @ ngkHla - ¢+ H|B - )

In the same manner, the upper limits suffice
dy (e, ), (. )| < 0 @ MG Hle — g+ H|B - )
As the lower limit|d,, (o, ) —d,, (¢, p)| = 0, with respect to Lemma 2 the solution

contains inK,, and is defined in (33

Lemma 3: Let us consider the data number torbeand also we suggest the order of the
equation to ben in (19) that suffices

m>2n+1 (35)
consideringk =1---mhence the solutions of (24) and (25) atgk) = p(e,(K)) =

Ps(K) = pe;(k)) =0

Proof. Since

>ax —>bxi<-f(x) (36)
i=0 j=0
Let us opt2n+1 points through(x,, f (X)) and find the following interpolation dual

polynomial based on Z-number on these data

W@=i@&—igﬁ 37)

i=0
Let j =max{h(k)+ f(x)} and j >0, as a result we can transform the dual
polynomial (19) to the other form of new dual polynontiéd)— j . This suggested

recent dual polynomial based on Z-number suffices (36). Since the presumable spot of

(24) arep,(k) >0 and p(¢,(k)) =0, so it should be zero. In the similar manner,

outcome can be extracted for (b



X, and f(x,) are crisp Z-numbers. In caseloE 1 --n, there should be a

validated solution for the equation approximation (Mhaskar & Pai,)2000
Theorem 2: If there is a big amount of data number as (35) and the dual polynomial

based on Z-number (19) satisfies
D[j(xkl’ukl)’ j(ka’ukZ)]S r.D[ukl'ukZ] 0< r<i (38)
where j(-) exhibits a dual polynomial based on Z-number,

J O, ug1): (@ © x41) @ .. D (@, © x,?l) =B O0x) D .. (b, O X;T(ll) Dy (39)

D[u,v] is the Hausdorff distance related to Z-numberandv,

D[u,V]=ma><{ sup inf (d(x,%,)+d(y,Y,)), sup inf (d(><1,x2)+d(y1,y2))}

(%, Yi)eu (X2, ¥2)ev (%, yl)eV(XZ' Y,)eu
d(x,y) is the supremum metrics considering fuzzy sets, then (19) contains a distinct

solutionu.
Proof. According to lemma 2, there exist solutions for (23)-(25), if there are numerous

data which satisfy (35). Neglecting deficit of generality, let we consider the solutions
for (23)-(25) are at par witk, =0, which tends ta,. (38) signifies j(-) in (39) is
continuous. If we seleaf > 0 in such a manner thd|y,,u,]< &, hence

D[} (% Uo). Up] < @-1)8

where j (O,u,) =u,. Taking into our account we choogeclose to0, x, €[0,5], s> 0,

SO

S, ! 9= sup D[ykl,ykzj
%€[0, 5]

Assume{y, } be a succession i, for any ¢ >0, the computation ofN,(¢) can be
done in such a manngt<e , mnx N, . Hencey, — vy, for X €[0,s] . Henceforth

D[Yi.Us]< D|Yie: Vi |+ DLy, o |< £+ (40)



forall xe[0,5, m>N,(¢). As &> 0 is randomly minute,

D[y, Uy ]< & (41)
for all xe[0,s] . Now we validate thay, is continuous ak, =0 . Taking into
consideratiorny >0 , there prevailss, > 0 in such a manner

D[y, Uo] < D[V, yka+ D[ykm,uojs £+,

for every m> N,(¢), by means of (41), whilex— X, |< J, , Y, is continuous ak, =0.
As a result (19) contains a distinct solutig. m

The necessary circumstance in order to establish the controllability (existence of
solution) related to the dual equation (27) is (28), the sufficient condition related to the
controllability is (32). For majority of membership functions, such as triangular
functions and the trapezoidal function, the Lipschitz condition (32) is fulfilled. In this

case it is considered to be controllable.

Figure 1: A feed-forward neural network (NN) approximates the solutions of fuzzy

equation



Figure 2: A feedback neural network (FNN) approximates the solutions of fuzzy

equation

Utilization of neural networksfor fuzzy controller design

It is not possible to acquire an analytical solution for (27). Here, neural networks are
utilized to approximate the solution (control). In order to fit the neural networks, (27) is

written as
(al O, fl(x))EB ~B(a, O f(x) Oy (b1 O 91(x)) ©u - Oy (by, O

Im (X)) = ¥y (42)
We use two types of neural networks, feed-forward and feedback neural

networks to approximate the solution of (42), see Figure 1 and Figure 2. The Z-numbers

a andb represents the inputs of the neural network, the Z-nuipeepresent the
output. f,(x) and g, (x) are the Z-number weights.

The main idea is to detect appropriate weights of neural networks in such a

manner that the output of the neural netw§rk approaches the desired outpjt
From the view point of control, it is utter necessity to find out a suitable contpller
which is a function ofx, in such a manner that the plan} {4 (crisp value) estimates

the Z-numbery,.



In the control point of view, we want to find a controllgr which is a function
of x,such that the output of the plant §4)crisp value) approximates the Z-numlgr

The input Z-numbers, andb are primarily implemented ta -level as (13)

[a] = af‘,éia) i=1--n 43)
[b.]* =lbf,bj) j=1-m

The next step is initiated by multiplying the above relations with the Z-number weights

f.(x) and g;(x) and summarized as
[Of ]a = Zid\/lf La (X)ﬁa + me La (X)aa 1Zi.51v|; ?ia (X)a_ﬁa,Zm; ?ia (X)ia)) (44)

[Og]a = ZJ'éf\/lg QT(X)DT + Ziecg QT(X)b_ja’Zjd\A; g_ja(x)b_jaazj‘éc'g g_Ja(X)DT

HereM, ={i | f“(x)20} , C, ={i | f“(x)<0}, M, ={i|f,"(x)=0} ,
C=fi1f (<0 M,={jlg/(x)=0}, C;={ilg!(x)<T M,={jlg;"(x)=0}

. Co={ilg,"(x)<0.

The neural network output is
5.} =(of 05,07 -Q7) (45)
The error of the training is

ex = Yr © Yk

here[y; =(X:“,;Eaj, [ = &iyka) &)

(e )
A cost function, which is generated on the basis of Z-numbers is implemented

for the training of the weights as mentioned below

a a 1 *Q a Ta 1 Y Ta 2
, J =§Qk _Xk)21 J ZE(Yk — Yk j (46)

<

J . =J"+

It is quite obvious,J, — 0 when[§, " = [y;["



The vital positiveness lies within the least mean square (46) is that it has a self-
correcting feature that makes it suitable to function for arbitrarily vast duration without
shifting from its constraints. The mentioned gradient algorithm is subjected to
cumulative series of errors and is convenient for long runs in absence of an additional

error rectification procedure.

The gradient technique is now utilized to train the Z-number Weig(IXS) and

g;(x) . The solutionx, is the function off,(x) and g;(x). We computeZ: and 5=

which are mentioned as

0 __ 93 | 33%
0% ~ 0% = X
8J, _ 0J“ + 03¢ (47)
X, 0% %y

According to the chain rule

0J" _aJ" oy, 0% 8L’”(x)_ag“ oy’ 80: 89?(x)
0%, 0y; 007 of(x) 0%  oy; 90F agi(x) oxq

So

03" (v v )t £+ Sy — v g
e IR SRS ) A T
0X, ‘= =

Or

aJa n v 2\—a . il *or I I
a;( :z_Qk _Xk)aj ii +ZQK _Xk>bj9j
L0 =l =

a3,

7% can be calculated the same as above.

The solutionx, is upgraded as

l(o(k +1) = l(o(k)_ 77(%
aJ,

o+ )= % (k) -

Here 7 is the rate of the training > O.



For the requirement of increasing the training process, the adding of the

momentum term is mentioned as

Z(o(k +1) = l(o(k)_n S;l; + V[l(o(k)_l(o(k _1)]
%o (k+1) = %o (k) =77 5 + 7% (k) - % (k - 1)]

Here y > 0. After the updating of, , it is necessary to substitute it to the weights

fi (Xo) and gj(XO) .
The solution related to the dual equation (27) can also be estimated by feedback
neural network, as Figure 2. In this case, the inputs are the nonlinear Z-number

functions f,(x) and gj(x), the concerned weights are taken to be as Z-nunghensd
b,. The training erroe, has been utilized here in order to update Once the

nonlinear operationd, (x) and gj(x) are performedQ; andO, are considered to be

similar to @4). The output related to the neural network is taken as similar o (45

Simulations

In this section, we use several applications to show how to use the fuzzy equation with
Z-number to design the fuzzy controller.

Example 1: The main intention of the chemical reaction between the poly ethylene
(PE) and poly propylene (PP) is to produce a preferred substance (RS3. If

considered to be the material cost, then the cost of PE is takerxtabe x> is

considered to be the cost of PP. The PE and PP weights which are uncertain, are

sufficed by the triangle function (7). It is our requirement to generate two different types
of PS. If we urge the cost in the mids{({86050,40055,42137), p (0809)]=vy",
what can be the cost? The PE weights are stated as

a, =[(2.7951,3.354123913), p (0.7,08,1)]
b, =[(1.5811,2.1081,2.6352), p (0.8,09,1)]



The PP weights are stated as

a, =[(4.8107,5.3452,5.8797), p (0.7,0.8751)]
b, =[(3.9131,4.47215.0319, p (06,081)]

The modeling of the above mentioned relation can be carried out using the dual
equation and Z-numbers

[(2.79,3.354,3.91),p(0.7,0.8,1)|Ox D [(4.81,5.34,5.8797),p(0.7,0.875,1)]|Ox? =
[(1.58,2.10,2.6352),p(0.8,0.9,1)]Ox & [(3.91,4.47,5.0311),p(0.6,0.8,1)]Ox* D

[(360,50,400.55,421.37), p(0.8,0.9,1)]

In this casef,(x)=g,(x)=x, f,(x)=g,(x)=X*. The exact solution is demonstrated by

X =[(18.371219.391919.9022, p (0.8,0.96,1)]

We utilize feedforward (NN) and feedback (FNN) neural networks to estimate the
solution x. The learning rate ig = 0.02 The initial state is

x(0) =[(22.66,23.71,24.24), p (0.8,09,1)]. The approximation outcomes are exhibited

in Table 1. The modeling errors are displayed in Figure 3.

Table 1. Neural networks approximate the Z-numbers

x(k) with NN k x(k) with FNN
[(22.53,23.68,24.10p(0.6,0.8,0.8%] | 1 | [(22.33,23.38,23.99p(0.7,0.8,0.8%|
[(21.79,22.83,23.20p(0.7,0.8,0.8% | 2 |[(20.98,22.13,22.761p(0.7,0.85,0.9]

35| [(18.67,19.71,20.23p(0.8,0.92,3] |18| [(18.49,19.51,20.13p(0.8,0.92, 3]
36| [(18.38,19.40,19.91p(0.8,0.96,3] |19  [(18.37,19.39,19.90p(0.8,0.96,3]

T T T
Error of feed-forward method
—=— Error of feed-back method

‘The cost function

. . .
1 20 25 30 35
Number of iterations



Figure 3: Approximation errors of the neural networks

We can see that both neural networks give worthy performance. We use the following

to transfer the Z-numbers to fuzzy numbers,

Ix;zﬁ(x)dx
o=
[ 75 (x)dx

ConsiderZ = (A p) =[(2233 2338 2399), p (06,080.85)] , then
Z“ =(2231,23.382399,0.77) and so
Z'=(+0.77 22331,+/0.77 23384 v 0.77 23993. The results of neural networks

approximation for the fuzzy numbers are displayed in Table 2.

Table 2. Neural networks approximate the fuzzy numbers
k x(k) with NN k x(k) with FNN
1 ](19.358,20.349,20.709 1 | (19.593,20.517,21.051
2 [(19.205,20.125,20.448 2 |(18.844,19.878,20.442

35|(17.720,18.710,19.203 18 | (17.548,18.517,19.107
36 (17.541,18.513,19.000 19 | (17.538,18.509, 18.996

The Z-numbers increase degree of reliability of the information. The crucial factor is
that Z -information is not only the most generalized depiction of real-world
uncomplicated information but also is the highest narrative power extracted from human
cognition outlook as compared to fuzzy number. The comparison between the Z-
numberZ =[(18.3819.40,19.91), p (0.8,0.96,1)] and fuzzy numbe(17.54,1851,19.00)

for k=36 is shown in Figure 4. We see that the Z-number incorporates with various
information and the solution of the Z-number is more accurate. The membership

function for the restriction in the Z-number,i&;z =(183819.40,199)). It can be in

probability form.
Example 2: The insulating materials center is considered to be the source of heat. The

materials width are not precise and hence they suffice the trapezoidal function (8),



A=[(0.131,0.1530.164,0.197), p (0.7,0.83,09)] = &,
B =[(0.084,0.105,0.210,0.527), p (0.8,09,1)] = a,

C =[(0.096,0.107,0.214,0.428), p (0.7,0.87,09)] = b,
D =[(0.021,0.032,0.054,0.086), p (08,0.85,0.92)] = b,

see Figue 5. The coefficient associated with conductivity materialskafe= x= f, ,
Kg=xJx=1, , K.=x*=g,, K, =J/x =g, , wherex is considered to be as the

elapsed time. The control object is to reveal the time in case the thermal resistance at the
right side attaindR=[(0.01620.02930.0424,0.1249, p(0.75,0809)]=y" . The

thermal balance model is (Holman, 1997):

AeB_C oD R
I<A I‘<B KC KD

f v 3 T v
17.541 18.382 18.513 19 19.401 19.911 R

Figure 4: Z-number and fuzzy number

Figure 5: Heat source



The exact solution i =[(2.05193.07794.1039,6.1559, p (0.8,0.95,1)] (Holman,

1997). The learning rate ig= 0.1 (NN) and 7, = 0.005 (FNN). The neural networks
approximation results are displayed in Table 3 and Table 4. The modeling errors are
displayed in Figure 6.

Table 3. Neural networks approximate the Z-numbers

x(k) with NN k x(k) with FNN

[(5.97,6.98,7.93,9.980(0.6,0.8,0.85 | 1 | [(5.98,6.99,7.97,9.98p(0.7,0.85,0.8Y]
2 | [(5.43,6.38,7.35,9.302p(0.75,0.8,0.9] | 2 | [(5.37,6.10,7.12,9.16p(0.7,0.85,0.8Y]

61| [(2.11,3.170,4.22,6.33(0.8,0.9,3] |45 [(2.08,3.14,4.14,6.239p(0.8,0.96,]]
62| [(2.06,3.08,4.11,6.17p(0.8,0.94,3] |46 [(2.05,3.08,4.11,6.26p(0.8,0.94,3]

Table 4. Neural networks approximate the fuzzy numbers
k x(k) with NN k x(k) with FNN

1| (5.13,5.99,6.841,8.576| 1 | (5.36,6.25,7.14,8.939
2 | (4.93,5.79,6.671,8.430| 2 | (4.81,5.46,6.37,8.199

61| (2.00,3.00,4.007,6.008 45| (1.99,3.00,3.95,6.004
62| (1.96,2.934,3.915,5.87046 | (1.95,2.93,3.90,5.864

T T T
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Figure 6: Approximation errors of the neural networks
Example 3: The piped, which is carrying water is subdivided into three different pipes

d, , d; , d, , refer Figure 7. The areas of the pipes are uncertain, they suffice the

trapezoidal function (8



A =[(0.421,0.632,0.737,0.843, p(0.75,09,1)]
A, =[(0.052,0.104,0.209,0.419), p (08,0.91,1)]
A, =[(0.031,0.084,0.105,0.210), p (0.8,09,0.95)]

The velocities of water flowing through the pipes are controlled with the help of valves

X

parameterx, v, = X2, V, = 5, V3 =X (Streeter,1999). The flow in pip, is initiated
using the control object which is represented by

Q=[(11478 40.890 93332 293056), p (0.8,0.87,0.95)]

We need to find the valve control parameteBy mass balance

Av,=AV, DAV, ®Q

The exact solution is demonstrated oy [(3.127,4.170,5.212,7.299, p (0.8,0.92,1)]
(Streeter, Wylie, & Benjamin, 1999). The learning rate of NN #50.08. The neural

networks approximation results are displayed in Table 5 and Table 6.

d2

Ag

Figure 7: Water channel system



Table 5. Neural networks approximate the Z-numbers

x(k) with NN k x(k) with FNN
[(5.75,6.77,7.74,9.76p(0.6,0.8,0.8% | 1 | [(5.87,6.88,7.86,9.87/p(0.7,0.81,0.85
[(5.32,6.26,7.13,9.20p(0.7,0.8,0.87] | 2 | [(5.15,6.00,7.00,9.002(0.7,0.85,0.9

55| [(3.14,4.19,5.22,7.320(0.8,0.9,3] 20| [(3.13,4.18,5.22,7.3320(0.85,0.9, 1]
56| [(3.13,4.18,5.22,7.31p(0.8,0.93,)] | 21| [(3.13,4.178,5.21,7.305(0.8,0.92,}]

Table 6. Neural networks approximate the fuzzy numbers
k x(k) with NN k x(k) with FNN
1|(4.94,5.81,6.65,8.38 1 |(5.18,6.07,6.94,8.91

2 |(4.72,5.54,6.31,8.05 2 | (4.63,5.39,6.28,8.08

55/ (2.98,3.97,4.96,6.94 20| (2.97,3.97,4.95,6.93
56(2.97,3.97,4.95,6.94 21| (2.97,3.96,4.95,6.93

We can see that FNN is much faster and more robust compared with NN. After

converting the Z-numbers to fuzzy numbers, it is possible to extract the fuzzy rules.
Now we compare our method with the other existing algorithms.

e In (Noorani, Kavikumar, Mustafa, & Nor, 2011), the ranking methodology is

suggested in order to extract the real roots associated to a dual fuzzy polynomial
equation. It isC x+C,X* +...+ C X" = DX+ D,X* +...+ D, X" +q
wherexe R, C,...,.C,,D,,...,D,, andq are fuzzy numbers. The dual fuzzy

polynomial equation is converted to the system associated to the crisp dual polynomial
equations. This conversion is carried out by utilizing ranking methodology on tise basi
of three parameters namely value, ambiguity and fuzziness. This method is applicable
only when the variables are crisp, e.g., this method is not able to find the solution of
dual fuzzy equations. Also the solutions of the three parameters, value, ambiguity and
fuzziness, are not related to generate solutions.

e In (Mosleh, 2013), the modified Adomian decomposition method is applied for

solving the following dual polynomial equations



ax+ax +..+a X" =bhx+bx* +...+x"+c
wherex, c, and all coefficients are fuzzy numbers. Figure 8 shows the comparison
results. We can see that our neural networks based algorithm and the modified Adomian

decomposition method can approximate the solutions of the dual fuzzy equations.

However, the convergence speeds of the neural network based algorithms are faster.

The cost function

Figure 8: Approximation errors of the neural networks and modified Adomian

decomposition method

Conclusions

In this paper, the classical fuzzy equation is modified such that its coefficients are Z-
numbers. The dual type of this fuzzy model is applied to model uncertain nonlinear
systems. We give the relation between the solution of the fuzzy equations and the
nonlinear system control. The controllability of the fuzzy system is proposed. Two

types of neural networks are applied to approximate the solutions of the fuzzy
equations. Modified gradient descent algorithms are used to train the neural networks.
The novel methods are validated by several benchmark examples. The future works are

the application of the mentioned methodologies for fuzzy differential equations.
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