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A new computational method for solving fully fuzzy

nonlinear matrix equations

A. Jafariana∗ R. Jafarib

Abstract

Since the uncertainty in parameters can be transformed into fuzzy
set theory, fuzzy set and fuzzy system theory are good tools to deal
with uncertainty systems. The popularity related to fuzzy nonlinear
systems has always shown an upward trend, and also incorporated with
wide spread applications in industries. The solutions of them are ap-
plied to analyze many engineering problems. Multi formulations and
computational methodologies have been suggested to extract solution
related to fuzzy nonlinear programming problems. However, In some
cases the methods which have been utilized in order to find the so-
lution of these problems involve greater complexity. On the basis of
the mentioned reason, the current research work is intended towards
introduction of a simple method for finding the fuzzy optimal solu-
tion related to fuzzy nonlinear issues. The main idea is on the basis
of employing nonlinear system with equality constraints in order to
find nonnegative fuzzy number matrixs X̃, X̃2, ..., X̃n which satisfies
ÃX̃ + C̃X̃2 + ...+ ẼX̃n = B̃ where Ã, C̃, ..., Ẽ are n× n arbitrary tri-
angular fuzzy number matrices, B̃ is a n× 1 arbitrary triangular fuzzy
number matrix. The proposed method is validated and is confirmed
to be applicable by suggesting some demonstrated examples. The re-
sults confirm that the proposed method is so esay to understand and
to apply for solving fully fuzzy nonlinear system (FFNS).

Keywords: Fuzzy solution; Fuzzy numbers; Fully fuzzy nonlinear sys-
tem; Fully fuzzy matrix equations.

1 Introduction

One field of applied mathematics that has many applications in various ar-
eas of science is solving fuzzy nonlinear systems. Fuzzy nonlinear systems
intervene in many guises in several problems of engineering, economics, bi-
ology, chemistry and physics [1, 2, 3, 4]. At the same time, the implication
of numerical methods takes an important place to solve the fuzzy nonlinear
systems.
Takagi and Sugeno [5] have presented first Numerical approach of fuzzy sys-
tems. Theoretical aspects of a fuzzy linear system were discussed by Dubois
and Prade [6]. A general model for solving a fuzzy n×n linear system whose
coefficient matrix is crisp and the right-hand side column is an arbitrary
fuzzy number vector was first proposed by Friedman et al [7]. They utilized
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the parametric form of fuzzy numbers and replaced the original fuzzy n× n

linear system by a crisp 2n × 2n linear system and studied the duality in
fuzzy linear systems Ax = Bx+y where A and B are two real n×n matrices
and the unknown x and the known y are two vectors whose components are
n fuzzy numbers [8]. Allahviranloo [9] proposed solution of a fuzzy linear
system by applying iterative method (Jacobi and Gauss Seidel methods),
later on the same author proposed the solution of such system using succes-
sive over relaxation iterative method [10]. Abbasbandy et al [11] proposed
the Conjugate gradient scheme, for solving fuzzy symmetric positive definite
system of linear equation. Dehghan et al [12] proposed classic methods such
as Cramers rule, Gaussian elimination method, LU decomposition scheme
from linear algebra and linear programming for finding the approximated
solution of a fully fuzzy linear systems of the form Ã ⊗ x̃ = b̃ where Ã is
a positive fuzzy matrix, x̃ is an unknown and b̃ is a known positive fuzzy
vector respectively. Abbasbandy and Jafarian [13] used steepest descent
method for approximation of the unique solution of fuzzy system of linear
equation. Wang et al. [14] presented an iterative algorithm for solving dual
linear systems of the form x = Ax+ u, where A is a real n× n matrix, the
unknown x and the constant u are all vectors whose components are fuzzy
numbers. Abbasbandy et al [15] used LU decomposition method for solving
fuzzy system of linear equation when the coefficient matrix is symmetric
positive definite. Nasseri et al [16] used a certain decomposition methods
of the coefficient matrix for solving fully fuzzy linear system of equations.
The detailed introduction and survey of major results can be extracted from
Refs. [17, 18, 19, 20]
In general, there exists no method based on matrices that yields fuzzy so-
lutions for FFNS. Apart from the problems where the mathematical model
is written in matrix form, nonlinear matrix equations also appear when one
uses special techniques to solve scalar or vector problems.
In this paper, we describe the technique for solving the fully fuzzy nonlinear
matrix equations (FFNME) such as ÃX̃ + C̃X̃2 + ... + ẼX̃n = B̃, where
Ã, C̃, ..., Ẽ are n×n arbitrary triangular fuzzy number matrices, B̃ is a n×1
arbitrary triangular fuzzy number matrix and the unknown X̃, X̃2, ..., X̃n

are matrices consisting of n positive fuzzy numbers. We define the fuzzy
matrices X̃2, ..., X̃n with following elements:

If X̃ =




x̃1,1
x̃2,1
...

x̃n,1


 , then X̃2 =




x̃21,1
x̃22,1
...

x̃2n,1


 , ..., X̃n =




x̃n1,1
x̃n2,1
...

x̃nn,1


 .

For this purpose, we employ a nonlinear system with equality constraints to
find nonnegative fuzzy number matrixs X̃, X̃2, ..., X̃n which satisfies ÃX̃ +
C̃X̃2 + ...+ ẼX̃n = B̃.
This paper organized as follows: Some basic definitions are reviewed in
Section 2. In Section 3, a new method for solving FFNS is introduced,
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explained and verified with numerical examples. Section 4 ends the paper
with Concluding remarks.

2 Basic definitions and notations

This section introduces the basic notations used in fuzzy operations. We
start by defining the fuzzy number.

Definition 1. A fuzzy number is a fuzzy set ũ : R
1 → I = [0, 1] such

that

i ũ is upper semi-continuous.

ii ũ(x) = 0 outside some interval [a, d].

iii There are real numbers b and c, a ≤ b ≤ c ≤ d, for which

1. ũ(x) is monotonically increasing on [a, b],

2. ũ(x) is monotonically decreasing on [c, d],

3. ũ(x) = 1, b ≤ x ≤ c.

The set of all fuzzy numbers is denoted by E1 [21, 22].

Definition 2. A popular fuzzy number is the triangular fuzzy number
ṽ = (m− α,m,m+ β) = (vm, vl, vu) with membership function as follows:

µṽ(x) =





x−m
α

+ 1, m− α ≤ x ≤ m,
m−x
β

+ 1, m ≤ x ≤ m+ β,

0, otherwise,

for α, β > 0 where vm = m− α, vl = m and vu = m+ β.
Triangular fuzzy numbers are fuzzy numbers in LR representation where
the reference functions L and R are linear [23].

Definition 3. A triangular fuzzy number ṽ = (vm, vl, vu) is said to be
non-negative if vm ≥ 0 [24].

Definition 4. Two triangular fuzzy number ṽ = (vm, vl, vu) and ũ =
(um, ul, uu) are said to be equal if and only if

vm = um, vl = ul, vu = uu.

Definition 5. A matrix Ã = (ãij) is called a fuzzy number matrix, if each

element of Ã is a fuzzy number. Ã will be a positive (negative) fuzzy matrix
and denoted by Ã > 0 (Ã < 0) if each element of Ã is positive (negative).
Ã will be non-positive (non-negative) and denoted by Ã ≤ 0 (Ã ≥ 0) if each
element of Ã is non-positive (non-negative).
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Definition 6. Let ṽ = (vm, vl, vu) and ũ = (um, ul, uu) be two triangu-
lar fuzzy numbers. Then [24]:

1. ṽ ⊕ ũ = (vm + um, vl + ul, vu + uu),

2. −ṽ = (−vu,−vl,−vm),

3. ṽ ⊖ ũ = (vm − uu, vl − ul, vu − um).

Considering the fuzzy multiplication, some computational expense problems
can be investigated. The result of a fuzzy multiplication is a fuzzy number
in LR representation, but it is difficult to compute the new functions L

and R because they are not necessarily linear. We approximate this fuzzy
multiplication such that it computes a triangular fuzzy number too. This
fuzzy multiplication is denoted by ∗̂ [25].
This fuzzy multiplication is based on the extension principle but is a bit
different from the classical fuzzy multiplication. This operation is performed
via the following equation:

ṽ∗̂ũ = (qm, ql, qu),

with

ql = vl.ul,

qm = min(vm.um, vm.uu, vu.um, vu.uu),

qu = max(vm.um, vm.uu, vu.um, vu.uu).

If ṽ is any triangular fuzzy number and ũ is a non-negative one, then we
have:

ṽ∗̂ũ =





(vm.um, vl.ul, vu.uu), vm ≥ 0,
(vm.uu, vl.ul, vu.uu), vm < 0, vu ≥ 0,
(vm.um, vl.ul, vu.um), vm < 0, vu < 0.

3 Fully fuzzy nonlinear matrix equation

We are interested in solving the FFNME such as:




ã11 ã12 . . . ã1n
ã21 ã22 . . . ã2n
...

...
...

...
ãn1 ãn2 . . . ãnn







x̃11
x̃21
...

x̃n1


+




c̃11 c̃12 . . . c̃1n
c̃21 c̃22 . . . c̃2n
...

...
...

...
c̃n1 c̃n2 . . . c̃nn







x̃211
x̃221
...

x̃2n1


+...

+




ẽ11 ẽ12 . . . ẽ1n
ẽ21 ẽ22 . . . ẽ2n
...

...
...

...
ẽn1 ẽn2 . . . ẽnn







x̃n11
x̃n21
...

x̃nn1


 =




b̃11

b̃21
...

b̃n1


 ,
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where ãij , c̃ij and ẽij (for 1 ≤ i, j ≤ n), are arbitrary triangular fuzzy num-

bers, the elements b̃i1 in the right-hand matrix and the unknown elements
x̃i1 are nonnegative fuzzy numbers. Using matrix notation, we have

Ã∗̂X̃ + C̃∗̂X̃2 + ...+ Ẽ∗̂X̃n = B̃. (1)

The fuzzy number matrices X̃ = (x̃1, x̃2, ..., x̃n)
T , X̃2 = (x̃21, x̃

2
2, ..., x̃

2
n)

T , ...,

X̃n = (x̃n1 , x̃
n
2 , ..., x̃

n
n)

T given by x̃i = (ỹi1, x̃i1, z̃i1), x̃
2
i = (ỹ2i1, x̃

2
i1, z̃

2
i1), ..., x̃

n
i =

(ỹni1, x̃
n
i1, z̃

n
i1), (for 1 ≤ i ≤ n), are the solutions of the fuzzy matrix system

Eq. (1) if

ãi∗̂X̃ + c̃i∗̂X̃
2 + ...+ ẽi∗̂X̃

n = b̃i, 1 ≤ i ≤ n, (2)

where

b̃i = (d̃i1, b̃i1, f̃i1),

ãi = ((g̃i1, ãi1, h̃i1), (g̃i2, ãi2, h̃i2), ..., (g̃in, ãin, h̃in)),

c̃i = ((k̃i1, c̃i1, p̃i1), (k̃i2, c̃i2, p̃i2), ..., (k̃in, c̃in, p̃in)),

ẽi = ((q̃i1, ẽi1, ũi1), (q̃i2, ẽi2, ũi2), ..., (q̃in, ẽin, ũin)).

If in the FFNME Eq. (1), each element of Ã, C̃, ..., Ẽ,X̃, X̃2, ..., X̃n and B̃

is a nonnegative fuzzy number, then we call the system (1) a nonnegative
FFNME.

Definition 7. In the nonnegative FFNME Eq. (1), with new notations Ã =
(G,A,H), C̃ = (K,C, P ), ..., Ẽ = (Q,E,U) whereG,A,H,K,C, P, ..., Q,E, U

are crisp matrices, we say that X̃, X̃2, ..., X̃n are the solutions if:





GY +KY 2 + ...+QY n = D,

AX + CX2 + ...+ EXn = B,

HZ + PZ2 + ...+ UZn = F.

Moreover, if Y ≥ 0, X−Y ≥ 0, Z−X ≥ 0, X2−Y 2 ≥ 0, Z2−X2 ≥ 0, ..., Xn−

Y n ≥ 0, Zn−Xn ≥ 0, then we say that X̃, X̃2, ..., X̃n are consistent solutions
of the nonnegative FFNME.

3.1 The general method

In this subsection, a new method for finding fuzzy solutions of an FFNME is
proposed. Consider the FFNME Eq. (2) where all the parameters ãij , c̃ij , ..., ẽij ,

x̃i1 and b̃i1 are represented by triangular fuzzy numbers (gij , aij , hij), (kij , cij , pij),
..., (qij , eij , uij), (yi1, xi1, zi1) and (di1, bi1, fi1) respectively. Then this FFNME
may be written as

(G,A,H)(Y,X,Z) + (K,C, P )(Y 2, X2, Z2) + ...

+(Q,E,U)(Y n, Xn, Zn) = (D,B, F ), (3)
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Assuming (gik, aik, hik)∗̂(yk1, xk1, zk1) + (kik, cik, pik)∗̂(y
2
k1, x

2
k1, z

2
k1) + ... +

(qik, eik, uik)∗̂(y
n
k1, x

n
k1, z

n
k1) = (w

(j)
k1 , q

(j)
k1 , u

(j)
k1 ), 1 ≤ i, j, k ≤ n, where each

(yk1, xk1, zk1) is a nonnegative triangular fuzzy number the FFNME (2)
may be written as:

n∑

k=1

(w
(j)
k1 , q

(j)
k1 , u

(j)
k1 ) = (di1, bi1, fi1), 1 ≤ i ≤ n. (4)

Using arithmetic operations, defined in section 2, we have the following
nonlinear programming. In which, we have added the artificial variables ri,
i = 1, 2, ..., n2.
Minimize r1 + r2 + ...+ rn2 ,

subject to





∑n
k=1w

(1)
k1 + r1 = d11,∑n

k=1w
(2)
k1 + r2 = d21,

...∑n
k=1w

(n)
k1 + rn = dn1,∑n

k=1 q
(1)
k1 + rn+1 = b11,

...∑n
k=1 u

(n)
k1 + r3n = fn1.

There are various methods to eliminate these artificial variables. One of
these methods consists of minimizing their sum, subject to the constraints
Eq. (4) and ri ≥ 0, i = 1, 2, ..., n2.

4 Numerical examples

To illustrate the technique proposed in this paper, consider the following
examples.

Example 4.1. Consider the following FFNME:



(2, 3, 5) (2, 4, 5)

(1, 2, 3) (3, 4, 6)





x̃11

x̃21


+



(1, 2, 3) (3, 5, 6)

(3, 4, 5) (1, 3, 4)





x̃211

x̃221


 =



(19, 140, 467)

(14, 136, 436)


 ,

where x̃11, x̃21, x̃
2
11, x̃

2
21, are triangular fuzzy numbers.

Assuming x̃11 = (y11, x11, z11), x̃21 = (y21, x21, z21), x̃
2
11 = (y211, x

2
11, z

2
11) and

x̃221 = (y221, x
2
21, z

2
21). The given FFNME is written as follows:





(2, 3, 5)∗̂(y11, x11, z11) + (2, 4, 5)∗̂(y21, x21, z21) + (1, 2, 3)(y211, x
2
11, z

2
11)

+(3, 5, 6)(y221, x
2
21, z

2
21) = (19, 140, 467),

(1, 2, 3)∗̂(y11, x11, z11) + (3, 4, 6)∗̂(y21, x21, z21) + (3, 4, 5)(y211, x
2
11, z

2
11)

+(1, 3, 4)(y221, x
2
21, z

2
21) = (14, 136, 436).

6



Wherein




(2y11 + 2y21 + y211 + 3y221, 3x11 + 4x21 + 2x211 + 5x221, 5z11 + 5z21 + 3z211
+6z221) = (19, 140, 467),

(y11 + 3y21 + 3y211 + y221, 2x11 + 4x21 + 4x211 + 3x221, 3z11 + 6z21 + 5z211
+4z221) = (14, 136, 436).

Applying the proposed technique, the above FFNME is converted into the
following crisp system:





2y11 + 2y21 + y211 + 3y221 = 19,
3x11 + 4x21 + 2x211 + 5x221 = 140,
5z11 + 5z21 + 3z211 + 6z221 = 467,
y11 + 3y21 + 3y211 + y221 = 14,
2x11 + 4x21 + 4x211 + 3x221 = 136,
3z11 + 6z21 + 5z211 + 4z221 = 436.

Minimize r1 + r2 + ...+ r6





2y11 + 2y21 + y211 + 3y221 + r1 = 19,
3x11 + 4x21 + 2x211 + 5x221 + r2 = 140,
5z11 + 5z21 + 3z211 + 6z221 + r3 = 467,
y11 + 3y21 + 3y211 + y221 + r4 = 14,
2x11 + 4x21 + 4x211 + 3x221 + r5 = 136,
3z11 + 6z21 + 5z211 + 4z221 + r6 = 436,

where r1+r2+ ...+r6 ≥ 0. The optimal solution is y11 = 1, y21 = 2, y211 = 1,
y221 = 4, x11 = 4, x21 = 4, x211 = 16, x221 = 16, z11 = 6, z21 = 7, z211 = 36,
z221 = 49. Hence the fuzzy solution is given by x̃11 = (1, 4, 6), x̃21 = (2, 4, 7),
x̃211 = (1, 16, 36) and x̃221 = (4, 16, 49).

Example 4.2. Consider the following FFNME:




(3, 4, 5) (1, 2, 4)

(−3,−2,−1) (−4,−2,−1)





x̃11

x̃21


+



(−5,−4,−2) (2, 4, 5)

(1, 2, 3) (−4,−3,−1)





x̃211

x̃221




+




(2, 3, 5) (−3,−2,−1)

(−5,−3,−2) (3, 4, 5)





x̃311

x̃321


 =



(−299, 132, 1180)

(−1145,−93, 365)


 ,

where x̃11, x̃21, x̃
2
11, x̃

2
21, x̃

3
11, x̃

3
21, are triangular fuzzy numbers.

Assuming x̃11 = (y11, x11, z11), x̃21 = (y21, x21, z21), x̃211 = (y211, x
2
11, z

2
11),

x̃221 = (y221, x
2
21, z

2
21),x̃

3
11 = (y311, x

3
11, z

3
11) and x̃321 = (y321, x

3
21, z

3
21). The given
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FFNME is written as follows:




(3, 4, 5)∗̂(y11, x11, z11) + (1, 2, 4)∗̂(y21, x21, z21)
+(−5,−4,−2)(y211, x

2
11, z

2
11) + (2, 4, 5)(y221, x

2
21, z

2
21)

+(2, 3, 5)(y311, x
3
11, z

3
11) + (−3,−2,−1)(y321, x

3
21, z

3
21)

= (−299, 132, 1180),

(−3,−2,−1)∗̂(y11, x11, z11) + (−4,−2,−1)∗̂(y21, x21, z21)
+(1, 2, 3)(y211, x

2
11, z

2
11) + (−4,−3,−1)(y221, x

2
21, z

2
21)

+(−5,−3,−2)(y311, x
3
11, z

3
11) + (3, 4, 5)(y321, x

3
21, z

3
21)

= (−1145,−93, 365).

Wherein




(3y11 + y21 − 5y211 + 2y221 + 2y311 − 3y321, 4x11 + 2x21 − 4x211 + 4x221 + 3x311
−2x321, 5z11 + 4z21 − 2z211 + 5z221 + 5z311 − 1z321) = (−299, 132, 1180),

(−3y11 − 4y21 + y211 − 4y221 − 5y311 + 3y321,−2x11 − 2x21 + 2x211 − 3x221
−3x311 + 4x321,−z11 − z21 + 3z211 − z221 − 2z311 + 5z321) = (−1145,−93, 365),

Applying the proposed technique, the above FFNME is converted into the
following crisp system:





3y11 + y21 − 5y211 + 2y221 + 2y311 − 3y321 = −299,
4x11 + 2x21 − 4x211 + 4x221 + 3x311 − 2x321 = 132,
5z11 + 4z21 − 2z211 + 5z221 + 5z311 − 1z321 = 1180,
−3y11 − 4y21 + y211 − 4y221 − 5y311 + 3y321 = −1145,
−2x11 − 2x21 + 2x211 − 3x221 − 3x311 + 4x321 = −93,
−z11 − z21 + 3z211 − z221 − 2z311 + 5z321 = 365.

Minimize r1 + r2 + ...+ r6




3y11 + y21 − 5y211 + 2y221 + 2y311 − 3y321 + r1 = −299,
4x11 + 2x21 − 4x211 + 4x221 + 3x311 − 2x321 + r2 = 132,
5z11 + 4z21 − 2z211 + 5z221 + 5z311 − 1z321 + r3 = 1180,
−3y11 − 4y21 + y211 − 4y221 − 5y311 + 3y321 + r4 = −1145,
−2x11 − 2x21 + 2x211 − 3x221 − 3x311 + 4x321 + r5 = −93,
−z11 − z21 + 3z211 − z221 − 2z311 + 5z321 + r6 = 365.

where r1+r2+ ...+r6 ≥ 0. The optimal solution is y11 = 3, y21 = 2, y211 = 9,
y221 = 4, y311 = 27, y321 = 8, x11 = 4, x21 = 3, x211 = 16, x221 = 9, x311 = 64,
x321 = 27, z11 = 6, z21 = 4, z211 = 36, z221 = 16, z311 = 216, z321 = 64. Hence
the fuzzy solution is given by x̃11 = (3, 4, 6), x̃21 = (2, 3, 4), x̃211 = (9, 16, 36),
x̃221 = (4, 9, 16), x̃311 = (27, 64, 216), and x̃321 = (8, 27, 64).

5 Concluding remarks

Through the last few decades, the fuzzy nonlinear systems have become
increasingly important in numerical analysis, and they have proven to be a
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very useful tool from both theoretical and practical points of view. In this
paper, a new method to obtain the nonnegative fuzzy optimal solutions of
FFNME like ÃX̃ + C̃X̃2 + ... + ẼX̃n = B̃ is introduced, where Ã, C̃, ..., Ẽ

are n×n arbitrary triangular fuzzy number matrices, B̃ is a n× 1 arbitrary
triangular fuzzy number matrix and the unknown X̃, X̃2, ..., X̃n are matrices
consisting of n positive fuzzy numbers. A nonlinear system with equality
constraints to FFNME is used as a new method for solving FFNME and
the validity of the proposed method is examined with numerical examples.
The results reveal the efficiency of this method for solving these problems.
The constructed method is efficient in determination of consistency of FFNS
occurring in real life situations.
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