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ABSTRACT In this paper, a PID controller is utilized in order to control the flow rate of the heavy oil in
pipelines by controlling the vibration in a motor pump. A torsional actuator is placed on the motor pump
in order to control the vibration on a motor and consequently controlling the flow rates in pipelines. The
necessary conditions for the asymptotic stability of the proposed controller are validated by implementing
the Lyapunov stability theorem. The theoretical concepts are validated utilizing numerical simulations and
analysis, which proves the effectiveness of the PID controller in the control of flow rates in pipelines.

INDEX TERMS Fluid flow control, control engineering, PID control, feedback.

I. INTRODUCTION
Classic PID approaches as well as controllers are updated
and expanded during the years, from the primary controllers
on the basis of the relays as well as synchronous electric
motors or pneumatic or hydraulic systems to current micro-
processors. Currently, many techniques for the tuning as
well as design of PI and PID controllers are proposed [1].
The method proposed in [2] is the most widely utilized
PID parameter tuning methodology in chemical industry
and is considered as a conventional technique. Basilio and
Matos [3] suggested a new method with less complexity in
order to tune the parameters of PI controllers of the plant with
monotonic step response. The methodology of internal mode
principle is utilized in [4] and [5] in order to extract the gains
of PID and PI controllers. Exhaustive investigation [6]–[9]
revealed that the outcomes of P control are very sensitive to
the sensing location as well as the quantity of phase shift.
By suitable selections of these variables, the P control can
be completely efficient in annihilating the vortex shedding
or minimizing its strength. Furthermore, it is demonstrated
that the increment in the proportional gain can results in the
decrement of the velocity fluctuations in the wake and the
strength of vortex shedding. Nevertheless, a large gain causes
instability in the system [6], [7], [10].
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In order to implement the control law, the primary step is
to determine a desired output response of a particular system
to an arbitrary input over a time interval, that can be carried
out by system identification [11]. Generally, it is feasible to
generate a model on the basis of a complete physical illus-
tration of the system. Nevertheless, this model contains com-
plexity, also has high calculation costs [12]. The secondary
step is to define the parameters of the PID controller. There
exist various literatures associated with the methodologies
for tuning of PID controllers applied in various controller
structures [13].

Flow control is a major rapidly evolving field of fluid
mechanics. There have been various concepts of flow control
in drag reduction, lift enhancement, mixing enhancement,
etc. [14]–[16]. Fadlun et al. [17] implemented the concept
of [18] to a finite-difference methodology where a staggered
grid is used. In [19] a digital pulse feedback flow control
system utilizing microcontroller as well as feedback sensing
element is developed. Surprisingly, even though the flow
control methods are widely spread, investigating the stability
of the control system is very rare. In [7], [9], and [20] the
P, PI and PID controls are proposed for flow over a cylinder
with a Reynolds number below the 200. The aim of control
in these studies is the attenuation or annihilation of vortex
shedding behind a bluff body. The only investigation on the
implementation of PI and PID controls to the flow over a bluff
body is carried out in [9].
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This paper deals with the modeling and control of flow
rate in heavy-oil pipelines. For this aim, the PID control algo-
rithm is utilized to control the flow mechanism in pipelines.
A torsional actuator is placed on the motor-pump in order
to control the vibration on motor. The stability of the PID
controller is verified using Lyapunov stability analysis. The
stability analysis of the controller results in a theorem which
validate that the system states are bounded. The theoretical
concepts are validated using numerical simulations and anal-
ysis, which proves the effectiveness of the PID controller in
the control of flow rates in pipelines. Further, it is the first
attempt to place a torsional actuator on the motor-pump in
order to control the vibration on motor and hence control the
flow rates in pipelines.

This paper is structured as follows. Firstly, in Section II the
pumpmodel system is established. The PID control method is
described in Section III. In this section, sufficient conditions
for the controller under the Lyapunov stability theorem are
designed. A numerical example is presented in Section IV to
illustrate the results. Finally, the conclusions are provided in
Section V.

FIGURE 1. Scheme of open loop model.

II. MATERIALS AND METHODS FOR
MODELLING OF THE SYSTEM
Flow control loop system is basically a feedback control
system. The structure of the pump model system is shown
in Figure.1 which is an open loop system. If there is unwanted
vibration in the motor, the stability of the flow rate will
hamper. Therefore, it is important to change the open loop
system to a closed loop system by implementing a controller
so as to control the stability of flow rate by controlling the
vibration in the motor.

A. MODELLING OF THE PIPELINE
The proposed model consists of induction motor, which
causes a rotation in pump and consequently can lead to flow
of heavy-oil in pipelines as shown in (Figure.1). This flow
model can be illustrated in the form of partial differential
equation (PDE) [21].

The linear global theory associated with flow stability is
rooted in eigendecompositions of the linearized flow opera-
tors. The direct as well as adjoint eigendecompositions asso-
ciated with these kinds of operators generate information
related to the stability of the operator, the acceptance of initial

conditions as well as external forcing, also the sensitivity to
spatially localized disturbances.

From the viewpoint of incompressible, constant-density,
constant-viscosity flows associated with Newtonian fluids,
the nonlinear Navier–Stokes equation is defined for a nondi-
mensional velocity field (x, t) : Rn

×R→ Rn, pressure field
p (x, t) : Rn

× R → Rn and Reynolds number Re > 0 as
below equation,

∂u
∂t
= −
∇p
ρ
− u.∇u+ Ff (1)

where,
ρ is the density in kg

m3

u is the flow velocity in m
s ,

∇ is the divergence,
p is the pressure in kg

m.s2
,

t is time in s,
Ff is termed as the summation of external force and body

forces
By implementing the mass balance into the Equation (1)

the following is concluded [22],

∇ · u = 0 (2)

Equation (1) can be rewritten as,

∂u
∂t
= −

1
ρ

∂p
∂x
+ Ff (3)

Let ∂p
∂x be the change of pressure in two different points,

moreover for achieving a numerical stability of computation,
it is essential to partition pipeline into various segment (gen-
erally identical), hence the flow in pipeline can be stated as,

∂ui
∂t
= −

1
ρL

(pi − pi−1)+ Ff , i = 1, . . . , n (4)

where L is taken to be the distance between two sections. Now
let,

αpi = pi−1, i = 1, . . . , n (5)

where α is termed as the coefficient of pressure changes in
sections

∂ui
∂t
= −

1
ρL

(1− α) pi + Ff , i = 1, . . . , n (6)

The loss of the friction under the conditions of laminar flow
conforms with the Hagen–Poiseuille equation [23], [24]. For
a circular pipe having a fluid of density (ρ) and Kinematic
viscosity υ, the hydraulic slope Ff can be described as,

Ff =
64
Re

u2

2gD
+ Fb =

64υ
2g

u
D2 + Fb (7)

where g is the gravity,D is the diameter of the pipes and Fb is
the shape force vector in pipes. By substitution of (7) in (6),
the following equation can be extracted,

∂ui
∂t
= −

1
ρL

(1− α) pi +
64υ
2g

u
D2 + Fb, i = 1, . . . , n

(8)
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The pressure p (x, t) in the pipeline can be described as,

p =
F
A

(9)

where F is the force inside the pipeline, also A is the cross
section in the pipe.

By taking into consideration F = ma = m d2x
d2t

, and
u = dx

dt , also by substitution of (9) in (8) the following
equation is extracted,

∂

∂t
∂xi
∂t
= −

(1− α)
ρAL

∂2xi
∂t2
+

64υ
2gD2

∂xi
∂t
+ Fb (10)

Therefore,

−
(1− α)+ ρAL

ρAL
∂2xi
∂t2
+

64υ
2gD2

∂xi
∂t
+ Fb = 0 (11)

If an external force, fp generates by pump, (11) can be
rewritten as follows,

0ẍ +8ẋ + fb = fp (12)

where x ∈ R2, 0 ∈ R2×2,8 ∈ R2×2, fb = [fb1fb2]T ∈
R2×1, fp = [fp1fp2]T ∈ R2×1.

Since in this work two pipelines are used, (12) can be
rewritten as,

γ1ẍ1 + ϕ1ẋ + fb1 = fp1
γ2ẍ1 + ϕ2ẋ + fb2 = fp2 (13)

Since the pump is supplying pressure to the pipes for the
maintaining the flow rates, so the pipes will have the same
external force, fp1 = fp2.

B. MODELLING OF THE ACTUATOR
In order to reduce the vibrations of the motor caused by the
external forces (fp) a torsional actuator is placed on the motor,
see Figure. 2.

FIGURE 2. Torsional actuator with motor-pump arrangement.

The motor and the pump are interconnected with the help
of a shaft. Themain purpose of the motor is to drive the pump.
The pump with the help of the motor initiate a flow of fluid
in the pipe. Any unwanted vibration in the motor will result
in the vibration in the pump, which will result in improper
flows in the pipe. Therefore, it is important to control the
vibration in the motor, so as to control the vibration in the
pump for making a stable flow of fluid in the pipelines.

FIGURE 3. Structure of system.

For this purpose, a torsional actuator having a motor and disk
arrangement as shown in figure 3 is placed on the top base of
the pump. The main intention of the torsional actuator is to
control the vibration on motor and consequently controlling
the flow rates in pipelines.

The inertia moment of the torsional actuator is defined as,

Jt = mtr2t (14)

where mt is considered to be the mass of the disc, and rt is
the radius of the disc. The torque produced by means of the
disc is defined as

uθ = Jt (θ̈t + θ̈ ) (15)

where θ̈ is taken to be the angular acceleration of the motor
and θ̈t is taken to be the angular acceleration of the torsional
actuator.

In order to reduce the torsional response, the directions of
θ̈t as well as θ̈ are taken to be different. The friction of the
torsional actuator is defined as [25],

fd = cθ̇t + Fctanh(βθ̇t ) (16)

where c is taken to be the torsional viscous friction coeffi-
cient, β is the motor constant, Fc is taken to be the coulomb
friction torque, also tanh is considered to be the hyperbolic
tangent which depends on β and motor speed. The final
torsion control is expressed as,

uθ = Jt
(
θ̈t + θ̈

)
− fd (17)

C. MODELLING OF THE PUMP
The general equation of the pump supplying pressure to the
pipe for flow control can be demonstrated as [26],

T ω̇ = τ − (τp − nω) (18)

where,
ω is angular velocity,
τ is motor torque,
τp is frictional torque of the motor,
n is load constant,
T is rotations inertia time constant.
The equation (18 ) can be modified as follows,

ẍp =
τ − (τp − nxp)

T
(19)
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where ẍp is the flow acceleration of the pump. Since τ,T , τp,
and n are known quantities of pump so ẍp can be estimated.
The external force generated by the pump is

fp = mpẍp (20)

where ẍp is the acceleration of the motor andmp is volumetric
mass of the pump.

The shape force vector fb can be modeled as a linear or a
nonlinear model.

From (12), by considering shape force vector fb as
non-linear model, the following analysis is illustrated:

In simple non-linear case, (12) becomes

0Ẍ +8Ẋ + fb = fp (21)

where fb is taken to be non-linear.

III. THE TUNING METHOD BASED ON PID CONTROLLER
Since 1700’s the control of continuous process has been
carried out by utilizing feedback loop. System with feedback
control contains drawback which is related to the instability
of the system. In order to resolve this problem an appropriate
controller should be chosen and also it must be ideal for
the monitoring system. The proportional feedback control
is uncomplicated and relatively easy to implement. Never-
theless, its outcome is completely sensitive to the sensing
location as well as feedback gain. It is concluded from the
control theory that these drawbacks of the P control should be
overcome by adopting I as well as D controls. Nevertheless,
there exist very few studies investigating the application of
the PID control for fluid-mechanics problems. In addition,
there are a very limited number of studies dealing with the
P control and PI controller for pipeline. Due to this lack of
investigations, this paper aims to develop a PID control for
flow rate in the pipeline.

The control mechanism is demonstrated in Figure. 3 which
shows the entire control process of the flow rate of the
heavy-oil in pipelines.

FIGURE 4. PID controller.

The PID control is considered as a control law in which the
existence of output for feedback is essential. This practical
control method is widely utilized in the control society. In the
PID control, the controller is made of a simple gain (P con-
trol), an integrator (I control), a differentiator (D control) or
some weighted composition of these possibilities [27], see
Figure 4.

The PID control is expressed as,

9 (t) = −κpe (t)−κ i

∫ t

0
e(t)dτ − κd ė (t) (22)

where kp, ki, as well as kd are positive definite and ki is the
integration gain. For the flow control, Xd is desired reference
and also Xd = Ẋd = 0. Hence, equation (22) is rewritten as
below,

9 (t) = −κpX−κ i

∫ t

0
Xdτ − κd Ẋ (23)

For analyzing the PID controller, equation (22) can be
stated as below,

9 (t) = −κpX − κd Ẋ − ϑ ϑ = κi

∫ t

0
Xdτ , ϑ (0) = 0

(24)

The closed-loop system of eq. (12) along with the PID
control (eq. (23)) is demonstrated as below,

0ẍ +8ẋ + Fg = −κpX − κd Ẋ − ϑϑ̇ = κiX (25)

In matrix form, the closed-loop system is defined as,

d
dt

 ϑX
Ẋ

 =
 κiX

Ẋ
−0−1(8Ẋ + Fg + kpX + kd Ẋ + ϑ)

 (26)

Here the stability of the PID control demonstrated by
eq. (23) is analyzed. The equilibrium of eq. (26) is presented
by
[
ϑ X Ẋ

]
=
[
ϑ̂ 0 0

]
. As at equilibrium point X = 0 as

well asẊ = 0, the equilibrium is [ f (0) , 0, 0 ]. For moving
the equilibrium to the origin, the following is defined,

ϑ̂ = ϑ − f (0) (27)

Therefore, the final closed-loop equation is defined as,

0Ẍ +8Ẋ + Fg = −κpX − κd Ẋ − ϑ + f (0)ϑ = κix

(28)

For analyzing the stability of equations (28), the following
properties are required,
Property 1: The positive definite matrix 0 should satisfy

in the below condition

0 < λmin(0) ≤ ‖0‖ ≤ λMax(0) ≤ γ̄ (29)

such that λmin (0) as well as λMax(0) are considered as
the minimum and maximum eigenvalues of the matrix 0,
respectively also γ̄ > 0 is taken to be the upper bound.
Property 2: f is taken to be Lipschitz over x̃ and ỹ if

‖f (x̃)− f (ỹ)‖ ≤ � ‖x̃ − ỹ‖ (30)

As Fg is first-order continuous functions also satisfies in
Lipschitz condition, Property 2 is hereby established.

The lower bound of Fg can be calculated as below,∫ t

0
fdx =

∫ t

0
Fgdx +

∫ t

0
dudx (31)
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The lower bound of
∫ t
0 Fgdx is stated as −F̂g also

∫ t
0 dudx

as -D̂u. Therefore, the lower bound of � is defined as,

� = −F̂g − D̂u (32)

The stability analysis of PID control approach is given by
the below mentioned theorem.
Theorem: By taking into consideration the structural sys-

tem of equation (12) controlled by the PID control approach
of equation (22), the closed-loop system of equations (28)
is taken to be asymptotically stable at the equilibriums[
ϑ − f (0) ,X , Ẋ

]T
= 0, if the following gains are satisfied,

λmin (κd ) ≥
1
4

(
1
3
λmin (0) λmin

(
κp
))1/2 [

1+
ke

λMax (0)

]
− λmin(8)

λMax (κi) ≤
1
6

(
1
3
λmin (0) λmin

(
κp
))1/2

[
λmin

(
κp
)

λMax (0)

]

λmin
(
κp
)
≥

3
2
[�+4] (33)

Proof: The Lyapunov function can be stated as below,

V =
1
2
ẊT0Ẋ +

1
2
XT κpX +

σ

4
ϑT κ−1i ϑ + XTϑ

+
σ

2
XT κdX +

σ

4
XT κdX +

∫ t

0
Fgdx−� (34)

where V (0) = 0. For representing that V ≥ 0, we divide it
into three parts, V = V1 + V2 + V3, where,

V1 =
1
6
XT κpX +

σ

4
XT κdX +

∫ t

0
Fgdx −�

≥ 0, κp > 0, κd > 0 (35)

V2 =
1
6
XT κpX +

σ

4
ϑT κ−1i ϑ + XTϑ ≥

1
2
1
3
λm
(
κp
)
‖x‖2

+
σλmin(κ

−1
i )

4
‖ϑ‖2 − ‖x‖ ‖ϑ‖ (36)

In a case that σ ≥ 3
(λmin(κ

−1
i )λmin(κp))

, the following is

obtained,

V2 ≥
1
2

(√
λmin(κp)

3
‖x‖ −

√
3

4(λmin(κp))
‖ξ‖

)2

≥ 0 (37)

Also,

V3 ≥
1
6
XT kpX +

1
2
ẊT0Ẋ +

σ

2
XT0Ẋ (38)

Since

XTAX ≥ ‖X‖ ‖AX‖ ≥ ‖X‖ ‖A‖ ‖X‖ ≥ λMax(A) ‖X‖2

(39)

In a case that σ ≤ 1
2

√
1
3λmin(0)λm(κp)
λMax (8)

, the following is
obtained,

V3 ≥
1
2

(
1
3λmin

(
κp
)
‖X‖2 + λmin (0)

∥∥Ẋ∥∥2
+σλMax (0) ‖X‖

∥∥Ẋ∥∥
)

=
1
2

√λmin (κp)
3

‖X‖ +
√
λMax (0)

∥∥Ẋ∥∥
2

≥ 0 (40)

Therefore,

1
2

√
1
3λmin (0) λm

(
κp
)

λMax (0)
≥ σ ≥

3

(λmin
(
κ−1i

)
λmin

(
κp
)
)

(41)

The derivative of equation (26) is obtained as below,

V̇ = ẊT0Ẍ + ẊT κpX +
σ

2
ϑT κ−1i ϑ + ẊTϑ + ẊTϑ + XTϑ

+
σ

2
ẊT0Ẋ +

σ

2
XT0Ẍ + σ ẊT κdX + ẊTFg (42)

For matrix the inequality of below equation is
validated [28],

ATB+ BTA ≤ AT3A+ BT3−1B (43)

The inequality of (42) is valid for any A,B ∈ Rn×m and
any 0 < 3 = 3T

∈ Rn×n, hence the scalar variable ẊTFg
can be stated as,

ẊTFg =
1
2
ẊTFg +

1
2
FTg Ẋ ≤ Ẋ

T3Fg Ẋ + F
T
g 3
−1
Fg Fg (44)

Utilizing equation (42) the following is obtained,

−
σ

2
XT8Ẋ ≤

σ

2
48

(
XT x + ẊT Ẋ

)
(45)

where ‖8‖ ≤ 48. Therefore,ϑ = ki, ϑT k
−1
i ϑ becomes xTϑ

also xTϑ becomes xT ki. Utilizing equation (45) the following
is extracted,

V̇ = −ẊT
[
8+ κd −

σ

2
0 −

σ

2
4
]
Ẋ

−XT
[σ
2
κp − κi −

σ

2
4
]
X

−
σ

2
XT

[
Fg − f (0)

]
+ ẊT f (0) (46)

By applying the Lipschitz condition of equation (30) the
following is obtained,

σ

2
XT

[
f (0)− Fg

]
≤
σ

2
κf ‖X‖2 (47)

−
σ

2
XT [Fg − f (0)] ≤ XT

σ

2
�X (48)

From equation (42) we have,

ẊT f (0) ≥ −f T (0)3−1f (0) (49)
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By utilizing equation (38)

V̇ = −ẊT
[
8+ κd −

σ

2
0 −

σ

2
4
]
Ẋ

−XT
[σ
2
κp − κi −

σ

2
4−

σ

2
κf

]
X + ẊT f (0) (50)

Becomes

V̇ ≤ −ẊT
[
λmin (8)+ λmin (κd )−

σ

2
λMax (0)−

σ

2
4
]
Ẋ

−XT
[σ
2
λmin

(
κp
)
− λmin(κ i)−

σ

2
4−

σ

2
�
]
X (51)

Therefore, V̇ ≤ 0, ‖X‖ diminishes if the following
conditions are held:

λmin (8)+ λmin (κd ) ≥
σ

2
[λMax (0)+ κc]

λmin
(
kp
)
≥

2
σ
λMax(k i)+4+�

By utilizing equation (41) as well as λmin(κ
−1
i ) = 1

λMax (κ i)
,

the following is obtained,

λmin (κd ) ≥
1
4

(
1
3
λmin (0) λm

(
κp
))1/2

×

[
1+

4

λMax (0)

]
− λmin(8) (52)

Again 2
σ
λMax(k i) =

2
3λmin

(
kp
)
. Thus,

λMax (κi) ≤
1
6

(
1
3
λmin (0) λmin

(
κp
))1/2 λmin

(
κp
)

λMax (0)
(53)

Furthermore,

λmin
(
κp
)
≥

3
2
[�+4] (54)

This theorem suggests that the closed-loop system is
asymptotically stable. �

IV. NUMERICAL RESULTS
For the numerical analysis purpose and for the validation of
the novel control strategy, the various parameters associated
with the flow control are described in Table1:

TABLE 1. Parameters associated with the flow control.

The implemented software in this paper is Matlab/
Simulink. Simulations are presented to show that the motor
vibration can be attenuated to a significant level by using the

torsional actuator with the developed controllers thus validat-
ing the effectiveness of the proposed control approach using
PID controllers. A simulation period of 20s is considered for
evaluation. For the simulation purposes, the weight of the
torsional actuator is considered to be 5% of the motor and
pump weight in combination.

The Theorem proposed in this paper generates sufficient
conditions for the minimum amounts of the proportional as
well as the derivative gains. This Theorem validates that both
proportional and derivative gain must be positive as negative
gains can make the systems unstable. The PID gains are
selected within the stable range by the stability analysis in
order to ensure the efficiency.

Since the maximum flow rate of the pipeline is 13m3
/
s

so the other nonlinear force associated with � has to be less
than 13m3

/
s. Hence, we select � = 13 m3

/
s, and

λmin (γ1) = 1.0002, λmin (γ2) = 1.000206, λmin (41)

= 2.09, λmin (42) = 2.09

From Theorem 2, we use the following PID gains

λmin
(
κp1
)
≥453, λmin (κd1) ≥ 8, λMax (κi1) ≤ 928 (55)

Also for pipe 2 we have,

λmin
(
κp2
)
≥ 453, λmin (κd2) ≥ 8, λMax (κi2) ≤ 928

(56)

From ranges mentioned by eq. (55) and (56), the best value
of gains are

κp1 = 458, κd1 = 110, κi1 = 650, κp2 = 480,

κd2 = 115, κi2 = 645

Two subsystem blocks of model, one in the absence of con-
trol mechanism as open loop system and another with control
mechanism are generated for comparing the outcomes. The
flow rate from the pump is the input to the flow model.
Numerical integrators are utilized in order to calculate the
velocity as well as the position from the acceleration signal.
The control signal from the controller subsystem block is
given to the Torsional actuator simulation block in order to
produce the essential control forces.

FIGURE 5. Comparison of motor vibration attenuation using PID
controller for pipeline 1.

Figure 5, 6 represents the vibration attenuate in motor.
From these Figures, it can be concluded that PID controller is
performing good in minimizing the vibration. Figure 7, 8 rep-
resents the flow rate in pipeline 1 and pipeline 2. When PID
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FIGURE 6. Comparison of motor vibration attenuation using PID
controller for pipeline 2.

FIGURE 7. Stability of flow rate with using of PID controller in pipeline 1.

FIGURE 8. Stability of flow rate with using of PID controller in pipeline 2.

controller are used, the flowrates initiate from zero and main-
taining stable flow rate, which proves the effectiveness of PID
controller.

V. CONCLUSIONS
In this paper, a novel active control strategy for the attenuation
of motor vibration is proposed which consequently controls
the flow rate in heavy-oil pipelines. The important theoretical
contribution associated with the stability analysis for the PID
controller is developed. The required stability conditions are
obtained for the purpose of tuning the PID gains. By utilizing
Lyapunov stability analysis, the sufficient conditions for the
minimum amounts of the proportional, integrator as well as
the derivative gains are obtained. The numerical simulation
and analysis validates the effectiveness of PID controllers in
the minimization of motor vibration to control the flow rate
in pipelines. The main contributions of this paper are:

1) In this work, the stability of PID controller is validated
which has not been given importance in earlier researches
considering the flow rate control.

2) The technique of using torsional actuator on the motor-
pump arrangement is entirely a new concept.

Future work is intended towards the development of the
experimental setup for further investigation and the improve-
ment of the controller by fuzzy methods
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