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Abstract

In this paper, we study different numerical methods for solving fuzzy equations,

dual fuzzy equations, fuzzy differential equations (FDEs) and fuzzy partial dif-

ferential equations (PDEs). In this study, conditions that guarantee the exis-

tence of the roots of these equations are discussed. Also, this paper provides

some discussion about the rates of convergence of each of the numerical meth-

ods. Finally, some numerical examples are given to illustrate the efficiency of

these methods.

Keywords: nonlinear systems, fuzzy number, fuzzy solution

1. Introduction

The study of fuzzy equations has attracted the interest of many researchers in

the past few years [1][2][3]. Fuzzy equations are known as perfect mathematical

modeling of real-world problems whereby uncertainty exists. Fuzzy equations

are the equations whose parameters can be varied from the form of the fuzzy5

set [4]. When the parameters or states of the differential equations are vague,

they can as well be modeled with FDEs.

The solutions of the fuzzy equations can be implemented directly for mod-

eling as well as nonlinear control. Some of the problems related to applying
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finite-dimensional state models in designing control laws for distributed-mass10

systems are discussed in [5]. In [6] Newton’s method is proposed for solving

fuzzy nonlinear equations. In [7] the fixed point method for solving fuzzy non-

linear systems is suggested. The analytical solution of a fuzzy heat equation

under generalized Hukuhara partial differentiability by fuzzy Fourier transform

is investigated in [8]. In [9] the uniqueness and stability of the solution for fuzzy15

Poisson equation are discussed using the fuzzy maximum principle. The numer-

ical solutions of the fuzzy equations can be obtained using the iterative method

[10], the interpolation method [11] and the Runge-Kutta method [12].

Some numerical methods, like the Nystrom method [13] and the Runge-

Kutta method [14] can be used to solve FDE. In [15] the Euler method is used20

to obtain the approximate solution of the fuzzy initial value problem. In [16]

the Laplace transform method is used to obtain the solutions of second-order

FDE. In [17] the compound (G
′

G
)-expansion method is proposed to construct

the multiple non-traveling wave solutions of nonlinear PDEs. In [18] positive

or negative solutions to first-order fully fuzzy linear differential equations under25

generalized differentiability are studied. In [19] concreted solutions to fuzzy lin-

ear fractional differential equations under Riemann-Liouville H-differentiability

is studied.

Artificial neural networks can also be used for solving fuzzy equations. In

[20] fuzzy quadratic equations are solved using artificial neural networks. In [21]30

fuzzy polynomial equations are solved using artificial neural networks. In [22]

dual fuzzy equations are solved using artificial neural networks. In [23] a method

based on fuzzy neural network is proposed for approximate solution of fully

fuzzy matrix equations. Nevertheless, these methods can not solve general fuzzy

equations with artificial neural networks. Furthermore, they can not produce35

fuzzy coefficients directly with the artificial neural networks [24]. In [25] artificial

neural network method is proposed for solving FDEs with initial conditions. In

[26] an unsupervised adaptive network-based fuzzy inference system model is

proposed for solving differential equations. In [27] neural algorithms are used

for solving differential equations. In [28] artificial neural networks are used for40
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solving PDEs. In [29] multi-layer artificial neural networks are used to solve a

class of first-order PDEs. In [30] an unsupervised artificial neural network is

proposed for solving differential equations. In [31] artificial neural network is

used for finding the solution of boundary control problem for the heat equation.

In this paper, a survey is given of recent numerical methods for solving45

fuzzy equations, dual fuzzy equations, FDE and fuzzy PDE. In this study, it

is discussed in detail that the roots of these equations can be obtained with

different methods. Conditions that guarantee the existence of the roots of these

equations are discussed. Furthermore, the advantages of numerical methods in

terms of precision are illustrated. The remaining of the article is organized as50

follows. In Section 2, some basic definitions used in the rest of the paper are

given. Section 3 discusses some numerical methods for finding the solutions of

fuzzy equations and dual fuzzy equations. Section 4 discusses some numerical

techniques for finding the solutions of FDEs and fuzzy PDEs. Section 5 presents

numerical examples with comparative analysis. Section 6 concludes the paper.55

2. Mathematical preliminaries

The following definitions are used in this paper.

Definition 1 (fuzzy variable). If x is: 1) normal, there exists ζ0 ∈ R in such a

manner that x(ζ0) = 1; 2) convex, x [λζ + (1− λ)ξ] ≥min{x(ζ), x(ξ)}, ∀ζ, ξ ∈
R, ∀λ ∈ [0, 1]; 3) upper semi-continuous on R, x(ζ) ≤ x(ζ0) + ε, ∀ζ ∈ N(ζ0),60

∀ζ0 ∈ R, ∀ε > 0, N(ζ0) is a neighborhood; or 4) x+ = {ζ ∈ R, x(ζ) > 0} is

compact, then x is a fuzzy variable, and the fuzzy set is defined as E, x ∈ E :

R → [0, 1].

The fuzzy variable x can also be represented as

x = A (x, x̄) (1)

where x is the lower-bound variable, x̄ is the upper-bound variable, and A is

a continuous function. The membership functions are utilized to implicate the
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fuzzy variable x. The best known membership functions are the triangular

function

x (ζ) = F (a, b, c) =



















ζ−a
b−a

a ≤ ζ ≤ b

c−ζ
c−b

b ≤ ζ ≤ c

0 otherwise

(2)

and trapezoidal function

x (ζ) = F (a, b, c, d) =































ζ−a
b−a

a ≤ ζ ≤ b

d−ζ
d−c

c ≤ ζ ≤ d

1 b ≤ ζ ≤ c

0 otherwise

(3)

The fuzzy variable x that contains the dimension of ζ is dependent on the

membership functions, where (2) includes three variables and (3) includes four65

variables. To demonstrate the consistency of operations, the application initially

lies within the α−level operation of the fuzzy number.

Definition 2 (fuzzy number). A fuzzy number x associates with a real value with

α-level as

[x]α = {a ∈ R : x(a) ≥ α} (4)

where 0 < α ≤ 1, x ∈ E.

If x, y ∈ E, λ ∈ R, the fuzzy operations are as follows:

Sum,

[x⊕ y]α = [x]α + [y]α = [xα + yα, x̄α + ȳα] (5)

subtract,

[x⊖ y]α = [x]α − [y]α = [xα − yα, x̄α − ȳα] (6)

or multiply,

zα ≤ [x⊙ y]α ≤ zα or [x⊙ y]α = A (zα, zα) (7)

where zα = xαy1 + x1yα − x1y1, zα = x̄αȳ1 + x̄1ȳα − x̄1ȳ1, and α ∈ [0, 1].70
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Therefore, [x]0 = x+ ={ζ ∈ R, x(ζ) > 0}. Since α ∈ [0, 1], [x]α is a bounded

interval such that xα ≤ [x]α ≤ x̄α. The α-level of x between xα and x̄α is given

as

[x]α = A (xα, x̄α) (8)

2.1. Applying the solutions of fuzzy equations to nonlinear systems

Consider the following unknown discrete-time nonlinear system

x̄k+1 = f̄ (x̄k, uk) , yk = ḡ (x̄k) (9)

where uk ∈ ℜu is the input vector, x̄k ∈ ℜl is an internal state vector, and

yk ∈ ℜm is the output vector. f̄ and ḡ are general nonlinear smooth functions

f̄ , ḡ ∈ C∞. Denoting Yk =
(

yTk+1, y
T
k , · · ·

)T
, Uk =

(

uT
k+1, u

T
k , · · ·

)T
. If ∂Y

∂x̄
is

non-singular at x̄ = 0, U = 0, this leads to the following model

yk = Φ(yTk−1, y
T
k−2, · · ·uT

k , u
T
k−1, · · · ) (10)

where Φ (·) is an unknown nonlinear difference equation representing the plant

dynamics, uk and yk are measurable scalar input and output. The nonlinear

system (9) is a NARMA model. We can also regard the input of the nonlinear

system as

xk = (yTk−1, y
T
k−2, · · ·uT

k , u
T
k−1, · · · )T (11)

the output as yk.

Many nonlinear systems as in (9) can be rewritten as the following linear-

in-parameter model,

yk =
n
∑

i=1

aifi (xk) (12)

or

yk +
m
∑

i=1

bigi(xk) =
n
∑

i=1

aifi (xk) (13)

where ai and bi are linear parameters, fi (xk) and gi(xk) are nonlinear functions.

The variables of these functions are measurable input and output. A famous

example of this kind of model is the robot manipulator

M (q) q̈ + C (q, q̇) q̇ +Bq̇ + g (q) = τ (14)
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(14) can be rewritten as
n
∑

i=1

Yi (q, q̇, q̈) θi = τ (15)

To identify or control the linear-in-parameter systems (12), (13) or (15), the

normal least square or adaptive methods can be applied directly.

In this paper, we consider the uncertain nonlinear systems, i.e., the param-75

eters ai, bi or θi are not fixed (not crisp). They are uncertain in the sense of

fuzzy logic. The uncertain nonlinear systems are modeled by linear-in-parameter

models with fuzzy parameters. These models are called fuzzy equations.

Remark. There are several extensions of an equation to a fuzzy equation where

the coefficients are fuzzy intervals [32]. To extend an equation to a fuzzy equa-80

tion, the interval definitions [33] apply to all α-cuts. To calculate the mem-

bership function of the set of solutions, the α-cut of the solution sets can be

defined by a transformation of the α-cuts of the fuzzy coefficients, that is, the

α-cuts of the function (transformation) is the function of the α-cuts of its fuzzy

arguments [34].85

For the uncertain nonlinear system (9), we use the following two types of

fuzzy equations to model it

yk = a1f1(xk)⊕ a2f2(xk)⊕ ...⊕ anfn(xk) (16)

or

a1f1(xk)⊕ a2f2(xk)⊕ ...⊕ anfn(xk)

= b1g1(xk)⊕ b2g2(xk)⊕ ...⊕ bmgm(xk)⊕ yk
(17)

Because ai and bi are fuzzy numbers, we use the fuzzy operation ⊕. (17) has

more general form than (16), it is called dual fuzzy equation.

In a special case, fi(xk) has polynomial form,

a1xk ⊕ ...⊕ anx
n
k = b1xk ⊕ ...⊕ bnx

n
k ⊕ yk (18)

(18) is called dual fuzzy polynomial. If we use the dual fuzzy polynomial (18)

to model a nonlinear function

zk = f(xk) (19)
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so the object is to minimize error between the two output yk and zk. Since yk

is a fuzzy number and zk is a crisp number, we use the maximum of all points

as the modeling error

max
k

|yk − zk| = max
k

|yk − f(xk)| = max
k

|βk| (20)

where yk = F (a (k) , b (k) , c (k)) , βk = F (β1, β2, β3) , which are defined in (2).

In [35], we use the dual fuzzy equation (17) to model the uncertain nonlinear

system (9). The controller design process is to find uk, such that the output

of the plant yk can follow desired output y∗k, or the trajectory tracking error is

minimized

min
uk

∥yk − y∗k∥ (21)

This control object can be considered as: finding a solution uk for the fol-

lowing dual fuzzy equation

a1f1(xk)⊕ a2f2(xk)⊕ ...⊕ anfn(xk)

= b1g1(xk)⊕ b2g2(xk)⊕ ...⊕ bmgm(xk)⊕ y∗k

(22)

where xk = [yTk−1, y
T
k−2, · · ·uT

k , u
T
k−1, · · · ]T .

The uncertain nonlinear system can also be modeled by PDEs, such as

∂2ζ(x, t)

∂t2
+

2

t

∂ζ(x, t)

∂t
= F (x, ζ(x, t),

∂ζ(x, t)

∂x
,
∂2ζ(x, t)

∂x2
) (23)

in which t and x are independent variables, ζ is the dependent variable, F is a

nonlinear function of x, ζ, ζx and ζxx, also the initial conditions for the PDE

(23) are illustrated as below

ζ(x, 0) = f(x), ζt(x, 0) = g(x) (24)

The following FDE can be used to model the uncertain nonlinear system (9),

d

dt
x = f(x, u) (25)

where x is the fuzzy variable that corresponds to the state xk in (9), f(t, x) is a90

fuzzy vector function that relates to f1(xk, u), and
d
dt
x is the fuzzy derivative.
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Definition 3 (fuzzy derivative). The fuzzy derivative of f at x0 is expressed as

d

dt
f(x0) = lim

h→0

1

h
[f(x0 + h)⊖gH f(x0)] (26)

where ⊖gH is the Hukuhara difference [36], defined by

x⊖gH y = z ⇐⇒







1) x = y ⊕ z

or 2) y = x⊕ (−1)z
(27)

The α−level of the fuzzy derivative is

f(x, α) = [f(x, α), f(x, α)] (28)

where x ∈ E for each α ∈ [0, 1].

If we apply the α−level (8) to f(x, α) in (28)

[x⊖gH y]α = [min{xα − yα, x̄α − ȳα},max{xα − yα, x̄α − ȳα}] (29)

then, we obtain two functions: f [u, x(ζ, α), x̄(ζ, α)] and f [u, x(ζ, α), x̄(ζ, α)] .

Thus, the fuzzy differential equation (25) can be equivalent to the following

four ordinary differential equations (ODE)






d
dt
x(α) = f [u, x(ζ, α), x(ζ, α)]

d
dt
x(α) = f [u, x(ζ, α), x̄(ζ, α)]

or







d
dt
x(α) = f [u, x(ζ, α), x(ζ, α)]

d
dt
x(α) = f [u, x(ζ, α), x(ζ, α)]

(30)

So for whatever purposes, such as modeling and control of nonlinear systems,

or analysis of uncertainty dynamic, we need solutions of the algebraic fuzzy

equations and the FDEs. Since it is impossible to obtain analytical solutions,95

numerical methods are used to solve these fuzzy equations.

3. Numerical methods for solving algebraic fuzzy equations

There are not any analytical solution for algebraic fuzzy equations with

degree greater than 3. Therefore, numerical methods are required for finding

the roots of such equations. In this section, five different important techniques100

are illustrated to solve fuzzy equations and dual fuzzy equations.
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3.1. Newton technique

In 1671, Isaac Newton proposed a new algorithm [37] to resolve a polynomial

equation that was represented based on an example like z3−2z−5 = 0. To find

an exact root of the mentioned equation, at first an initial value is presumed,105

such that z ≈ 2. By presuming z = 2 + p and replacing it into the original

equation, the outcome is acquired as p3+6p2+10p−1 = 0. Since p is supposed

to be small, p3 + 6p2 is neglected compared to 10p− 1. The previous equation

produces p ≈ 0.1, therefore an excellent approximation of the root is z ≈ 2.1.

The repeat of this procedure is easy and p = 0.1+c is obtained. The replacement110

produces c3 + 6.3c2 + 11.23c + 0.061 = 0, so c ≈ −0.061/11.23 = −0.0054...,

hence a new estimation of the root is z ≈ 2.0946. It is essential to repeat the

procedure until the expected number of digits is obtained. In his technique,

Newton did not obviously apply the concept of derivative, he only implemented

it on polynomial equations.115

Newton’s technique is suggested in [38] for solving fuzzy nonlinear equations

instead of standard analytical techniques since they are not suitable everywhere.

However, just a positive root of the fuzzy nonlinear equation has been acquired

in [38], even though a negative solution can also exist. We believe that the root

of this problem is the interpretation of interval as well as fuzzy extensions.120

Example 3.1.1. Let us consider the following fuzzy equation

a1z
2 + a2z = a3 (31)

where a1 = (3, 3, 4, 5), a2 = (1, 2, 3), a3 = (1, 1, 2, 3). The positive fuzzy solution

of fuzzy equation (31) acquired in [38] is shown in Figure 1.
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1 

0.5 

0 0.44 0.46 0.48 0.50 0.52 0.54 

Fig. 1. Positive fuzzy solution acquired in [38]

Even though it is declared in [38] that (31) does not have negative fuzzy root,

we find such root. For α = 0, the fuzzy equation (31) can be represented as

(3, 5)z2 + (1, 3)z = (1, 3) (32)

For z > 0, i.e., z, z > 0, from (32) we get z = 0.4343, z = 0.5307. However,

in the case of z < 0, i.e., z, z < 0, from (32) we get z ∼= −0.629, z ∼= −0.98,

and since z > z, so a negative root does not exist [38]. For clarifying the source

of this problem, we take into consideration a simple interval linear equation

a1z = a2, where a1, a2 are intervals. Applying conventional interval arithmetic

rules [39] we obtain (a1z, a1z) = (a2, a2), hence, z =
a2

a1
, z = a2

a1
. Let a1 =

(3, 4), a2 = (1, 2), from z =
a2

a1
, z = a2

a1
we obtain z = 0.333, z = 0.5, for

a1 = (1, 2), a2 = (3, 4), we obtain z = 3, z = 2, for a1 = (3, 4), a2 = (0.7, 0.8),

we obtain z = 0.23, z = 0.2. We can see that the solution of interval equation

a1z = a2 exists just in some particular conditions. For solving this problem in

the case of nonlinear interval and fuzzy equations, we suggest interval extended

zero technique [40]. In order to use interval extended zero technique we present

(31) on each α−cut as below

(a1, a1)(z, z)
2 + (a2, a2)(z, z)− (a3, a3) = (−w,w) (33)

such that w is taken to be the undefined parameter and also index α is deleted

for the easiness. Applying conventional interval arithmetic rules to (33), the
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following is extracted

(a1z + a2, a1z + a2)(z, z)− (a3, a3) = (−w,w) (34)

Using interval extended zero technique the positive and negative roots of fuzzy

equation (34) can be acquired. For negative case from (34) we have,

a1z
2 + a2z − a3 = −w, a1z

2 + a2z − a3 = w (35)

The sum of two equations in (35) leads to the below relation

a1z
2 + a2z − a3 + a1z

2 + a2z − a3 = 0 (36)

Let zk be the real valued solution of (36) in such a way that it is taken to be

the natural top boundary for negative z, i.e., z ≤ zk and bottom boundary for

negative z, i.e., zk ≤ z. For z = z = zk we have

zk =
−(a2 + a2)−

√

(a2 + a2)2 + 4(a1 + a1)(a3 + a3)

2(a1 + a1)
(37)

The interval solution of (35) can be obtained as

zmin =
−a2 −

√

a2
2 + 4a1a3

2a1
, zmax =

−a2 −
√

a2
2 + 4a1a3

2a1
(38)

From (36) we have

z = g(z) =
−a2 −

√

a2
2 + 4a1(a3 + a3 − a1z

2 − a2z)

2a1
(39)

and

z = g(z) =
−a2 −

√

a2
2 + 4a1(a3 + a3 − a1z2 − a2z)

2a1
(40)

In general, the interval solution of the above constraint satisfaction problem can

be presented as below,

[z] = [zmin, zk] ∩ [z∗1, z
∗

2], [z] = [zk, zmax] ∩ [z∗1, z
∗

2] (41)

where z∗1 = min g(z), z∗2 = max g(z) (zk ≤ z ≤ zmax); z∗1 = min g(z), z∗2 =125

max g(z) (zmax ≤ z ≤ zk) Using the suggested technique, the positive solution

of fuzzy equation (34) can be acquired as well.
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Newton’s technique is comparatively costly, as the computation of the Hes-

sian on the first iteration is required. Therefore, the analytic explanation for

the second derivative is usually complex or intractable, need lots of calculation.130

Steepest descent technique applies merely first-order information and never deals

with estimating second derivatives.

3.2. Steepest descent technique

In [41], the steepest descent method is used for obtaining the solution of

fuzzy nonlinear equation F (y) = 0, where the fuzzy quantities are shown in

parametric form. The equation is presented by parametric form as follows







F (yα, yα) = 0

F (yα, yα) = 0
(42)

The function H : ℜ2 → ℜ is defined as

H(y, y) = [F (yα, yα), F (yα, yα)]2 (43)

Steepest descent method determines a local minimum for two-variable function

H. Steepest descent method can be illustrated as follows:135

1. Evaluate H at an initial estimation Y α
0 = (yα

0
, yα0 ).

2. Define a direction from Y α
0 = (yα

0
, yα0 ) which decreases the value of H.

3. Move a proper amount in this direction and name the recent value Y α
1 =

(yα
1
, yα1 ).

4. Repeat steps 1 through 3 using Y α
0 substituting Y α

1 .140

Using the same fuzzy equation (31) as in example 3.1.1, the steepest descent

technique [41] gets the positive fuzzy solution. The positive fuzzy solution of

the fuzzy equation (31) acquired in [41] is shown in Figure 2.
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1 

0.5 

0 0.44 0.46 0.48 0.50 0.52 0.54 

Fig. 2. Positive fuzzy solution acquired in [41]145

Even though it is declared in [41] that (31) does not have negative fuzzy root,

interval extended zero technique makes it feasible to obtain both the positive

and negative roots of fuzzy equation (31). The positive fuzzy solution of the

fuzzy equation (31) acquired with the use of interval extended zero technique

is shown in Figure 3. The negative fuzzy solution of the fuzzy equation (31)150

acquired with the use of interval extended zero technique is shown in Figure 4.

1 

0.5 

0 0.1 0.2 0.4 0.5 0.6 x 0.3 0.7 

  

α=1 

α=0.5 

α=0 

Fig. 3. Positive fuzzy solution acquired with the use of interval extended zero

technique
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1 

0.5 

1.25 1.0 0.5 0.25 x 0.75 

  

α=1 

α=0.5 

α=0 

0 

155

Fig. 4. Negative fuzzy solution acquired with the use of interval extended zero

technique

The steepest descent method approaches merely linearly to the solution, how-

ever, generally, it approaches even for weak initial estimations [42]. Although

the steepest descent method does not require a good initial value, its disadvan-160

tage is having a slow convergence speed. The genetic algorithm provides a fast

convergence to nearly optimal solutions in many kinds of problems. Genetic al-

gorithm technique has higher training performance compared with the steepest

descent technique.

3.3. Genetic algorithm technique165

Resolving fuzzy equations can be considered as one of the basic problems in

fuzzy set theory. Let us take into consideration the algebraic expression cz2+dz,

where c and d are real parameters, also z is a real variable. By substituting the

fuzzy variable Z, fuzzy numbers C, and D into cz2 + dz for z, c, and d, respec-

tively, we obtain CZ2 +DZ. There exist two main traditional fuzzy techniques170

to evaluate the fuzzy expression CZ2 +DZ. The first technique to obtain the

value of CZ2+DZ is utilizing the extension principle and the second technique

is utilizing interval arithmetic and α−cuts. Evaluating fuzzy algebraic expres-

sion CZ2+DZ utilizing interval arithmetic and α−cuts yields a larger fuzzy set

compared to utilizing the extension principle. Another drawback of traditional175
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fuzzy techniques is that resolving algebraic fuzzy equations is too complex be-

cause of the shortage of inverse operators and also the multiple incidences of

parameters in an expression may cause in a high inaccuracy [43]. In [44] the

genetic algorithm method is used for resolving fuzzy algebraic equations with-

out using membership functions for fuzzy numbers. Furthermore, the presented180

genetic algorithm does not use the extension principle, interval arithmetic, the

α−cut operations for fuzzy calculations, and the penalty approach for constraint

violations. The suggested genetic algorithm technique simulates a fuzzy number

by spreading it into specified partition points. Afterward, the genetic algorithm

is implemented for evolving the values in each partition point. Consequently,185

the final values present the membership function of that fuzzy number. The

fuzzy concept of the genetic algorithm in [44] is different, however, generates

good results compared with the traditional fuzzy approaches.

In [45] a genetic algorithm is proposed for solving the fuzzy equation S(p) =

q, such that p and q are k-sampled real fuzzy numbers, also S is a fuzzy function

depends on p. As it is nearly impossible to obtain the exact solution of the fuzzy

equation S(p) = q, hence it is more rational to find a fuzzy number p̃ in such a

way that S(p̃) is close enough to q. The fitness function of the chromosome p

which is a candidate solution of the fuzzy equation S(p) = q is stated as

fit(p) = d(S(p), q) (44)

where d is the measure of the difference between S(p) and q. The fitness function

(44) is minimized using the genetic algorithm. It is clear that the exact root190

p∗ of the fuzzy equation S(p) = q yields to fit(p∗) = 0. The genetic algorithm

presented in [45] finds multiple solutions of the fuzzy equation and the program

runs for a maximum number of generations (1000) several times. An acceptable

solution is obtained in 600-700 generations. Three different solutions are found

in [45] for fuzzy equation, however, the third solution is found with low accuracy.195

The presented genetic algorithm in [45] has slow convergent speed. To improve

the performance of the genetic algorithm proposed in [45], an unsupervised

clustering mechanism can be applied to the evolving population for creating
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subpopulations of individuals as well as developing different solutions during

the same evolution procedure. Furthermore, the implementation of a fast and200

flexible parallel genetic algorithm could be a good idea to find good solutions

fast [46].

Although genetic algorithm shows effectiveness in terms of solution accuracy

and convergence, it is computationally expensive. The ranking method results

are found to converge very quickly and are more accurate compared to the205

genetic algorithm method. The ranking method is computationally inexpensive.

3.4. Ranking technique

The ranking technique is introduced by Delgado et al [47]. They proposed

three parameters named value, ambiguity, and fuzziness to obtain fuzzy num-

bers which can be used to present more arbitrary fuzzy numbers. The value,

ambiguity, and fuzziness of a fuzzy number v with parametric form (v(α), v(α))

are defined as follows:

V al(v) =
∫ 1

0
k(α)[v(α) + v(α)]dα

Amb(v) =
∫ 1

0
k(α)[v(α)− v(α)]dα

Fuzz(v) =
∫ 1

2

0
[v(α)− v(α)]dα+

∫ 1
1
2
[v(α)− v(α)]dα

(45)

where k : [0, 1] → [0, 1] is a reducing function.

In [48] the ranking fuzzy numbers technique is proposed to find the real roots

of the following fuzzy polynomial equation

a1y + a2y
2 + ...+ any

n = a0 (46)

such that y ∈ ℜ and a0, a1, ..., an are fuzzy numbers. The fuzzy polynomial

equation (46) is transformed into a system of crisp polynomial equations using210

three parameters value, ambiguity, and fuzziness. The provided system of crisp

polynomial equations is solved numerically. However, the ranking fuzzy numbers

technique proposed in [48] based on three parameters value, ambiguity and

fuzziness is quite inefficient to produce answers.

In [49], a new ranking technique is proposed which overcomes the drawback

of the ranking fuzzy numbers technique proposed in [48]. The ranking technique
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proposed in [49] has four parameters named value, ambiguity, fuzziness, and

vagueness. With the new parameter vagueness, the process of fuzzy polynomials

in generating real roots is more effective and precise. The vagueness of the fuzzy

number v with parametric form (v(α), v(α)) is defined as follows:

V ag(v) =

∫ 1
2

0

[v(α) + v(α)]dα+

∫ 1

1
2

[v(α) + v(α)]dα (47)

The proposed technique in [49] is successfully applied in the interval type-2 fuzzy215

polynomials, interval type-2 fuzzy polynomial equations, dual fuzzy polynomial

equations as well as system of fuzzy polynomials.

The major drawback of the ranking technique is that it can be implemented

only if membership functions are known. Approximation techniques like fuzzy

neural networks are powerful tools that can overcome the limitations of other220

numerical techniques. The main advantages of fuzzy neural networks are their

ability to train the great amount of data sets, rapid convergence and excellent

precision.

3.5. Neural network technique

Both artificial neural networks and fuzzy logic are universal estimators that

can approximate any nonlinear function to any desired degree of accuracy [50].

In [51] artificial neural network is used to solve the following fuzzy linear equa-

tion

A1Y = A2 (48)

where A1, A2 and Y are triangular fuzzy numbers. For certain values of A1225

and A2, (48) has no solution for Y [52]. In [51] two solutions for the artificial

neural network are generated, X and Y ∗. X is the output of the artificial neural

network when there are no restrictions on the weights in the network. Y ∗ is the

output of the artificial neural network when there are certain sign restrictions on

the weights. Y ∗ is the new solution to fuzzy equations and Y ≤ Y ∗, whenever230

Y exists.
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In [53] evolutionary algorithms and artificial neural networks are used to

solve the following fuzzy equation,

A1Y +A2 = A3 (49)

where A1, A2, A3 and Y are triangular fuzzy numbers. Three solution techniques

for solving the fuzzy equation (49) are introduced. The first solution type (Yc),

is named classical solution which uses α-cuts and interval arithmetic to obtain

Yc.235

Example 3.5.1. Suppose [A1] = (1, 2, 3), [A2] = (−3,−2,−1) and [A3] = (3, 4, 5).

Applying the intervals into the fuzzy equation (49), we get

(1 + α)Y α
c + (−3 + α) = (3 + α)

(3− α)Y
α

c + (−1− α) = (5− α)
(50)

where [Yc]
α = (Yc

α, Yc
α
). Therefore,

Y α
c = 6

1+α

Y
α

c = 6
3−α

(51)

Nevertheless, [Y α
c , Y

α

c ] is not a fuzzy number since Y α
c (Y

α

c ) is a decreasing

(increasing) function of α. Yc may sometimes exist and sometimes may not

exist.

The other solution is generated from fuzzifying the crisp solution (a3 −
a2)/a1, a1 ̸= 0. (A3 − A2)/A1 is the fuzzified solution, such that zero does not

belong to the support of A1. To evaluate the fuzzified solution (A3 − A2)/A1,

two methods are proposed. The first technique is using the extension principle

to produce Ye. The second technique is using α-cut and interval arithmetic to

produce YI . Ye is obtained as follows:

Ye(y) = min{Π(a1, a2, a3)|(a3 − a2)/a1 = y} (52)

where Π(a1, a2, a3) = min{A1(a1), A2(a2), A3(a3)}. The α-cut of Ye are ob-

tained as follows:

Y α
e = min{a3−a2

a1
|a1 ∈ [A1]

α, a2 ∈ [A2]
α, a3 ∈ [A3]

α}
Y

α

e = max{a3−a2

a1
|a1 ∈ [A1]

α, a2 ∈ [A2]
α, a3 ∈ [A3]

α}
(53)
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where [Ye]
α = (Ye

α, Ye
α
). The solution YI is obtained as

[YI ]
α = ([A3]

α − [A2]
α)/[A1]

α (54)

The fuzzy equation (49) can be solved by Ye(YI) if after substituting α-cuts of

A1, A2, A3 and Ye(YI) into (49) the resulting equation is valid.240

Example 3.5.2. Suppose [A1] = (1, 2, 3), [A2] = (−3,−2,−1) and [A3] = (3, 4, 5).

Since a3−a2

a1
is an increasing function of a3 but a decreasing function of both a1

and a2 (supposing a1 > 0, a3 > 0, a2 < 0), hence

Y α
e = 4+2α

3−α

Y
α

e = 8−2α
1+α

(55)

In this example Ye = YI which does not satisfy in (49).

For some fuzzy equations, Ye is computationally too difficult to be obtained,

so in [53] an evolutionary algorithm is proposed to approximate its α-cuts.

However, the proposed technique in [53] is defined for only symmetric fuzzy

numbers. It only calculates the upper bound and lower bound of the fuzzy245

numbers without taking into consideration the center part.

4. Numerical methods for solving fuzzy differential equations

Because of the nonlinear nature of the PDEs, analytical techniques cannot

be used and solutions must be obtained with numerical techniques. In this

section, five different important techniques are illustrated to solve FDEs and250

fuzzy PDEs.

4.1. Predictor-corrector technique

The predictor-corrector technique is extensively used for solving initial value

problems. Three numerical techniques named Adams-Bashforth, Adams-Moulton

and predictor-corrector are proposed in [54] to solve fuzzy ODEs. Predictor-

corrector is generated from the combination of Adams-Bashforth and Adams-

Moulton techniques. The Adams-Bashforth two-step technique is defined as
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w0 = a0, w1 = a1

wj+1 = wj +
k
2 [3g(tj , wj)− g(tj−1, wj−1)], j = 1, 2, ..., N − 1

(56)

where p = t0 ≤ t1 ≤ ... ≤ tN = q, and k = (q−p)
N

. The Adams-Moulton two-step

technique is defined as

w0 = a0, w1 = a1

wj+1 = wj +
k
12 [5g(tj+1, wj+1) + 8g(tj , wj)− g(tj−1, wj−1)]

(57)

for j = 1, 2, ..., N − 1. The convergence order of the techniques proposed in

[54] is O(hm) which is higher than the convergence order of the Euler technique

that is O(h) [55]). The following example is presented in [54] which uses the255

Adams-Bashforth, Adams-Moulton and predictor-corrector techniques to solve

fuzzy ODEs in the setting of Hukuhara or Seikkala differentiability.

Example 4.1.1. Consider the following initial value problem

d
dt
w = −w + t+ 1

w(0) = (0.96, 1, 1.01)
(58)

In [54] it is presented that the exact solution at t = 0.1 is

w(0.1) = (0.1 + 0.96e−0.1, 0.1 + e−0.1, 0.1 + 1.01e−0.1) (59)

The exact solution (59) is acquired by supposing that the solution takes the

form

w(t) = t+ (0.96, 1, 1.01)e−t (60)

However, this function is not Hukuhara differentiable as it has a decreasing

length of the support. The Hukuhara differentiable function has an increasing

length of the support. The correct exact solution is illustrated in [56].260

Lemma 1. If s(t) = (β(t), γ(t), φ(t)) is triangular number valued function and

if s is Hukuhara differentiable, so d
dt
s = ( d

dt
β, d

dt
γ, d

dt
φ).

Consider the following initial value problem

d
dt
w = g(t, w)

w(t0) = w0

(61)
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with w0 = (w0, w
1
0, w0) ∈ E,w(t) = (s, s1, s) ∈ E, g : [t0, t0 + b] × E →

E, g(t, (s, s1, s)) = (g(t, s, s1, s), g1(t, s, s1, s), g(t, s, s1, s)), and using Lemma 1,

(61) can be transformed into the following system of ODE































d
dt
s = g(t, s, s1, s)

d
dt
s1 = g1(t, s, s1, s)

d
dt
s = g(t, s, s1, s)

s(0) = w0, s
1(0) = w1

0, s(0) = w0

(62)

Theorem 1. Let us consider the initial value problem (61) with w0 = (w0, w
1
0, w0) ∈

E, g : [t0, t0+b]×E → E, g(t, (s, s1, s)) = (g(t, s, s1, s), g1(t, s, s1, s), g(t, s, s1, s))

such that g, g1, g are Lipschitz continuous (real-valued) functions. Therefore,265

the solution of (61) is triangular-valued function w(t) = (s(t), s1(t), s(t)) :

[t0, t0 + b] → E, also the initial value problem (61) is equivalent to the sys-

tem of ODE (62).

To correct the example 4.1.1, using Theorem 1, the problem (58) is trans-

formed into






























d
dt
s = −s+ t+ 1

d
dt
s1 = −s1 + t+ 1

d
dt
s = −s+ t+ 1

s(0) = 0.96, s1(0) = 1, s(0) = 1.01

(63)

having solution s(t) = t − 0.025et + 0.985e−t, s1(t) = t + 1.0e−t, s(t) = t +

0.025et + 0.985e−t. Therefore the solution of (58) is

w(t) = (t− 0.025et + 0.985e−t, t+ 1.0e−t, t+ 0.025et + 0.985e−t) (64)

The predictor-corrector method is efficient as it uses the information from

prior steps. The disadvantage of the predictor-corrector method is that the270

number of iterations is long which may lead to slow convergence. Moreover, this

method is too hard to program. Adomian decomposition technique is simple

and easy to use.
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4.2. Adomian decomposition technique

The Adomian decomposition technique was first proposed by Adomian in the275

early 1980s. It has been applied to a wide class of linear and non-linear ODEs,

PDEs and integral equations. In [57] the Adomian decomposition technique is

proposed for obtaining the numerical solution of hybrid FDEs. The Adomian

decomposition technique considers the estimate solution of a nonlinear equation

as an infinite series that often approaches the exact solution.280

In [58] the fuzzy solution of the second-order homogeneous fuzzy PDEs is ob-

tained using the Adomian decomposition technique. Using Seikkala derivative

in [58], the Seikkala solution of a fuzzy heat equation with specific fuzzy bound-

ary and initial conditions is obtained. Seikkala solution is based on Seikkala

derivative presented in [59].285

Definition 4 (Seikkala derivative). Let I be a real interval and U : I → E be a

fuzzy process. The Seikkala derivative d
dt
U(t) of a fuzzy process u is defined as

SDU(t) = [
d

dt
U(t)]α = [

d

dt
U(t, α),

d

dt
U(t, α)], t ∈ I (65)

Consider the following differential equation

Ak +Bk + Ck = f (66)

where A is the highest order derivative that is supposed to be easily invertible,

B is a linear differential operator of order less than A, C presents the nonlinear

terms, also f is the source term. It has been assumed in the Adomian decom-

position technique that the unknown function k can be decomposed as follows

k =

∞
∑

m=0

km (67)

The nonlinear operator Ck is defined as

Ck =

∞
∑

m=0

Bm(k0, ..., km) (68)
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where Bm(k0, ..., km) are the appropriate Adomian’s polynomials that are pre-

sented as

Bh =
1

h!
(
dh

dφh
F (

∞
∑

m=0

kmφm))|ϕ=0 (69)

The terms of series k =
∑

∞

m=0 km are computed using the following iterated

approach

k0 = A−1u

km = −A−1B(km)−A−1(Bm−1)
(70)

The Adomian decomposition method is reliable and promising. It can be

used for all kinds of differential equations, linear or nonlinear, homogeneous

or non-homogeneous. However, the effectiveness and precision of the Adomian

decomposition method depend on the convergence and the rate of convergence of

the series solution. Adomian decomposition method produces a series solution290

that may have a slow rate of convergence over broader areas. Moreover, the

Adomian decomposition method series solution can be divergent if the solution

of the problem is oscillatory. To overcome these disadvantageous, the Adomian

decomposition method should be modified in order to deal with problems with

oscillatory solutions in nature. For this, the Laplace transform is proposed with295

Adomian decomposition technique for solving such problems [60].

4.3. Taylor technique

In [61], the 2nd Taylor method is proposed for solving linear and nonlinear

FDEs. The convergence order of the 2nd Taylor method is O(h2) which is higher

than the convergence order of the Euler method that is O(h) [55].300

Solving numerically the FDEs by the Taylor approach of order p is illustrated

in [62]. The algorithm successfully solves linear and nonlinear fuzzy Cauchy

problems with the convergence order of O(hp).

The main disadvantage of the Taylor series method is the calculation of

higher derivatives. The procedure becomes more difficult as the order increases.305

Runge-Kutta technique is often considered to be the most efficient one-step

method. The Runge-Kutta formulas simplifies the Taylor techniques, while not

remarkably increasing the error.
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4.4. Runge-Kutta technique

In [63] the four-stage order Runge-Kutta technique is proposed for solving310

linear and nonlinear FDEs. Even though this work is important, it has the

drawback that, while investigating the convergence of their four-stage order

Runge-Kutta technique, the authors practically work on the convergence of the

ODEs system that happens when solving numerically. In [14], RungeKutta

s-stage method is proposed for a more general category of problems.315

consider the following fuzzy initial value problem

d
dt
w = g(t, w, v)

w(t0) = w0 ∈ E
(71)

where w is the unknown fuzzy function, t ∈ [t0, T ], and v is considered as a

vector of triangular fuzzy numbers. Moreover, g is a continuous fuzzy function

that its fuzziness is because of the existence of v, meaning that if v is taken to be

a vector of real numbers, consequently g will become a crisp function. In [14],

the RungeKutta s-stage technique for the solution of (71) is defined as follows:

wn+1 = wn +Ψ(tn, wn, h) (72)

where

Ψ(tn, wn, v, h) =
∑s

i=1 λiqi

q1 = g(tn, wn, v)

qi = g(tn + γih,wn + h
∑i−1

j=1 ζijqj , v), i = 2, ..., s

(73)

where h = (T − t0)/N also the following conditions are hold

s
∑

i=1

λi = 1, γi =
i−1
∑

j=1

ζij , i = 1, 2, ..., s (74)

It is clear that constants qi are fuzzy numbers. Furthermore, convergence for

s-stage RungeKutta technique is proved in [14].

The main advantages of Runge-Kutta methods are that they are easy to use

and also they are stable. The main disadvantages of Runge-Kutta methods are

that they need comparatively large computer time. Also, in particular, they are320

not suitable for systems of differential equations with a mix of fast and slow
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state dynamics. Artificial neural networks are relatively easy to implement and

computationally fast.

4.5. Neural network technique

Numerical solutions of FDEs and fuzzy PDEs by utilizing fuzzy artificial325

neural networks is more modern than the previous subjects because it only

goes back to 2010. In [64] fuzzy artificial neural network method is used for

finding the approximate solution of fuzzy PDEs. The proposed method is based

on substituting each u in the input vector u = (u1, u2, ..., un), ui ∈ [a, b] by a

polynomial of first degree P (u) = ϵ(u+1), ϵ ∈ (0, 1). Therefore, the input vector330

will be (P (u1), P (u2), ..., P (un)), P (ui) ∈ (a, b).

The proposed technique in [64] selects the training points over the open

interval (a, b) without training the neural network in the range of first and end

points which cause in decreasing the computational error. This technique can

handle efficiently all kinds of fuzzy PDEs and produce a precise approximate335

solution.

Fully fuzzy neural networks have disadvantages such as having long computa-

tion time and complicated learning algorithm. In order to reduce the complexity

of the learning algorithm and computation time in [65] a partially fuzzy neural

network is proposed for finding the solutions of FDEs. In the proposed partially340

fuzzy neural network the connection weights to output unit are fuzzy numbers

while connection weights and biases to hidden units are real numbers.

5. Comparisons

In this section, several application examples have been established to com-

pare the efficiency of numerical methods to approximate the solution of dual345

fuzzy equations and FDEs.

Example 1. The water tank system has two inlet valves W1, W2, and two

outlet valves W3, W4, see Figure 5. The areas of the valves are uncertain as the

triangle function (2), A1 = F (0.019, 0.022, 0.025), A2 = F (0.009, 0.019, 0.037),
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A3 = F (0.011, 0.014, 0.016), A4 = F (0.041, 0.059, 0.071). The velocities of the350

flow (controlled by the valves) are f1 = ( v
10 )e

v, f2 = vcos(Πv), f3 = cos(Πv
8 ),

f4 = v
2 . If the outlet flow is aimed to be d = (4.091, 6.341, 36.388), what is the

quantity of the control variable v.

A1 A2 

A4 A3 

 

  

d 

W1 W2 

W4 W3 

Fig. 5. Water tank system355

The mass balance of the tank is [66]:

ρA1f1 ⊕ ρA2f2 = ρA3f3 ⊕ ρA4f4 ⊕ d (75)

where ρ is the density of the water. The exact solution is v0 = 2 [66]. To

approximate the solution, we use five popular techniques: Newton technique,

Steepest descent technique, Genetic algorithm technique, Ranking technique,

and Fuzzy neural network technique. The errors of these techniques are demon-

strated in Table 1. We can see that all five techniques can estimate the solutions

of the dual fuzzy equations. Fuzzy neural network technique is more appropriate

for solving these type of equations. In Table 1, k is the number of iterations.

The small estimation errors can be acquired by making the number of iteration

larger. By increasing the number of iterations the estimated errors of the fuzzy

neural networks are less than the other techniques. Fuzzy neural network tech-

nique is more robust in comparison with the other techniques. Corresponding
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error plots are shown in Figure 6.

Table1. Estimation errors

k Newton Steepest descent Genetic algorithm Ranking Fuzzy neural network

1 0.18764 0.16932 0.33339 0.31115 0.43884

2 0.29598 0.26112 0.24813 0.23793 0.32382

3 0.36201 0.32701 0.13123 0.11704 0.21802
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119 0.07886 0.05198 0.04601 0.02888 0.00322

120 0.07499 0.04892 0.03887 0.02493 0.00275
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Fig. 6. Estimation errors of five popular techniques

Example 2. The deformation of a solid cylindrical rod depends on the

stiffness E, the forces on it f, the positions of the forces L, and the diame-

ter of the rod d, see Figure 7. The positions are not exact, they satisfy the360

trapezoidal function (3), L1 = F (0.2, 0.3, 0.5, 0.6), L2 = F (0.4, 0.6, 0.7, 0.8),

L3 = F (0.4, 0.6, 0.7, 0.8). The area of the rod is A = π
4 d

2. The external forces are

the function of v, f1 = v7, f2 = v6
√
v, f3 = e2v. If the the desired deformation

at the point M is aimed to be M∗ = F (0.000563, 0.000822, 0.001003, 0.001211),

what is the quantity of the control force v.365
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f1 f2 

L2 L1 

d 

 
M 

f3 

L3 

d 

 
M 

(a) 

(b) 

Fig. 7. Two solid cylindrical rods

According to the tension relations we have [67]

L1f1
AE

⊕ L2(f1 + f2)

AE
=

L3f3
AE

⊕M∗ (76)

where d = 0.02, E = 70× 109. The exact solution is v = 4. To approximate the

solution, we use five popular techniques: Newton technique, Steepest descent

technique, Genetic algorithm technique, Ranking technique, and Fuzzy neural

network technique. The errors of these techniques are demonstrated in Table 2.

Fuzzy neural network technique is more robust than the other techniques. Fur-

thermore, the estimated error of the fuzzy neural network is less when compared

with other techniques. Corresponding error plots are shown in Figure 8.

Table2. Estimation errors

k Newton Steepest descent Genetic algorithm Ranking Fuzzy neural network

1 0.1508 0.2013 0.4865 0.6004 0.7883

2 0.2296 0.2996 0.5743 0.4987 0.5002

3 0.3119 0.1844 0.4076 0.3791 0.3101

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

89 0.1099 0.08014 0.06995 0.05001 0.00985

90 0.09607 0.07201 0.06001 0.04112 0.00711
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Fig. 8. Estimation errors of five popular techniques

Example 3. The vibration mass system shown in Figure 9 is modeled as,

d

dt
u(t) =

c̃

m̃
x(t), u(t) =

d

dt
x(t) (77)

where the spring constant is c̃ = 1, and the mass is m̃ = (0.75, 1.125). If the

initial position is x(0) = (0.75 + 0.25α, 1.125 − 0.125α), α ∈ [0, 1] , hence the

exact solutions of (77) are [68]

x(t, α) =
[

(0.75 + 0.25α)et, (1.125− 0.125α)et
]

(78)

where t ∈ [0, 1].370

Equilibrium 

position 

x(t) 

+ 

Fig. 9. Vibration mass

To approximate the solution (78), we use five popular techniques: Predictor-

corrector technique, Adomian decomposition technique, Taylor technique, Runge-

Kutta technique, and Fuzzy neural network technique. The errors of these tech-
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niques are demonstrated in Table 3. Corresponding solution plots are shown in

Figure 10.

Table3. Estimation errors

α Predictor-corrector Adomian decomposition Taylor Runge-Kutta Fuzzy neural network

0 [0.2059,0.4378] [0.0931,0.1411] [0.0611,0.1097] [0.0412,0.0895] [0.0212,0.0611]

0.2 [0.2229,0.4568] [0.1028,0.1512] [0.0713,0.1187] [0.0611,0.1089] [0.0314,0.0711]

0.4 [0.1962,0.4281] [0.0829,0.1312] [0.0509,0.0988] [0.0209,0.0689] [0.0111,0.0512]

0.6 [0.1861,0.4181] [0.0723,0.1211] [0.0411,0.0879] [0.0209,0.0688] [0.0009,0.0411]

0.8 [0.2469,0.4789] [0.1229,0.1709] [0.1011,0.1489] [0.0709,0.1188] [0.0507,0.0909]

1 [0.2569,0.2569] [0.1429,0.1429] [0.1111,0.1111] [0.0812,0.0812] [0.0611,0.0611]

All five techniques are appropriate for solving FDEs. The leaning process of

the fuzzy neural network technique is more rapid than the other techniques.

Furthermore, the robustness of fuzzy neural network technique is better in com-375

parison with the other techniques.
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Fig. 10. Comparison plot of five popular techniques and the exact solution

Example 4. A tank with a heating system is demonstrated in Figure 11,

where R̃ = 0.5 and the thermal capacitance is C̃ = 2. The temperature is x.

The model is [69],
d

dt
x(t) = − 1

R̃C̃
x(t) (79)
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Fig. 11. Thermal system380

where t ∈ [0, 1] and x is the amount of sinking in each moment. If the initial

position is x(0) = (α− 1, 1−α) and α ∈ [0, 1], so the exact solutions of (79) are

x(t, α) = [(α− 1)et, (1− α)et] (80)

To approximate the solution (80), we use five popular techniques: Predictor-

corrector technique, Adomian decomposition technique, Taylor technique, Runge-

Kutta technique, and Fuzzy neural network technique. The errors of these tech-

niques are demonstrated in Table 4. The lower and upper bounds of absolute

errors are displayed in Figure 12 and Figure 13, respectively. The approxi-385

mation errors of the fuzzy neural network technique is smaller than the other

techniques.
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Fig. 12. The lower bounds of absolute errors
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Fig. 13. The upper bounds of absolute errors

Table4. Estimation errors

α Predictor-corrector Adomian decomposition Taylor Runge-Kutta Fuzzy neural network

0 [0.2281,0.4512] [0.1188,0.1619] [0.0809,0.1287] [0.0686,0.1512] [0.0418,0.0809]

0.2 [0.2161,0.4412] [0.1011,0.1549] [0.0739,0.1879] [0.0469,0.0858] [0.0379,0.0711]

0.4 [0.2421,0.4723] [0.1231,0.1709] [0.0949,0.1311] [0.0859,0.1088] [0.0521,0.0911]

0.6 [0.2608,0.4959] [0.1479,0.1919] [0.1229,0.1679] [0.0928,0.1412] [0.0729,0.1569]

0.8 [0.2011,0.4322] [0.0929,0.1438] [0.0688,0.1059] [0.0431,0.0881] [0.0212,0.0641]

1 [0.2791,0.2791] [0.1629,0.1629] [0.1331,0.1331] [0.1011,0.1011] [0.0812,0.0812]

6. Conclusions

In this paper, we have presented an overview of the most common numerical

solution strategies for the fuzzy equations, dual fuzzy equations, FDEs, and

fuzzy PDEs. The existence of solutions for these equations is discussed in detail.395

Research in this area continues to develop new types of numerical techniques

and strategies. Emphasis is given to recent developments in solving strategies

in the last two decades, which indicates their significant progress.
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