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Abstract

The Purkinje network (PN) gains more clinically im-
portance as it becomes target for pacing in rate control
and defibrillation. However, our understanding of the PN
morphology arises from animal experiments, which might
not transfer to humans. Therefore, we propose an auto-
mated computer simulation predicting physiological PN
morphologies depending on the heart shape. It starts by
generating virtual heart shapes from a statistical shape at-
las and generates virtual PNs on the endocardial surface.
For the combined virtual models the eikonal equation is
solved to estimate the local activation times throughout
the myocardium, which then feed forward to an simula-
tion of the 12-lead surface ECG. From the simulated ECG
the QRS-complex is compared against a healthy standard
QRS-complex ,which allows to estimate how physiological
a PN morphology is.

In our model, only bundle branch bifurcation points
near the base or near the apex result in physiological QRS
wave forms. For the right bundle, more physiological QRS
waves can be obtained when the branching point is at the
apex. Only a minor dependency of the ECG on the heart
shape is found. However, a strong correlation between the
bundle branch bifurcation points themselves is observed.

1. Introduction

The Purkinje network (PN) is a fast-conducting network
of specialised cardiac cells that transfers the electrical sig-
nal arriving at the atrioventricular node to the ventricu-
lar muscle. It is well-known that the PN varies between
species [1] and in particular from animals to humans. Nev-
ertheless, the majority of morphological and physiological
knowledge of the PN arises from animal studies [2] . Stud-
ies of human PNs are limited to single subjects [3], and as
a result it is unclear to which extent the PN may vary over
a large population.

Analysis of the developing heart indicates that the bi-
furcation point of the bundle branches (BB) and free basal
area (Fig. 1) could depend on the heart shape. The shorter
the distance a BB runs until it bifurcates the more of the

septum is covered by the PN. This influences the first sites
of myocardial activation and thereby the synchronicity of
the left and right ventricular contraction. The free basal
area, detailed below, could additionally influence the total
activation time of the heart.

We hypothesise that the PN morphology depends on the
heart shape and test this hypothesis with a computational
model. We construct an automatic computational pipeline
which, based on a parametric model of cardiac shape and
PN, predicts whether the electrocardiogram (ECG) shows
a single or a double R-spike. The automatic pipline is use
to train a surogate model, which allows much faster pre-
diction of physiological PN depending on the heart shape.

2. Methods

First, we outline the computational model, and then how
to build the surrogate model.

2.1. The Automatic Pipeline

The automatic pipeline is formed by the cardiac model
and the ECG model. The cardiac model summarizes
the models used to estimate the transmembrane potential,
where the ECG model calculates the 12 lead ECG from the
transmembrane potential.

The cardiac model starts with the creation of a new heart
surface mesh based on a statistical shape model (SSM).
The SSM is constructed with an algorithm published in [4],
from 134 heart surface meshes obtained in the work of [5].
The usage of the SSM allows a parametrisation of the heart
shape need to construct the surrogate model. To obtain
the final surface mesh the mean mesh is deformed based
on the SSM using radial basis functions [6]. On the sur-
face mesh of the heart, a PN is grown using [7] with added
control over the coverage of the endocardium by the PN.
In detail, there is each one Purkinje parameter for the left
and right BB bifurcation point, and two controlling the free
basal area in the left ventricle (LV) and right ventricle (RV)
(Fig 1). From the surface mesh, a volumetric mesh is gen-
erated with TetGen1 and the myocardial fibre orientation

1Tetgen:Daunay-based quality tetrahedral meshgenerator,WIAS Berlin
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Figure 1. Four parameter controlling the ventricular cover-
age by the Purkinje network. Left: Free basal area, Right:
Bundle branch bifurcation point shown for left ventricle.

is assigned based on a method described in [8]. The ge-
ometrical model is used to estimated activation times of
the heart with the eikonal model [9], which is solved with
the fast marching algorithm [10]. The resulting activation
times are converted to time-series of transmembrane po-
tential distributions. For each point in the volume mesh,
the activation time is used as the time of upstroke in the
action potential. The action potential is sampled from a
lookup table of the minimal ionic model [11]. For 150
time-steps, ranging from 0 ms to 300 ms, the transmem-
brane potential distribution is exported. The duration of
300 ms allows all myocytes to complete the depolariza-
tion, while the timestep is chosen to capture the upstroke,
which takes about 2 ms.

The second part of the automatic pipeline is the ECG
model, build from the torso geometry and the forward ECG
model. The torso geometry is a fixed mesh consisting of a
skin and lung mesh from [12] and the heart surface from
the previous model. The geometries are used in the ECG
forward solution of

−∇ · ((σ̃i + σ̃e)∇(φT )) = ∇ · (σ̃i∇(ϕ)) ∀x ∈ ΩH

∇ · (σ̃T∇(φT )) = 0 ∀x ∈ ΩT

∂nφT |∂ΩT
= 0, (1)

where φT is the torso potential, ϕ is the transmembrane
potential, and σ̃e, σ̃i, σ̃T are the extracellular, intracellular
and torso conductivities. Two domains are distinguished
Ω = ΩH ∪ ΩT with ΩH being the domain of the heart
and ΩT the domain of the torso without heart. To solve
equation (1) numerically the computer program SCIRun2

is used. The solution of the torso potential is obtained for
all 150 time-steps of the transmembrane potential exported
by the cardiac model. From which the standard 12 lead
ECG is derived.

2SCIRun: A Scientific Computing Problem Solving Environment, Sci-
entific Computing and Imaging Institute (SCI)

2.2. The Surrogate Model

The surrogate model is a function from the 5 dimen-
sional parameter space (4 Purkinje parameters + 1 shape
parameters) to the cost associated with a double R-spike.
To evaluate the presents of a double R-spike, lead II from
the ECG is used to fit two Gauss-functions

gs1,µ1,σ1,s2,µ2,σ2
(t) =
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2σ2
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(
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To fit g(t), the R-spike is centred at the origin ECG(0) =
max(ECG), then the L2 error between the signal and g(t)
is minimised with a constrained minimisation. A penalty
term r1 is used to prevent both Gauss-function at the origin

E(s1, µ1, σ1, s2, µ2, σ2) =∫
(ECG(t)− g(t))2dt+ |µ1 − µ2|−1︸ ︷︷ ︸

r1

, (2)

0 ≥ s2

σ2
− s1

σ1

s.t. µ1 ∈ [−3, 3], σ1 ∈ [10., 40], s1 ∈ [−20, 200]

µ2 ∈ [−50, 50], σ2 ∈ [0.1, 50], s2 ∈ [−0.1, 30].

The constrains ensures that N1 is the largest spike. The
domain of the function E allows a negative amplitude, be-
cause the R-spike can become negative for some Purkinje
parameter values.

The cost function is generated from the six features
(s1, σ1, µ1, s2, σ2, µ2) obtained during fitting

f1(s1, s2, σ1, σ2) := sig

(
100

s2σ1

s1σ2
, 20

)
(3)

f2(µ1, µ2) := sig
(

((µ1 − µ2)/µ2)
2
, 2
)

(4)

f3(σ1) := sig (σ1, 20) (5)
Cost(s1, µ1, σ1, s2, µ2, σ2) := f1 · f2 + 0.5f3 (6)

with the Sigmoid function

sig(x, x0) := 1/1 + exp(x0 − x). (7)

The cost function compares the ratio of the amplitude of a
possible double spike (f1), measures the spike separation
(f2) and the absolute amplitude of the main spike (f3). The
cost becomes smaller if the double peaks get closer to each
other and has a minimum if only one peak is detected.
The cost is used in the sparse grid algorithm by
A. Klimke [13], to train a piecewise linear sparse grid in-
terpolant from the 5 model paramets to the cost

S(4 Purkinje Parameter, 1 Shape Parameter) 7→ Cost.
(8)
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3. Results

In the following, we plot the energy function while vary-
ing two parameters of the automatic pipeline. All other pa-
rameters are keep fixed at mid range. For the heart shape
the range is two standard deviation (

√
σ) from the mean

shape, while the bifurcation point is at 10% to 90% of the
left or right ventricular length. In the resulting plot, the
smaller the energy is, the more physiological is the simu-
lated QRS.

For the left BB a bifurcation point (Fig. 2) near the base
or near the apex would be favoured by the computational
model. The experiments with shape deformation in the
negative direction of mode one yield an ECG with a double
R-spike, for all tested bifurcation points of the left BB.

In case of the right BB bifurcation point, the results are
more conclusive and strongly favour a bifurcation point
close to the apex. As for the left BB bifurcation a slight
dependency on the heart shape is observed. However, for
all shapes the same bifurcation point is favoured.

A strong correlation between the left and right BB bi-
furcation point exists (Fig. 3). As already seen in Fig. 2,
for both BBs exists parameter values for which the cost
becomes small. However, only if both bifurcation parame-
ters are chosen optimally an ECG with a single R-spike is
produced.

The experiment in variation of the free basal area in LV
and RV has shown a smaller influence on the ECG (Fig. 4).
Further, there is no dependency on the shape to be noted.

4. Discussion

With the help of computational simulations, we ob-
served strong dependencies between the BB bifurcation
points and the resulting ECGs. A particular configuration
of the right BB bifurcation point was observed over a range
of cardiac shapes and is in agreement with literature [2].
The strong correlation be between left and right BB bifur-
cation point was also expected, because bifurcation points
determinate the synchronous activation of LV and RV. Our
model confirmed this intuitive observation.

Our model showed little dependency of the cost func-
tion on the heart shape. This could be because the resulting
ECG does not change, but also because our cost function is
not sensitive to the shape change. A further reason could
be that left and right BB bifurcation points have greater
influence on the ECG then the heart shape and need to op-
timised before seeing a dependency of PN morphology on
the heart shape.

Similar observations can be made for the free basal area,
which has nearly no influence on the resulting ECG. Vary-
ing the free basal area in the RV can reduce the separation
of the double spike. This could be related to the longer
activation time in the RV if the free basal area increases.
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Figure 2. Cost function in relation to bundle branch bifur-
cation point and shape.
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Figure 3. Cost function with respect to bundle branch bi-
furcation points. Exhibiting the most sensitivity compared
to the other experiments.

However, for all experiments the separation persisted.
As do all studies, this study has limitations. One is the

current sparse grid, which chose the middle of the param-
eter range as a reference point. This means, that for many
simulations non optimal bifurcation parameters are used.
Taken the results for this study into account, it would be
better if the sparse grid algorithm first searched for the cor-
rect left and right BB bifurcation point and then explored
other parameter dependencies. Otherwise, a bias towards
the chosen bifurcation points exist. The second limitation
is the restriction to the first mode of shape variation in this
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Figure 4. Cost function in relation to free basal area and
shape.

study. Using more shape variation modes could provide
more insight in the shape dependency of the PN. Equally,
the PN parameter could include the density of Purkinje-
Myocardial-Junctions. Furthermore, this study uses only
the lead II of the ECG. These means the PN optimisation
process evaluates only one of three spatial axes.

5. Conclusions

In conclusion, our simulation-based study showed that
the bifurcation points of the left and right BB have a major
impact on the QRS complex. Both parameters need to be
tuned simultaneously to obtain a single-peak QRS. On the
other hand, the simulation indicated minor importance of
the free basal area for the correct formation of the ECG.
Overall, the experiments do not confirm the hypothesises
that the PN morphology depends on the heart shape, for
the first mode of variation in the SSM.

Our systematic exploration of the ECG as a function
of cardiac structure was possible because the heart shape
was parametrised through a SSM and the PNs could
algorithmically-generated. This allowed to simulate spe-
cific virtual hearts and rule out certain configurations of
the BB bifurcation points as unphysiological. This idea
should be further developed to consider ways of identify-
ing the PN from ECG measurements in an in-vivo setting.
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