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Abstract

The MDCEV modelling framework has established itself as the preferred method
for modelling time allocation, with data very often collected through travel or activ-
ity diaries. However, standard implementations fail to recognise the fact that many
of these datasets contain information on multiple days for the same individual, with
possible correlations and substitution between days. This paper discusses how the
theoretical accommodation of these effects is not straightforward, especially with
budget constraints at the day and multi-day level. We rely on additive utility func-
tions where we accommodate correlation between activities at the within-day and
between-day level using a mixed MDCEV model, with multivariate random distribu-
tions. We illustrate our approach using a well-known time use datasets, confirming
our theoretical points and highlighting the benefits of allowing for correlation across
days in terms of model fit and behavioural insights.

Keywords: MDCEV; activity modelling; multi-day; time use

1 Introduction

Understanding and modelling the way in which individuals allocate time across different
activities is a key topic in travel behaviour research. While much of the early research
in this field focused on the analysis of how people allocate their time between different
activities over a single randomly chosen day (Pas and Sundar, 1995), the literature grad-
ually recognised that the way an individual allocates time may be poorly understood
by this single day snapshot (Goodwin, 1981; Pas and Sundar, 1995). Several studies
then started to make use of multi-day surveys of varying length, relying on various data
collection methods, to investigate different research questions (Bhat et al., 2004; Jara-
Dı́az et al., 2008; Kang and Scott, 2010). Minnen et al. (2015) argues that multi-day
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data allow to observe temporal regularities and habitual behaviour while Kang and Scott
(2010) use both descriptive analysis and structural equation modelling (SEM) to show
that time-use patterns vary substantially across days, with marked differences between
weekdays and weekends. SEM was also applied by Roorda and Ruiz (2008), who esti-
mate a number of different models to test different hypotheses. The authors conclude not
only that substitution and complementarity effects are at play between the activities and
travel conducted within a single day, but also that that there are important relationships
between activity behaviour across different days, with more marked similarities across
weekdays. Interestingly, this paper also found that activity patterns during weekdays
observed in different years are more similar than in consecutive weekday-weekend day
pairs.

While the existing work established the building blocks to understand multi-day
behaviour, the literature in this area is not abundant: as explained by Schlich and
Axhausen (2003), collecting multi-day travel diaries is a very burdensome survey task
for respondents and a trade-off between data quality and richness is often unavoidable.

Jara-Dı́az and Rosales-Salas (2015), in their analysis of the duration of time diary
data, recommend the collection of a week of data to model time allocation, or at least
two or three days with appropriate weighting. Other studies focusing on other choices,
such as mode choice, argued that one week is an appropriate time period, allowing to
correctly analyse the day-to-day variability (Cherchi et al., 2017). Several studies have
acknowledged the need to separate weekdays and weekend days in the analysis of time
use (Bhat and Misra, 1999; Susilo and Kitamura, 2005) and hypothesised that individuals
may select their travel pattern at the beginning of each week, and then possibly make
small adjustments as later on (Hirsh et al., 1986).

A limited number of research efforts have attempted to capture the correlations be-
tween these different day types. As an example, Yamamoto and Kitamura (1999) do so
by introducing error components within a Tobit model, although limiting their analysis
to two discretionary activities only and distinguishing days simply between working and
non-working.

The Mobidrive data used in this paper has been exploited by a range of studies
looking at activity involvement over time. Cirillo and Axhausen (2010) propose the use
of a mixed logit model where error components create correlation among choice options
(activities) through the unobserved part of utility. Thanks to the long duration of the
study, they also explore the effect of past behaviour on current choices.

From the modelling perspective, the behavioural context of an individual who, over
the course of a day, allocates time to a set of different activities presents some challenges,
as the amounts of time can differ across activities, and individuals can also decide to not
engage in a particular activity on a given day. The choice process is thus one of selecting
amongst different activities that are not mutually exclusive (as they would be in a discrete
choice context) and determining a continuous time allocation for each.

Starting in the late 1950s, a number of different discrete-continuous econometric mod-
els have been put forward (e.g. De Jong, 1990; Dubin and McFadden, 1984; Heckman,
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1977; Tobin, 1958; Train, 1986). Nowadays, the state-of-the-art model for accommodat-
ing both a discrete and a continuous element of choice is the Multiple Discrete-Continuous
Extreme Value (MDCEV) model (cf. Bhat, 2008). This model is a generalisation of a
multinomial logit model (MNL) for multiple discrete continuous choice contexts and has
a simple closed-form probability which makes the model easy to use even with a large
number of alternatives. The model is based on the Kuhn Tucker (KT) first-order con-
ditions for constrained random utility maximisation, previously employed by Hanemann
(1978) and Wales and Woodland (1983), which are used to derive the optimal consump-
tion for the given random utility specification subject to a linear budget constraint. This
model is preferred to its antecedents as it provides a comprehensive framework for mod-
elling at the same time the discrete and continuous choice, relying on a CES-type utility
function rather than on a statistical stitching of a discrete and continuous model. The
framework provides a closed-form and easy to estimate likelihood function that is flexible
in terms of the inclusion of explanatory variables both in the discrete and continuous
part of the model.

The MDCEV model has become a popular tool for modelling time allocation (Kapur
and Bhat, 2007; Wang and Li, 2011), given its flexibility and ease of application. A key
characteristic of an MDCEV model is the budget component, which imposes a constraint
on the cumulative consumption across alternatives. The use of MDCEV with a time
budget as opposed to a money budget has traditionally be seen as an easier context
(and has hence been the basis of many of the applications/developments of MDCEV)
given that there are 24 hours in a day and that many time use surveys similarly operate
at the day level. Whether or not data is available for a single day or multiple days, the
modelling of time allocation at the day level can be seen as overly restrictive. At first
sight, modelling each individual day on its own by assuming separate 24 hour budgets
seems behaviourally reasonable, as it implies that, when choosing how to use their (e.g.
weekly) time, decision makers think about days as units in which to allocate different
activities. At the same time, this approach ignores the fact that time use behaviour may
not be independent across days.

A number of previous applications of MDCEV have made use of such multi-day data
without explicitly accommodating links across different days of the week, at best es-
timating day of the week-specific model coefficients to capture differences across days.
Chikaraishi et al. (2010) show how different days affect the likelihood to perform dif-
ferent activities, and that part of the overall variability in the model can be attributed
to temporal patterns. While not focusing on differences across days of the week, two
papers looked into weekly patterns, applying week-level budgets and reaching differ-
ent conclusions. Spissu et al. (2009) apply a panel mixed MDCEV model to analyse
differences in activity patterns across different weeks, finding substantial week-to-week
intra-individual variation and arguing that multi-week data might be required to allow
a fuller understanding of time use behaviour. Habib et al. (2008) estimated different
models for different weeks of the Mobidrive data, showing that while some variations
were present, a random week of data can satisfactorily capture time use behaviour.
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None of these studies captured the potential “links” across different days of the
week. These can represent substitution or complementarity between activities, or they
can simply materialise in correlations due to unobserved heterogeneity across individuals.
For example, in certain households the parent who drops-off the children on one day may
not do it on the next day (substitution), or a person who performs out-of home social
activities on one day may also travel (complementarity). Also, the person who performs
certain household obligations on one day might be more likely to also perform them on
other days (positive correlation caused by common unobserved heterogeneity).

It is tempting to see that the solution to the above problem lies in modelling time
allocation not at the day level but over a longer time horizon, with an example given for
the 48 hour level in Calastri et al. (2017). This however creates a number of different
problems. Firstly, while it becomes easy to create links over different days, such a
specification would not allow us to understand differences in the utilities of activities
across days and has substantial implications on the understanding of satiation. This
can be understood by noting that the estimation of day-specific coefficients would also
require day-specific budgets. By not imposing the latter, the analyst would neglect an
essential constraint which is present in the data on which the model is based. Secondly,
the question arises what unit of measurement should be used instead of the day level.
While the specification may ultimately be driven by the length of the data collection
period, an analyst will still need to decide between for example weekly or bi-weekly
specifications. With either assumption, the old issue returns of no relationship across
the different subsets defined by the budget.

The issue becomes even clearer when thinking about forecasting. In the first case,
i.e. with day specific budgets, a change in the utility of an activity on one day would
have no effect on the time spent on any activities on other days, as there is no link
between days. This is quite unlikely in reality, as, for example, if an individual is unable
to work on a certain day, he/she will try to make up for it by working a little longer
on the previous/following day. In the second case, i.e. using an overall weekly budget,
substitution between days becomes possible, but the model would not be constrained to
allocating only 24 hours across all activities on a given day. Any forecasts would thus
not allow us to understand what happens on individual days, but only at the aggregate
level. These considerations highlight the fact that it is important to research solutions
that allow the introduction of correlations across different days in MDCEV models of
time use, while avoiding violations of the 24 hour budget constraint so as to be able to
obtain consistent forecasts.

In this paper, we start by hypothesising that some activities are more similar than
others, i.e. that there is correlation between days as well as within days (between differ-
ent activities). We discuss past attempts to develop a model framework that allows an
analyst to incorporate substitutions and complementarities in the MDCEV model across
different days. This theoretical formulation is elegant but very difficult to apply in prac-
tice. To deal with these issues in a way that is computationally tractable, we instead
explore the use of a mixed MDCEV model which directly accommodates correlations
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between activities within and across different days. The correlations that we estimate
could be due to common heterogeneity, substitution (if the correlation is negative) or
complementarity (if the correlation is positive). It is usually not possible to disentan-
gle the different sources of correlation, but the analyst can make an informed guess on
the primary source of correlation.The approach suggested in this paper goes some way
towards accommodating the issue we identify without imposing excessive additional de-
mands in terms of model complexity. We highlight the importance of the behavioural
issue and thus hope to motivate further theoretical work.

The remainder of this paper is organised as follows. Section 2 discusses the limitations
of the “standard” implementation of MDCEV models for multi-day data, highlights the
complexity of working with non-additive utility functions and puts forward a mixed
MDCEV solution within an additive framework. The modelling approach is illustrated
using a well-known dataset in Section 3 and the implications of our results are discussed
in Section 4. Finally, Section 5 summarises our findings and presents directions for future
work.

2 Methodological considerations

In this section, we first discuss the limitations of the standard framework, before briefly
looking at the use of a non-additive utility specification. We next put forward a mixed
MDCEV model as a possible solution to the problem of working with multi-day data.
Finally, we contrast these two solutions.

2.1 Base specification

The random utility specification of the MDCEV model, as introduced by Bhat (2008)
and here described in terms of time use, is given by:

U(x) =
∑

k

γk

αk
[exp(β′zk + ǫk)]

((

xk

γk
+ 1

)αk

− 1

)

(1)

so that U(x) is quasi-concave, increasing and continuously differentiable with respect to
the vector of time amounts xk, and ψk = [exp(β′zk + ǫk)]. ψk is the baseline utility of
activity k, i.e. the marginal utility of the good at zero consumption. It is a function
of zk, i.e. the observed characteristics of the decision maker and of good k, which also
includes a constant representing the generic preference for activity k. In this random
specification, a multiplicative i.i.d. log-extreme value error term is introduced in the
baseline utility.

The analyst can solve the optimal time allocation (with respect to the time spent in
activities 1...K):

Max U(e1 . . . eK) s.t.

K
∑

k=1

e∗k = E (2)
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where e∗k are the optimal amounts of time invested in activities 1...K, that exhaust the
budget E, and where ek = xkpk. This problem is solved by forming the Lagrangian and
applying the KT conditions, as detailed in Bhat (2008). The resulting probability of the
expenditure pattern where M activities are chosen results in the closed-form expression
below:

P (e1
∗, e2

∗, . . . , eM
∗, 0, . . . , 0)

=
1

σM−1

(

M
∏

i=1

ci

)(

M
∑

i=1

1

ci

)







∏M
i=1e

Vi/σ

(

∑K
k=1e

Vk/σ
)M






(M − 1)! (3)

where σ is a scale parameter (not estimated in our case, as there is no price varia-

tion across products), ci =
1−αi

ei∗+γipi
and Vk = β′zk + (αk − 1)ln

(

ek
∗

γkpk
+ 1
)

− lnpk (k =

1, 2, 3, . . . ,K). As explained in Bhat (2008), equation 3 can also be expressed in terms
of consumption quantities. In our case, the two forms are interchangeable because there
is no price variation, and in the remainder of our discussion we will refer to consumption
quantities (xi).

To model multi-day time-use choices, it is desirable to formulate a unified multiple
discrete-continuous choice model that simultaneously recognises two different aspects.
Firstly, day-level (24 hour) constraints individuals face need to be enforced, with as
many constraints as the number of days modelled. Secondly, it is important at the same
time to account for the potential interactions between time allocation to activities across
different days (such as the substitution, complementarity and heterogeneity discussed
above). This forms the basis of the remainder of this paper.

2.2 Multi-day utility maximisation with day-level time constraints and

non-additive utility functions

A first specification to model multi-day time use while accommodating day-level time
constraints and interactions in time-use across different days is to use non-additive util-
ity formulations that allow for explicit interactions between utility functions of different
days while still imposing day-level constraints. One way to formulate non-additive util-
ity functions is to begin with the additive utility form shown in Equation 1 and add
multiplicative terms that create interactions between pairs of utilities corresponding to
activity participation on different days, as in Bhat et al. (2015).

The parameters estimated on such multiplicative utility terms capture substitution
and complementarity between the two choice alternatives being interacted. Specifically,

U =
L
∑

l=1

K
∑

k=1

ukl +
K
∑

k=1

L
∑

q,m=2,q 6=m

θkqm[ukq · ukm] (4)
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where K refers to activities, L to days and θkqm are the parameters estimated on the
multiplicative utility terms [ukq · ukm], interacting utility derived from activity k on two
different days q and m. If the estimated θkqm terms are negative they indicate substi-
tution between activity k on day q and on day m, while they capture complementarity
if positive. While this model constitutes an interesting approach for accommodating
these different relations, its complexity and limitations in terms of complementarity and
substitution patterns (further discussed in Section 2.4) have thus far meant that there is
no single empirical application in the literature.

2.3 Multi-day utility maximisation with day-level time constraints and

correlated, additive utility functions

We will now look at our proposed use of a mixed MDCEV model to capture intra and
inter-day correlations.

Let us consider the situation in which we have data from N separate individuals,
where Ln days are observed for person n. On each day, individual n allocates time to
K different activities (k = 1, 2, . . . ,K), where K = 1 is an activity that is performed by
every person on every day (i.e. an outside good). In this specification, it is assumed that
an individual makes his/her time use choices across different days to maximise the total
utility derived from time allocation on all days under consideration; subject to as many
day-level constraints as the number of days, where the time allocation to all activities
on each day sums up to 24 hours. Specifically, U =

∑L
l=1

∑K
k=1ukl is maximised subject

to L day-level time budget constraints
∑K

k=1xkl = 24, ∀l = 1, 2, . . . , L.
In this specification, U is the total multi-day utility derived by the person, u1l = ψ1lx

α
1l

is the utility from time allocation x1l to the outside good on day l (l = 1, 2, . . . , L),

ukl =
ψklγkl
α

(

xkl
γkl

+ 1
)α

∀k = 2, . . . ,K is the utility from time allocation xkl to activity k

on day l, ψkl is the corresponding baseline utility and γkl is the translation parameter,
which allows for corner solutions as well as having a role in relation to satiation (with
higher γkl implying lower satiation for activity k and day l). Finally, α is the generic
satiation parameter. Note that the subscript for person n is suppressed for ease in
notation.

In our theoretical discussions, we ignore the possibility of including socio-demographic
effects (though we do so in the empirical work), meaning that the baseline utility for

activity k on day l for person n is simply given by ψn,k,l = e
δk,dln

+εn,k,l where εn,k,l is
an extreme value error term for person n, activity k and day l, and where dln is the
day type for day l for person n . In addition to making the δ parameters activity and
day-type specific, we do the same for the γ parameters. With D different day types,
this would thus lead to the estimation of KD different δ parameters and KD different γ
parameters. In practice, we do not set D = 7 but focus on the situation where weekdays
(WD) are treated differently from Saturdays (SAT) and Sundays (SUN), i.e. D = 3.

A model of the form above would allow for different utilities for the same product
across days and also different shapes for the indifference curves, but would fail to capture
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correlation across activities and across days. Furthermore, any heterogeneity across
individual people would have to be captured via socio-demographic interactions in ψ

and γ. We now instead define θn = 〈δn〉 to be a vector combining the individual δ
parameters for person n, making these parameters individual-specific. As an example,
we would have δn = 〈δn,1, . . . , δn,D〉, i.e. comprising itself different vectors where for
example δn,d = 〈δn,d,1, . . . , δn,d,K〉, i.e. containing the constants used in the baseline
utilities for activities on a day of type d by person n. The vector θn thus has KD
elements, and we assume that it is distributed randomly across individuals, according to
θn ∼ f (θ | Ω).

Let θn,d be the subset of θn for days of type d. With Pn,l (θn,d) giving the MDCEV
probability (cf. Equation 3) for the consumption observed for individual n on day l (out
of Ln), conditional on θn,d, the unconditional probability for the observed sequence of
day level consumptions for individual n is then given by:

Pn (Ω) =

∫

θn

Ln
∏

l=1

Pn,l
(

θn,dln

)

f (θ | Ω) dθn, (5)

where dln is the day type for observation l for respondent n, where the above notation
ensures that the right subset of θn is used in Pn,l

(

θn,dln

)

. This model thus captures ran-
dom heterogeneity across individual people in the utilities for different activities, where
it is straightforward to extend this to include heterogeneity also in the γ parameters, of
course leading to further demands on estimation and the data.

By carrying out the integration over the distribution of θn at the person level rather
than at the day level, we already capture correlation across days for the same person
and for the same activity if those days are of the same type - net of the extreme value
term, the same baseline utility for work will be used for a given person across all five
weekdays. However, the key flexibility arises if we allow for correlation between the
different δ parameters.

Different possibilities arise. Let us assume without loss of generality that the multi-
variate distribution used for θn is characterised by a mean for each element (i.e. every δ
term) along with a covariance matrix1. As a first step, we may want to focus on correla-
tions in the baseline utilities for activities conducted on days of the same type. For day
type d, we would now estimateK means for δn,d, along with

K·(K+1)
2 covariance elements.

This would for example allow us to understand in which way the baseline utilities for
day type d are correlated with each other, e.g. whether a respondent who is more likely
to take part in activity k1 on day type d is also more likely to take part in activity k2
on day type d. We may also want to allow for correlations across different day types
in the baseline utilities for a given activity. This will imply the estimation of KD·(D−1)

2
additional off-diagonal elements in the covariance matrix and would for example tell us
whether respondents who are more likely to conduct leisure activities on a weekday are

1In the closed form MDCEV model, we would be estimating the KD mean values, while all elements
of the covariance matrix would be fixed to zero. In a model allowing for simple independent heterogeneity
for each element, we would in addition estimate KD variances.
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less likely to do so on a Saturday. Allowing for correlations in baseline utilities within and
across day types requires the estimation of up to KD·(KD+1)

2 elements of the covariance
matrix, in addition to the 2KD parameter means2.

Conceptually, the above formulation belongs to the class of MDCEV models with
multiple budget constraints. An individual has multiple 24 hour budget constraints,
such that on day l, we have that

∑K
k=1xi = 24 and an overall L · 24 budget constraint,

such that
∑L

l=1

∑K
k=1 xkl = L · 24 (if the individual level budgets are all met, then the

multi-day one will be too). However, there is a subtle difference between our formulation
and existing formulations with multiple budget constraints, such as those in Castro
et al. (2012) and Pinjari and Sivaraman (2013). In most previous formulations, multiple
budget constraints arise due to the use of multiple resources, such as time and money,
for consuming the same choice alternative. Each activity would draw from both budgets.

In our formulation, however, activity participation on a day can draw only from the
time available (24 hours) on that day. In other words, one cannot use time available
on Sunday to work on a weekday. Since the 24 hour time budgets are not fungible
across different days, as long as the utility functions are additively separable, it can
be shown that the maximum multi-day utility derived by a person subject to multiple
day-level constraints is the same as the sum (across all days) of maximum single-day
utilities derived by the person subject to a single day’s 24 hour time constraint. That is,
[Max(U), subject to

∑K
k=1 xkl = 24∀l] =

∑L
l=1[Max(ul), subject to

∑K
k=1 xkl = 24].

Therefore, conditional on the mixing distributions used in the specification, the multi-
day time-use MDC choice probability may be derived as a simple product of single-day
MDC choice probabilities, with as many single-day probabilities in the product as the
number of days being modelled. In short, conditional on the mixing distributions, the
multi-day time-use probability may be derived as a product of independent single-day
MDCEV probabilities. The unconditional probability is simply an integral of this product
over the mixing distribution.

2.4 Discussion

We now provide some brief contrasts between the two approaches discussed in Sections 2.2
and 2.3. In comparison with the correlated, additive utility functions, the non-additive
approach from Section 2.2 provides a more structural way to allow for interactions. A
major disadvantage, however, is that such non-additive utility models are very difficult
to estimate and apply in practice, substantially more so than our mixed MDCEV model
even with a full covariance matrix, as the desirable optimisation properties of additive
utility functions do not hold anymore. In our attempts to estimate the Bhat et al. (2015)
formulation, only a limited number of interaction parameters (i.e. θkqm) could be esti-
mated, limiting the scope of our investigation. Moreover, the pattern of complementarity

2As already mentioned, it is possible to also allow for heterogeneity in γ, and correlation within γ

and δ and between γ and δ. We chose not to do so due to data limitations, but the reader may note
that this would imply the estimation of a full covariance matrix of 2KD·(2KD+1)

2
elements on top of 2KD

parameter means.
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and substitution that the model estimation can give rise to is somehow constrained, so
that complementarity must outweigh substitution.

An advantage of the additive utility specification is that it is easy to allow for cor-
relations among baseline utility parameters, thereby differentiating substitution and/or
complementarity effects in the discrete choice from those in continuous choice dimen-
sions. The non-additive utility approach, on the other hand, does not offer an easy way
to disentangle interactions among the translation parameters from that of baseline util-
ity parameters. This is because the interactions in the latter approach are between the
utility terms, not between the parameters.

Another advantage of the additive formulation in Section 2.3 is that it is a relatively
simple implementation of the mixed-MDCEV formulation. A drawback, however, as dis-
cussed in the next section, is that the move from estimation to forecasting is not trivial.
For example, if a person cannot work on a weekday due to some exogenous reasons,
he/she will likely make up for the lost worktime by working more on a weekend day.
Such substitution effects are not easy to accommodate when the model is applied for
prediction, particularly when predictions are carried out separately for each day accord-
ing to the estimated model. This is because the additively separable utility formulation
does not incorporate explicit interactions between the utilities of time allocation across
different days, except through correlations. Another disadvantage is that correlations
between two utility functions may be either due to substitutive/complementarity rela-
tionships or simply due to common unobserved heterogeneity. The estimated correlation
parameters typically capture a combined effect making it difficult to disentangle the
source of correlation.

Given the difficulty of estimating and applying MDC models with non-additive utility
functions, particularly those with multiple budget constraints, in this paper we employ
the simpler model formulation discussed in Section 2.3 and explore the estimation chal-
lenges as well as the insights that can be gained from this model when the correlations
are computed. Of course, formulating, estimating, and applying non-additive, multi-day
utility models while considering day-level constraints is an important avenue for future
research.

3 Empirical application

3.1 Data

This paper makes use of a well-known survey in the transport literature, the German
travel survey Mobidrive.

The Mobidrive project conducted a six-week travel diary in the two German cities
of Karlsruhe and Halle, with data collection taking place in the autumn of 1999. The
availability of trip purpose allowed us to transform the travel diary into a time use
diary. We only exploited two weeks of data, in particular we selected the second and
third week recorded by respondents, to avoid bias due to any learning effects that may
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have occurred at the very beginning of the survey. Further information about the data
collection protocol and the sample can be found in Axhausen et al. (2002).

We use a subset of the overall Mobidrive sample: we only included respondents who
do not fail to report any activity for more than 4 days over the two weeks used for the
analysis, ending up with a sample of 223 respondents. Corrections were applied in a few
cases where the overall number of hours within a day would exceed 24h, for example
if a respondent recorded the start of his/her activity/trip before midnight and the end
during the early hours of the next day.

The study relied on a paper-and-pencil diary, where participants were free to specify
the purpose of their trips (activities). For modelling purposes, these activities were sub-
sequently grouped into a number of macro categories, depending on what participants
reported and what was considered to be most relevant for the specific geographical and
cultural context. Table 1 reports the sample averages for the discrete choice (percentage
of people performing a given activity) and continuous choice (time invested in the differ-
ent activities when this is performed, in hours). We present the statistics separately for
weekdays, Saturday and Sunday.

Share of individuals participating Average time
Activity WD SAT SUN WD SAT SUN

Basic Needs 100.00% 100.00% 100.00% 16.65 19.06 19.85
Work 41.75% 8.74% 3.59% 6.86 5.61 6.78
School 24.66% 2.02% 1.57% 5.30 3.01 5.85

Drop-off/Pick up 7.80% 7.85% 7.40% 0.71 0.42 0.54
Daily shopping 31.12% 36.10% 6.05% 0.60 0.69 0.29

Non daily shopping 14.53% 18.39% 2.47% 1.06 1.32 0.95
Social 24.08% 39.91% 42.15% 2.67 4.50 3.64

Leisure 19.46% 24.66% 29.15% 2.68 3.03 3.89
Personal business 31.21% 16.82% 11.88% 1.15 1.42 0.98

Travel 97.26% 87.67% 79.82% 1.29 1.24 1.18

Table 1: Average levels of continuous and discrete choice in the samples

The first activity, Basic Needs, includes sleeping, eating meals at home and spending
time at home for everyday essential tasks. Everybody in the sample performs this activity
every day, and this allows us to treat it as an “outside good” in our models.

Most of the categories in Table 1 are self-explanatory. Work refers to all work and
work related activities. School refers to schooling and education activities. Private
business includes personal errands, such as going to the bank, dentist, hairdresser with
the addition of other personal activities.
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3.2 Model specification and estimation

In our application, we work with two weeks of data per individual. Each individual thus
contributes 14 observations to the likelihood of the model, where we enforce a 24h budget
per observation.

In order to understand the effect of allowing for random heterogeneity across respon-
dents and across days and assessing whether this brings an improvement in the ability
of the model to explain the data, we estimate three sets of models, as shown in Table
2. As discussed in Section 2.3, the three sets differ in the level of correlation between
model parameters allowed through mixing distributions in the model. We also test for
the impact on findings if we allow for additional socio-demographic effects in the model.
In Table 2, we indicate the models without socio-demographics with the subscript 1 and
those incorporating such effects with the subscript 2. In the models with deterministic
heterogeneity, we allowed for shifts (identical across days) in the baseline utility constants
(δ) of each activity.

No deterministic
heterogeneity

Deterministic
heterogeneity

Fixed parameters A1 A2

Univariate random parameters B1 B2

Multivariate random parameters C1 C2

Table 2: Overview of estimated models

We start by estimating simple MDCEV models for time use (A1 and A2). A number
of different specifications are possible with the MDCEV model, where our empirical work
uses a generic α parameter across all activities including the outside good, which we (after
testing) set to 0, along with activity-specific γ parameters for the K − 1 activities that
are not treated as outside goods. Separate parameters are estimated for the three types
of days to allow for day-level differences. We do not introduce any random heterogeneity
at this stage.

We then allow for random heterogeneity in the δ parameters (models B1 and B2),
i.e. estimating µδ and σδ, which is the diagonal of Ωδ with zero values on the off-
diagonal. This allows us to account for heterogeneity across people in the activity choice
for each day, where we use univariate Normal distributions (i.e. with a diagonal covari-
ance matrix) - the use of Normals was found to be superior in empirical tests to other
distributions.

Finally, we introduce additional flexibility by explicitly allowing for correlation be-
tween the δ parameters of different activities as well as of the same activity on different
days (models C1 and C2), i.e. estimating some of the off-diagonal terms in the covariance
matrix Ωδ.
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In practice, with finite data, it is not generally feasible to reliably estimate the full
covariance matrix between all the individual random components, remembering that
in our case this would imply the estimation of 378 terms in the covariance matrix.
We instead focus on a number of selected activities, to understand their correlation
across different day-types. Moreover, the correlations between δ parameters of different
activities are estimated for a limited number of parameters, chosen after extensive testing
because of their particularly interesting or meaningful correlations.

The estimation of a model of this type becomes rapidly infeasible in classical esti-
mation and we thus use Hierarchical Bayes (HB) estimation techniques for our mixed
MDCEV models (B1, B2, C1 and C2). As in classical estimation of mixed logit models,
we make sample-level assumptions regarding the distribution of the δ parameters. We
use noninformative (diffuse) priors for the parameters of the distribution, meaning that
we do not rely on a priori expectations about the parameter values. We take repeated
draws from the posterior distribution via “Gibbs sampling”, and the analyst needs to es-
tablish how many iterations of this sampling to use. In our case, we use 600, 000 burn-in
iterations to guarantee stable chains. We estimate our models in R (R Core Team, 2016)
using the RSGHB (Dumont et al., 2015) and Apollo (Hess and Palma, 2019) packages.

3.3 Estimation results

Table 3 displays an overview of the estimated models, using the model names from Table
2.

Model
name

LL N. param Chi square test (p)
with respect to the
model above

Chi square test (p) com-
paring models with and
w/o socios

A1 -26713.55 54

B1 -25122.96 81 0

C1 -24998.62 120 2.38 ∗ 10−32

A2 -25086.69 77 0

B2 -24592.45 104 6.4 ∗ 10−191 1.39 ∗ 10−209

C2 -24455.72 143 5.66 ∗ 10−37 7.4 ∗ 10−125

Table 3: Overview of estimated models and fit comparison

It is clear to see how the increased flexibility significantly improves model fit. As
expected, we obtain a better log-likelihood (LL) for the models with socio-demographics,
where the improvement in fit is highly significant, as shown by a likelihood ratio tests
(right-most column of the table). In the following sections, we will focus in turn on the
results of models B and C3.

3The results of the models A1 and A2 are not reported in the paper for space reasons and given
the limited insights that they provide with respect to more flexible models, but they are available upon
request.
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3.3.1 Mixed models without correlation across activities

The results of the models B1 and B2 are reported in Tables 4 and 5. While classical
estimation produces estimates and standard errors, Bayesian estimation produces chains
of draws from the posterior distributions for each model parameter. After discarding
burn-in iterations, we can then calculate a mean and standard deviation across iterations
for each of these chains, where these have similar properties to maximum likelihood
estimates and standard errors (Train, 2001). For a given parameter β, we would thus
report the mean of the posterior distribution and the standard deviation.

In Table 4, we look at the δ parameters and the socio-demographic shifts in those,
labelled as ∆, where these are generic across days. In Table 5, we look at the γ parame-
ters. For each parameter, we report the mean and standard deviation (sd) of the chains
of posterior draws. In this model, the δ parameters follow univariate Normal distribu-
tions, and we thus obtain two parameters for each δ, namely a mean sensitivity (µ) and a
standard deviation (σ), where these should not be confused with the means and standard
deviations of the posteriors, which obviously exist for both. For the socio-demographic
shifts in δ, i.e. ∆, and the γ terms, only a fixed parameter is estimated, i.e. no random
heterogeneity.

Looking at the parameters for the model without socio-economic attributes (shorted
as socios in our tables to save space) B1, we observe that all the baseline utility pa-
rameters except for δWD for travel are negative, mainly reflecting the discrete choice and
indicating that the outside good (used as a base) is always “preferred” with respect to the
inside goods, as everybody in the sample always chooses it. The value of the δ coefficients
can also be affected by the continuous choice, so that it is possible to obtain positive δ
coefficients for popular inside goods. This also motivates the use of a Normal distribution
for the δ parameters. The results clearly show substantially different sensitivities during
weekday and weekend days. In addition, they reveal substantial random heterogeneity
(the σ parameters), highlighting that different people have different sensitivities in terms
of activity participation.

Turning to deterministic heterogeneity, the fixed shifts reported in Table 4 suggest
that younger people (less than 25 year old) are less likely to work and to perform both
daily and non daily shopping and more likely to go to school and be involved in social
activities. People in the older age group (over 65) are less likely to work than those
between 25 and 65 year old, they are also less likely to engage in educational activities and
pick-up/drop-off other people, but they do perform more daily shopping and personal
business. Men are less likely to perform both daily and non daily shopping and are
more likely to work. As expected, being a student is associated with higher likelihood of
attending education and a lower chance of working, carrying out personal business, social
activities and travelling, while those with “other occupation” (as opposed to employed,
so this category includes retirees, homemakers etc) are less likely to work, perform social
activities and travel. Finally, parents are more likely to pick-up/drop-off others and carry
out daily shopping. We believe these results, while illustrative and incorporating only a
limited number of the variables that are likely to affect the complex picture of time use,



Calastri, Hess, Pinjari & Daly 15

Model w/o socios (B1) Model with socios (B2)
µ (or fixed) σ µ (or fixed) σ

Activity Parameter mean post sd post mean post sd post mean post sd post mean post sd post

Work

δWD -4.57 0.27 3.23 0.25 -1.96 0.19 1.57 0.13
δSAT -6.22 0.39 1.62 0.33 -6.11 0.63 2.96 0.54
δSUN -8.06 1.06 2.06 0.73 -7.26 0.92 2.33 0.69
∆male - - - - 0.74 0.57 - -
∆age<25 - - - - -1.66 0.41 - -
∆age>65 - - - - -1.57 0.36 - -
∆student - - - - -1.42 0.18 - -
∆otherocc. - - - - -1.45 0.14 - -

School

δWD -7.49 0.54 4.89 0.48 -7.49 0.35 1.98 0.19
δSAT -10.70 2.23 3.23 1.27 -17.07 2.51 5.46 1.37
δSUN -13.77 3.65 4.57 1.83 -16.79 2.81 4.43 1.44

∆age<25 - - - - 1.52 0.22 - -
∆age>65 - - - - -1.05 0.53 - -
∆student - - - - 1.78 0.31 - -

Drop-off/ Pick-up

δWD -6.24 0.22 1.57 0.19 -6.33 0.23 1.49 0.19
δSAT -5.86 0.37 1.06 0.36 -5.87 0.29 0.88 0.26
δSUN -6.44 0.56 1.59 0.51 -6.67 0.57 1.61 0.47

∆age>65 - - - - -1.90 0.60 - -
∆parent - - - - 0.83 0.26 - -

Daily shopping

δWD -3.96 0.10 1.06 0.09 -3.68 0.14 0.88 0.08
δSAT -3.72 0.13 1.01 0.18 -3.46 0.18 0.98 0.21
δSUN -6.26 0.34 1.16 0.34 -6.43 0.53 1.51 0.50
∆male - - - - -1.18 0.36 - -
∆age<25 - - - - -1.03 0.19 - -
∆age>65 - - - - 1.36 0.33 - -
∆parent - - - - 1.06 0.46 - -

Non daily shopping

δWD -4.77 0.09 0.72 0.10 -4.40 0.10 0.67 0.09
δSAT -4.61 0.17 0.81 0.21 -4.27 0.19 0.86 0.23
δSUN -7.28 0.58 1.18 0.51 -7.74 0.88 1.82 0.64
∆male - - - - -1.20 0.31 - -
∆age<25 - - - - -1.05 0.25 - -

Social

δWD -4.29 0.09 1.01 0.09 -4.25 0.11 0.92 0.09
δSAT -3.53 0.11 0.62 0.14 -3.49 0.13 0.55 0.12
δSUN -3.44 0.12 0.83 0.15 -3.41 0.13 0.78 0.17

∆age<25 - - - - 1.06 0.21 - -
∆student - - - - -1.04 0.36 - -
∆otherocc. - - - - -1.13 0.30 - -

Leisure

δWD -4.80 0.13 1.39 0.12 -4.80 0.13 1.37 0.11
δSAT -4.32 0.16 0.90 0.20 -4.28 0.16 0.86 0.23
δSUN -4.02 0.13 0.66 0.14 -4.00 0.14 0.66 0.16

Personal business

δWD -3.82 0.08 0.82 0.07 -3.71 0.08 0.74 0.07
δSAT -4.95 0.25 1.15 0.28 -4.84 0.28 1.11 0.32
δSUN -5.65 0.36 1.44 0.37 -5.65 0.36 1.54 0.36

∆age>65 - - - - 1.09 0.32 - -
∆student - - - - -1.20 0.22 - -

Travel

δWD 0.92 0.14 0.37 0.04 1.02 0.13 0.32 0.04
δSAT -0.88 0.10 0.29 0.05 -0.66 0.16 0.30 0.04
δSUN -1.41 0.12 0.34 0.05 -1.22 0.14 0.34 0.06

∆student - - - - -0.88 0.22 - -
∆otherocc. - - - - -0.91 0.18 - -

Table 4: Models B1 and B2: parameters for baseline utilities
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Model w/o socios (B1) Model with socios (B2)
Activity Parameter mean post sd post mean post sd post

Work

γWD 0.94 0.08 0.94 0.08
γSAT 1.57 0.36 1.01 0.29
γSUN 1.98 0.91 0.88 0.40

School

γWD 0.88 0.10 0.87 0.09
γSAT 0.74 0.46 0.82 0.48
γSUN 0.35 0.31 0.29 0.22

Drop-off/ Pick-up

γWD 0.58 0.08 0.58 0.08
γSAT 0.43 0.12 0.44 0.12
γSUN 0.38 0.14 0.40 0.14

Daily shopping

γWD 0.74 0.05 0.73 0.05
γSAT 0.60 0.09 0.58 0.10
γSUN 0.32 0.10 0.29 0.09

Non daily shopping

γWD 0.83 0.07 0.82 0.07
γSAT 0.80 0.17 0.77 0.14
γSUN 0.87 0.40 0.81 0.33

Social

γWD 0.93 0.07 0.92 0.07
γSAT 1.07 0.15 1.03 0.16
γSUN 0.87 0.12 0.87 0.14

Leisure

γWD 0.91 0.08 0.91 0.08
γSAT 0.95 0.17 0.89 0.13
γSUN 0.85 0.15 0.81 0.13

Personal business

γWD 0.82 0.05 0.82 0.05
γSAT 0.63 0.12 0.62 0.14
γSUN 0.44 0.13 0.44 0.13

Travel

γWD 0.24 0.03 0.25 0.03
γSAT 0.38 0.04 0.37 0.06
γSUN 0.46 0.06 0.45 0.06

Table 5: Models B1 and B2: translation parameters
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are in line with expectations.
The means for the δ parameters (µ) differ across models in those cases where there

are socio-demographic effects as the µ parameter alone now relates to a specific socio-
demographic subgroup. What is more interesting is to study the differences in the random
heterogeneity, i.e. σ. Overall, we see that these values are lower in B2 with respect to
B1, indicating that some of the heterogeneity is now captured by incorporating the socio-
demographic shifts.

The γ parameters in Table 5 mainly describe the continuous choice, indicating that
people spend most time in, i.e. they get less satiated by, working and engaging in social
activities, especially on Saturday (this is reflected in the data on average time spent in
different activities presented in Table 1), while for school on Saturday and Sunday the
results seem to diverge from the data. For these two sets of values, very few observations
exist in the data and this is reflected in high standard deviations for the posterior,
equivalent to low significance in classical estimation. The γ parameters also highlight a
difference in the satiation accrued from the same activities on different days. This has
implications for the time spent in each activity, i.e. the amounts of time dedicated to
each activity differs between weekdays and weekends.

A comparison between the model with and without socio-demographics highlights
that the values of the parameters are in line, with a few exceptions: we observe higher
satiation (i.e. lower time spent) from work on Saturdays and Sundays in B2, as well as
a 17% decrease in γSUN for school, indicating again a reduction in time allocation.

3.3.2 Mixed models with correlation across activities

We next turn to the results of models C1 and C2, i.e. the MDCEV models where we
accommodate correlations between some of the δ parameters. These results are reported
across three separate tables. Table 6 is the analogue of Table 4 for models B1 and B2,
reporting the means and standard deviations of the δ parameters, as well as the socio-
demographic shifts in these baseline utilities, given by the non-random ∆ terms. Table
7 is the analogue of Table 5 for models B1 and B2, reporting the translation parameters.
Finally, Table 8 reports the correlations between those δ parameters for which the off-
diagonal elements of the covariance matrix were not set to zero.

The results of models C1 and C2 are behaviourally in line with those of models B1

and B2, in the sense that the sign of the coefficients does not change across the models.
Nevertheless, some differences in the absolute values of the parameters can be observed.
In terms of baseline δ parameters, the mean values of δSAT for school and for travel are
heightened in both C1 and C2 when compared to their values in B1 and B2. There are
also a number of changes in the socio-demographic effects, most of which reinforce our
expectations. For example, in relation to the school activity, we see a 20% increase in
the coefficient indicating the likelihood of someone younger than 25 to attend school and
a 130% increase in the coefficient related to the job category “student”. We see instead
a lower absolute value for the coefficients related to the likelihood of people aged over 65
(-42%) and of parents (-20%) to pick-up and drop-off others, with the first coefficients
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remaining negative and the second one positive. Other coefficients which see a reduction
are the ones measuring the effect of being a student and of being older than 65 on
the likelihood of conducting personal business, as well as the likelihood of travelling for
students and people with “other” occupation.

In the C models, we allow for correlation between some of the δ parameters, and
this not only improves model fit as shown in Table 3, but also changes the patterns
of heterogeneity. By looking at the values of the posterior mean for the σ parameters
(i.e. the heterogeneity) in both C1 and C2, we see that most of the ones that undergo
a change of more than 15-20% actually show a decrease with respect to their values in
B1 and B2. This is possibly an indication of overstated heterogeneity in the models
where we do not allow for correlation between different activities, which can happen in
the presence of unaccounted for positive correlation (Hess and Train, 2011). However, a
comparison between the coefficients of C1 and C2 also shows that the introduction of the
socio-demographics in the presence of correlation does not have as strong a dampening
effect on the heterogeneity as in model B2. This makes sense as, in B2, the socio-
demographics were the only way for the model to capture correlation across activities,
while now, correlation is modelled explicitly. The translation parameters in C1 and C2
(see Table 7) are largely in line. We see a few reductions in γSUN for social (-19%)
and leisure (-12%), while γSAT for work is higher in the model with socio-demographics,
indicating higher time allocation to this activity.

We finally look at the correlations between individual δ parameters, as reported in
Table 8. As mentioned earlier, the models with a diagonal covariance matrix (B1 and B2)
implicitly captures correlation for the same activity across days of the same type given
the random heterogeneity. In models C1 and C2, we additionally capture correlation
between different activities and across day-types. After a careful exploration of a large
number of possible correlations between different model coefficients, we retained a subset
that were large in size and meaningful from a behavioural perspective, as well as showing
stable posterior distributions. Most of these are correlations across day-types for the same
activity, where in addition, we look at three inter-activity correlations.

The correlations in 8 can be interpreted on the basis of their sign. While there
is some scope for confounding of roles, positive correlations could be interpreted as a
complementarity effect. If for example the correlation between WD and SAT is positive,
this could mean that people who (do not) perform the activity on weekdays also (do not)
perform it on Saturday. Differently, a negative correlation may indicate a substitution
effect: if the given activity is performed on a weekday, it will not be performed on a
Saturday (and vice versa).

Looking at the correlations from model C1 first, we can see that the baseline utility
constant for work shows high levels of correlation across different day-types, in particular
between Saturday and Sunday, possibly suggesting that people who work on the week-
end tend to do so on both days, and people who do not work on weekends will not work
on either day. High levels of positive correlation are also found for other activities, for
example for leisure and social (where this could give an indication of the fact that people
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who engage in leisure activities tend to do so on different days) and drop-off/pick-up
or daily shopping (which could capture the fact that a specific person in the household
is in charge of given activities), even if in the latter case the values are slightly lower.
The correlations between different activities reported in the last three lines of the table
can be interpreted similarly: as an example, we observe that there is a positive corre-
lation between performing social activities and travel on a Sunday, which hints at the
complementarity between the two activities.

As could have been expected, we see some significant changes in the correlations
between model C1 and C2. Focussing on a few examples, we can see that the high
levels of correlation shown in the baseline utility constant for work are reduced4 Several
socio-demographic variables have a strong impact on the utility of work, as shown in
Table 7, so we expect them to capture some of the variability that would otherwise
be attributed to correlation. We see a similar reduction in most of the other activities,
while in other cases the correlations are stable between the model with and without socio-
demographics, like in the case of leisure on weekdays and Sunday and social and travel on
a Sunday. There are also some cases (e.g. see the correlation between δdaily shoppingWD

and
δdaily shoppingSUN

) where the introduction of socio-demographics actually increases rather
than reduces the correlation in the unobserved heterogeneity. While reductions would
be expected (if the deterministic heterogeneity explains that given people are more likely
to behave consistently across days), the fact that we see the opposite here shows that
the introduction of deterministic heterogeneity may allow the model to capture different
patterns of correlation that are otherwise masked.

4 Implications of the difference across models

As shown in Table 3, the models incorporating correlations across parameters provide
improvements in model fit, but the difference with the other models goes beyond model
fit. We first look at how the shape of the utility profiles (i.e. the overall utility accrued
by different amounts of time) of different activities changes across specifications. The
number of alternatives in our models is large and we focus here on a small subset by
looking at the utility of two activities, work and leisure, on weekdays. These results are
summarised in Figure 1, where, to allow for comparison, we rescaled the results to be
the same value for the utility of working for four hours. It is evident how the shape
of the utility profiles changes across the different models, as a result of incorporating
socio-demographics, random heterogeneity and finally correlation between the random
terms. The true shape is of course not known but the differences in fit clearly point
towards model C2 and these results show that there are quite substantial differences
in implied behaviour. It is also interesting to note that the impact of introducing the
socio-demographics on the shape of the utility profiles is far less substantial in the C
models.

4The correlation between δworkWD
and δworkSAT

becomes negative in model C2, but given the high
standard error of this parameter we believe it not to be different from zero.
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Model w/o socios (B1) Model with socios (B2)
µ (or fixed) σ µ (or fixed) σ

Activity Parameter mean post sd post mean post sd post mean post sd post mean post sd post

Work

δWD -4.46 0.25 3.21 0.25 -1.82 0.17 1.65 0.10
δSAT -7.39 0.19 2.54 0.34 -5.96 0.23 2.46 0.18
δSUN -8.44 0.21 1.63 0.23 -7.47 0.43 2.36 0.19
∆male - - - - 0.12 0.25 - -
∆age<25 - - - - -1.62 0.14 - -
∆age>65 - - - - -2.47 0.24 - -
∆student - - - - -4.55 0.17 - -
∆otherocc. - - - - -3.77 0.13 - -

School

δWD -7.53 0.57 4.96 0.53 -7.22 0.24 1.86 0.17
δSAT -8.35 0.29 1.23 0.40 -12.04 0.27 2.36 0.34
δSUN -11.92 3.62 3.52 1.78 -14.55 1.93 3.16 1.32

∆age<25 - - - - 3.61 0.37 - -
∆age>65 - - - - -1.04 0.22 - -
∆student - - - - 2.16 0.36 - -

Drop-off/ Pick-up

δWD -6.31 0.14 1.77 0.12 -6.26 0.18 1.51 0.23
δSAT -5.99 0.13 1.35 0.10 -5.92 0.22 0.85 0.13
δSUN -6.29 0.24 1.17 0.19 -6.96 0.18 1.69 0.42

∆age>65 - - - - -1.08 0.13 - -
∆parent - - - - 0.66 0.14 - -

Daily shopping

δWD -3.99 0.08 1.11 0.10 -3.68 0.17 0.90 0.08
δSAT -3.81 0.15 0.91 0.27 -3.47 0.16 1.22 0.13
δSUN -7.32 0.32 2.24 0.23 -6.73 0.17 1.15 0.15
∆male - - - - -0.55 0.14 - -
∆age<25 - - - - -0.72 0.15 - -
∆age>65 - - - - 0.44 0.11 - -
∆parent - - - - 0.38 0.13 - -

Non daily shopping

δWD -4.78 0.09 0.74 0.10 -4.44 0.10 0.65 0.10
δSAT -4.63 0.17 1.13 0.15 -4.35 0.13 0.97 0.15
δSUN -7.06 0.61 0.96 0.48 -7.35 0.60 1.40 0.50
∆male - - - - -0.37 0.13 - -
∆age<25 - - - - -0.66 0.10 - -

Social

δWD -4.30 0.09 1.02 0.09 -4.30 0.10 0.91 0.08
δSAT -3.57 0.12 0.67 0.09 -3.55 0.14 0.62 0.09
δSUN -3.53 0.12 0.67 0.14 -3.51 0.13 0.64 0.17

∆age<25 - - - - 0.69 0.13 - -
∆student - - - - -0.34 0.12 - -
∆otherocc. - - - - -0.32 0.09

Leisure

δWD -4.77 0.10 1.43 0.12 -4.80 0.09 1.34 0.10
δSAT -4.31 0.15 1.13 0.10 -4.39 0.13 1.17 0.21
δSUN -4.06 0.09 0.96 0.11 -4.22 0.13 0.87 0.11

Personal business

δWD -3.82 0.08 0.81 0.07 -3.73 0.08 0.74 0.07
δSAT -4.91 0.26 1.09 0.32 -4.84 0.22 1.05 0.26
δSUN -5.59 0.33 1.37 0.34 -5.70 0.37 1.56 0.38

∆age>65 - - - - 0.51 0.16 - -
∆student - - - - -0.74 0.14 - -

Travel

δWD 0.89 0.11 0.37 0.04 1.01 0.15 0.32 0.04
δSAT -0.73 0.12 0.30 0.04 -0.70 0.12 0.30 0.05
δSUN -1.44 0.11 0.49 0.11 -1.29 0.13 0.84 0.15

∆student - - - - -0.25 0.07 - -
∆otherocc. - - - - -0.33 0.05 - -

Table 6: Models C1 and C2: parameters for the baseline utilities
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Model w/o socios (B1) Model with socios (B2)
Activity Parameter mean post sd post mean post sd post

Work

γWD 1.69 0.09 1.82 0.09
γSAT 2.98 0.45 4.43 0.20
γSUN 10.69 0.32 9.46 0.49

School

γWD 0.96 0.13 1.02 0.09
γSAT 4.19 0.35 1.71 0.31
γSUN 17.51 0.21 16.83 0.20

Drop-off/ Pick-up

γWD 0.24 0.03 0.24 0.03
γSAT 0.22 0.06 0.23 0.06
γSUN 0.17 0.05 0.16 0.05

Daily shopping

γWD 0.25 0.02 0.25 0.01
γSAT 0.25 0.04 0.25 0.04
γSUN 0.14 0.05 0.17 0.05

Non daily shopping

γWD 0.62 0.06 0.61 0.05
γSAT 0.68 0.13 0.68 0.10
γSUN 1.44 0.19 1.46 0.11

Social

γWD 1.63 0.08 1.69 0.11
γSAT 2.65 0.19 2.93 0.19
γSUN 1.76 0.22 1.41 0.15

Leisure

γWD 1.46 0.10 1.49 0.10
γSAT 2.18 0.26 2.32 0.20
γSUN 2.56 0.19 2.23 0.18

Personal business

γWD 0.45 0.03 0.45 0.03
γSAT 0.64 0.17 0.60 0.08
γSUN 0.29 0.09 0.27 0.08

Travel

γWD 0.03 0.00 0.03 0.00
γSAT 0.09 0.01 0.10 0.01
γSUN 0.15 0.02 0.15 0.02

Table 7: Models C1 and C2: translation parameters
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Model w/o socios (C1) Model with socios (C2)
Activity Day mean post sd post mean post sd post

Work

WD-SAT 0.76 0.03 0.67 0.04
WD-SUN 0.54 0.11 -0.15 0.09
SAT-SUN 0.93 0.06 0.59 0.10

Drop-off/ Pick-up

WD-SAT 0.94 0.04 0.87 0.08
WD-SUN 0.57 0.11 0.39 0.12
SAT-SUN 0.49 0.14 0.66 0.13

Daily shopping

WD-SAT 0.79 0.11 0.51 0.10
WD-SUN 0.33 0.06 0.69 0.06
SAT-SUN 0.18 0.11 0.42 0.09

Social

WD-SAT 0.74 0.10 0.91 0.09
WD-SUN 0.71 0.17 0.70 0.18
SAT-SUN 0.88 0.10 0.78 0.15

Leisure

WD-SAT 0.84 0.08 0.92 0.07
WD-SUN 0.95 0.05 0.95 0.06
SAT-SUN 0.86 0.10 0.95 0.05

Social & Travel SUN-SUN 0.93 0.19 0.92 0.12
Work & Non daily shopping SAT-SAT 0.39 0.32 -0.24 0.83

School & Daily shopping SAT-SAT -0.97 0.03 0.12 0.07

Table 8: Key correlations between different δ parameters

A key interest of developing behavioural models is of course to predict future be-
haviour. To this extent, we have applied the Pinjari and Bhat (2010) routine to forecast
time use across two weeks (aggregating the forecasts across the 14 individual days) using
the six models presented in this paper, with the aim of assessing the implications of our
modelling specification when the model is applied.

We first perform a base forecast, i.e. predicting the time allocation without changing
the data. This is summarised in Tables 9-11. Table 9 shows the base forecast for the
discrete part of the model, i.e. the share of people in the sample who perform each
activity. Table 10 and 11 both report the base prediction in term of time allocation, but
the former reports average time allocations to all activities across the sample while the
latter only include the time allocation of respondents who actually perform the activity.
Therefore, the numbers in Table 11 are the most “realistic” in terms of behaviour. We
note very small differences between the models with and without socio-demographics
within a given model group (e.g. A1 vs A2). This is however not surprising at the
aggregate level, which is what we present here. Introducing covariate interactions for
constants will have an impact on the market shares within each socio-demographic group,
but the overall picture should remain unaffected.

In terms of the continuous time allocation (Tables 10 and 11), it is clear to see that
models B1 and B2 substantially overpredict the amount of travel conducted, where in
the data, this was on average 1.19 and 1.24 hours, respectively. There is also some over-
prediction, much less so, for the A and C models. This is a direct result of the much
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Figure 1: Utility profiles of the work and leisure activities

higher estimate for the translation parameter in the B models (cf. Table 5). This could
suggest that incorporating independent random heterogeneity, i.e. without correlation,
can lead to confounding impacts on the shape of the utility. A similar results is observed
in the paper by Cherchi and Cirillo (2011), where the authors analysed the Mobidrive
dataset to explore the model validation and forecasting issues associated with longitu-
dinal diaries using logit and mixed logit models. Interestingly, they also reported no
benefits in predictive performance of the mixed model accommodating random hetero-
geneity without capturing correlations between different alternatives. This reinforces our
finding that such correlations should be accommodated in the model, so as to improve
prediction while better accommodating behavioural realism with respect to simpler mod-
els. Furthermore, while the Cherchi and Cirillo (2011) work allows for correlation across
choices at the level of individual marginal utility coefficients, we allow for correlations
between different activities within and across days.”

In the forecasting exercise, we looked at the simplistic case where a respondent does
not work for a period of two weeks (therefore this activity is unavailable) and looked at
how time is reallocated. The results of this process in terms of redistribution to other
activities are represented in Figure 2, which highlights the differences in the forecasts
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Data A1 A2 B1 B2 C1 C2

Outside good 100% 100% 100% 100% 100% 100% 100%
Work 18% 24% 26% 20% 32% 24% 26%
School 9% 14% 15% 11% 5% 13% 14%

Drop-off/pick-up 8% 6% 6% 5% 5% 6% 6%
Daily shopping 24% 22% 22% 17% 19% 21% 21%

Non-daily shopping 12% 10% 10% 7% 6% 10% 10%
Social 35% 23% 23% 19% 17% 23% 22%

Leisure 24% 17% 17% 14% 15% 17% 16%
Personal business 20% 20% 20% 15% 17% 20% 20%

Travel 88% 94% 94% 93% 92% 92% 93%

Table 9: Results of forecasts for base scenario (share of people performing each activity)

Data A1 A2 B1 B2 C1 C2

Outside good 17.45 16.24 16.16 12.99 13.85 15.76 15.88
Work 2.15 2.00 2.07 1.32 1.81 2.25 2.33
School 0.96 0.97 1.01 0.94 0.22 1.17 1.06

Drop-off/pick-up 0.05 0.06 0.06 0.08 0.09 0.07 0.06
Daily shopping 0.17 0.29 0.29 0.42 0.54 0.28 0.29

Non-daily shopping 0.15 0.20 0.20 0.17 0.14 0.20 0.20
Social 0.94 1.05 1.05 0.56 0.51 1.04 1.02

Leisure 0.64 0.74 0.74 0.39 0.41 0.76 0.72
Personal business 0.31 0.38 0.37 0.38 0.44 0.37 0.37

Travel 1.19 2.07 2.05 6.74 5.97 2.09 2.08

Table 10: Results of forecasts for base scenario (time allocation in hours per day)
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Data A1 A2 B1 B2 C1 C2

Outside good 18.52 16.24 16.16 12.99 13.85 15.76 15.88
Work 6.42 8.19 7.93 6.75 5.64 9.34 8.89
School 4.72 7.18 6.69 8.28 4.04 9.11 7.63

Drop-off/pick-up 0.55 1.04 1.02 1.82 1.85 1.12 1.06
Daily shopping 0.52 1.33 1.33 2.48 2.82 1.37 1.36

Non-daily shopping 1.11 2.00 2.00 2.32 2.32 2.05 2.02
Social 3.60 4.55 4.53 3.02 2.97 4.62 4.56

Leisure 3.20 4.40 4.38 2.85 2.83 4.44 4.36
Personal business 1.18 1.86 1.85 2.45 2.61 1.88 1.87

Travel 1.24 2.21 2.19 7.25 6.49 2.27 2.23

Table 11: Results of forecasts for base scenario (time allocation in hours per day when
the activity is performed)

generated by the different models, implying that incorporating random parameters and
correlations will yield substantially different shares for the time allocation. A number
of observations can be made. With the exception of school, we see that the models
incorporating socio-demographics show a higher redistribution of time, which is a result
of a higher predicted share for work in these models. We also see that the changes
implied by the C models are more similar to those obtained from the A models than
those from the B models, where the latter are lower. This is a direct result of the earlier
observation relating to the overprediction of the travel activity in the B models, and
hence the lower amount of time available for other activities. The differences between
the A and C models are small, but this is likely in part a result of conducting forecasting
at the day level, i.e. missing out on the impact of inter-day correlations, a point we
return to in the conclusions.

5 Conclusions

The MDCEV modelling framework has established itself as a preferred method for mod-
elling time allocation, with data very often coming from travel or activity diaries. How-
ever, while many of such datasets contain information on multiple days for the same
individual, the standard modelling approach has treated each day in isolation. This pa-
per has made the case that this practice misses out on important links between days,
potentially leading to reduced insights from the modelling.

Our paper discusses several possible ways of accommodating links across days within
an MDCEV framework. While the implementation of a non-additive utility function
would be the theoretically correct way to accommodate the complementarities and sub-
stitutions across days, such an approach is very difficult to estimate and apply in practice,
especially with budget constraints at the day and multi-day level. We instead rely on



Calastri, Hess, Pinjari & Daly 26

0% 5% 10% 15% 20% 25%

Outside good

School

Drop-off/pick-up

Daily shopping

Non-daily shopping

Social

Leisure

Personal business

Travel

Percentage change in time allocated to different activities when not working

A1 A2 B1 B2 C1 C2

Figure 2: Redistribution of time when work is not available

additive utility functions where we accommodate correlation between activities at the
within-day and between-day level through correlated random heterogeneity. The use of
such a mixed MDCEV model allows us to capture correlations within and across days
without the use of non-additive utility functions and by relying on a simple day-level
budget.

We illustrate the benefit of this approach using a two week sample from the Mo-
bidrive dataset. Our estimation work confirms the presence of deterministic and random
heterogeneity, and crucially in the context of the present paper, correlations both at the
within-day and between-day level. We find that allowing for these correlations leads
to improved model fit, but also substantive changes in model estimates. Overall, the
changes that we observe are meaningful and the results of the model allowing for correla-
tions are behaviourally realistic and seem to indicate that not allowing for the correlation
can lead to misguided results in terms of heterogeneity, both deterministic and random.
We have also illustrated how these differences in parameter values lead to different model
forecasts as well as utility profiles for the activities.
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While the MDCEV model represent the state-of-the-art framework for modelling
discrete-continuous choices, we acknowledge that its structure implies some limitation in
the type of variables that can be included in the model. Namely, as the overall duration
of each activity within the specified time budget is modelled, it is not possible to include
any variable about the characteristics of specific occurrences of each activity, such as
location, start and end time, people involved.

As always, there is substantial scope for further work. A refined model specification
with additional covariates could give a more detailed representation of the behavioural
process at stake. Additionally, it would be possible to allow for random heterogeneity in
the translation parameters, but this would, as described earlier, require a larger dataset.
We have also presented a simple forecasting example. This showed differences across
models in the implied redistribution of time when an activity becomes unavailable. It
should be noted that our forecasting example worked at the level of individual days and
there is thus no redistribution across days. This shows that even if making predictions
for individual days, the use of a model that captures a richer pattern of heterogeneity
by incorporating inter-day effects will still lead to differences in prediction. Of course, a
further benefit of this model assumption would arise in forecasts that can allow for inter-
day substitution5. The Pinjari and Bhat (2010) algorithm for model forecasting however
cannot accommodate the impact of the correlations between parameters in terms of
substitution across days if conducting the forecasting at the day level. This could only
be accommodated by relaxing the 24 hours budget constraint to allow time redistribution
across different days, although this would result in time allocation higher than 24 hours
for some days and require ex-post corrections. The full impact of the correlation thus
requires the development of new forecasting approaches, which is an important topic for
future work.
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