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ABSTRACT: The insufficient phase separation between polymer donors and non-fullerene 

acceptors (NFAs) featuring with low-structural orders disrupts efficient charge transport and 

increases charge recombination, consequently limits the maximum achievable power conversion 

efficiency (PCE) of organic solar cells (OSCs). Herein, an NFA IT-M has been added as the third 

component into the PBDB-T:m-INPOIC OSCs, and is shown to effectively tune the phase 

separation between donor and acceptor molecules, although all components in the ternary system 

exhibit low degrees of structural orders. The incorporation of 10 wt% IT-M into a 

PBDB-T:m-INPOIC binary host blend appreciably increases the length scale of phase separation, 

creating continuous pathways which increase and balance charge transport. This leads to an 

enhanced photovoltaic performance from 12.8% in the binary cell to 13.9% for the ternary cell with 

simultaneously improved open-circuit voltage, short-circuit current and fill factor. This work 

highlights the beneficial role of ternary components in controlling the morphology of the active 

layer for high performance OSCs. 
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Over the past few years, the development of non-fullerene acceptors (NFAs) has driven the 

impressive progress of organic solar cells (OSCs).1–4 The tunable energy levels and absorption 

spectra of NFAs can allow for control of complementary absorption and low voltage loss which are 

critical for high power conversion efficiency (PCE)5–8, with over 16% PCE achieved for 

single-junction binary non-fullerene OSCs.9–11 Whilst the emergence of new electron donor and 

acceptor materials is the primary motivation to further advance OSCs, compositional and 

morphological optimization within the photoactive layer is vital to realize closer to the theoretical 

maximum PCE.10–12 The desired morphology of the photoactive layer should resemble nanoscale 

phase separated domains for efficient exciton diffusion and dissociation, of the order of the limited 

exciton diffusion lengths which are usually not more than 10 nm.15–17 Furthermore bicontinuous 

networks are favorable for charge carrier transport, collection and suppression of bimolecular 

recombination.12,18,19  

Most of the polymer donors, e.g. PTB7-Th and PBDB-T, exhibit low-structural order in the 

form of p-p stacking, due to the confinement of bulky conjugated repeating units in a 

macromolecular structure.20,21 The versatile chemical structures of NFAs endow this class of 

fascinating electron acceptors with very different molecular packing behaviors. For instance, 

COi8DFIC and INPIC-4F show a high tendency to crystallize into lamellae22–25, whilst ITIC and 

IEICO series materials exhibit p-p stacking only26,27. NFAs with similar chemical structures to 

conjugated polymers leads to good miscibility between donors and acceptors, especially with those 

of low structural orders; however this commonly results in insufficiently separated phases after 

solution casting, which impacts charge generation, transport and recombination.28–30 Whereas the 

fine phase separation and intimate contact between donors and acceptors benefits exciton 

dissociation, these morphologies are not ideal for charge transport.  

Although good efficiencies have been achieved in those photovoltaic systems featuring low 

structural orders, e.g. PBDB-T:ITIC and PBDB-T:IT-M, further enhancement of performance has 

proved rather difficult. For example, thermal annealing of PBDB-T:IT-M blend films barely 

increases the structural orders of PBDB-T and IT-M, explained by their intrinsic low ability to 

self-organize. Consequently less than 10% PCE improvement has been obtained for annealed 



 3 

devices compared with as-cast devices.31 Solvent vapor annealing (SVA) is another effective 

approach that has been demonstrated to reorganize molecular packing within blends and improve 

the efficiency of many fullerene-based OSCs.32,33 However, in non-fullerene OSCs featuring 

low-structural orders e.g. PTB7-Th:ITIC, only minor enhancement of molecular packing has been 

observed using a range of solvent or solvent mixture vapors to anneal devices, as such a PCE 

increase of only 10% can be achieved.34  

Ternary photovoltaic solar cells prepared by incorporating a third component into conventional 

binary solar cells have emerged as a promising strategy for realizing further improvements in 

efficiency.35–37 This method is favourable as it removes the time-consuming and expensive process 

of synthesizing new conjugated polymers. Whilst the primary advantage of the ternary strategy is to 

achieve complementary light absorption37–39, it can also effectively regulate the morphology.40,41 

Although literature reports have demonstrated reduced trap density and recombination in ternary 

systems compared to binary systems,42–45 less attention has been paid to tuning the phase separation 

and efficiency of non-fullerene OSCs featuring low structural orders.  

In this work, we employ the non-fullerene acceptor IT-M as the third component to tune the 

domain size in PBDB-T:m-INPOIC blends, which have until now been inhibited by insufficient 

phase separation, as all components exhibit low-structural orders. The presence of an intermediate 

amount of IT-M enhances photon absorption in the ternary device. The appreciatively enlarged 

length scale of phase separation induced by the presence of 10 wt% IT-M facilitates increased and 

balanced charge mobilities with minimized trap-assisted recombination. As a result, the ternary 

OSC achieves a maximum PCE of 13.9% compared with 12.8% for the PBDB-T:m-INPOIC binary 

OSC, with the simultaneously increased device metrics of Voc of 0.86 V, Jsc of 22.2 mA/cm2 and FF 

of 71.3%. This work highlights the beneficial role of ternary components in mediating morphology 

of the active layer to improve device performance. 

The chemical structures, energy levels of materials and schematic of the device structure used 

in this work are shown in Figure 1a-b.46,47 Figure 1c clearly shows the complementary absorption 

of the different components in the ternary system. To examine the possible Förster resonance energy 

transfer (FRET) between m-INPOIC and IT-M, we have measured the photoluminescence (PL) 
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spectra of the individual components and their mixtures with different weight ratios. As shown in 

Figure 1d, IT-M and m-INPOIC exhibit distinct emission peaks at 765 and 873 nm respectively. 

The broad overlap between the emission spectrum of IT-M and the absorption spectrum of 

m-INPOIC (Figure 1c) should enable efficient energy transfer from IT-M to m-INPOIC. In the 

m-INPOIC:IT-M blend, the emission signal of IT-M is markedly quenched with a single emissive 

peak observed at 873 nm that is associated with m-INPOIC, suggesting efficient energy transfer 

from IT-M to m-INPOIC which is favorable for photovoltaic performance.48 From this efficient 

energy transfer process we can also imply there is good miscibility between these two acceptors, 

with close mixing in the blend film.35,41,49 

 

Figure 1. (a) Chemical structures of polymer donor and non-fullerene acceptors, and the device 

architecture used in this work. (b) Schematic energy diagrams of PBDB-T, IT-M and m-INPOIC, 

here the lightning bolt indicates the related energy transfer process. (c) Optical absorption spectra of 

neat films of PBDB-T, m-INPOIC and IT-M. (d) PL spectra of m-INPOIC, IT-M and their mixtures 

at the weight ratios of 9:1 and 8:2, excited with a 532 nm laser. 

Transmission electron microscopy (TEM) was performed to understand the phase separated 

domain size within the binary and ternary blends. As shown in Figure 2a-c, the dark and bright 
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regions represent the acceptor and donor domains respectively, because of their different electron 

densities.50 The TEM image of the PBDB-T:m-INPOIC binary film (see Figure 2a) shows fine 

mixing and homogeneous distribution of donors and acceptors, whilst the continuous domain 

networks are less pronounced. Upon the incorporation of IT-M (see Figure 2b and c), the 

distinction between dark and bright regions becomes more pronounced. This suggests increased 

phase separation leading to larger and purer domains within the ternary blend, which will help the 

formation of bicontinuous paths for efficient charge transport and reduced charge 

recombination.18,19 These larger domains will have higher charge mobility because of the much 

faster carrier transport within a single-phase domain than between domains.51 

 

Figure 2. TEM images of (a) PBDB-T:m-INPOIC film, and its ternary blends with (b) 10%, (c) 20% 

IT-M. 2D GISAXS patterns of (d) PBDB-T:m-INPOIC, and its ternary blends with (e) 10% IT-M, (f) 

20% IT-M. (g) 1D GISAXS profiles along the qxy axis for PBDB-T:m-INPOIC blend films with 

different IT-M contents. 

In order to quantify the phase separated domain sizes of donors and acceptors, 

grazing-incidence small-angle X-ray scattering (GISAXS) was employed. The corresponding 2D 

GISAXS patterns of binary and ternary blends and their 1D GISAXS profiles along qxy axis are 
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shown in Figure 2d-g. A universal model (detailed in the supporting information) was used to fit 

the 1D profiles and the relevant fitting parameters are shown in Table 1. Here the correlation length 

(ξ) refers to the domain size of the PBDB-T-rich phase, η and D represent the correlation length and 

fractal dimension of acceptors and 2Rg (the product of η and D) is regarded as the domain size of 

acceptor aggregation. According to Table 1, the PBDB-T and m-INPOIC domain sizes in the binary 

blend are 13.3 and 32.1 nm respectively. Adding 10 wt% IT-M into binary blend leads to the growth 

of both PBDB-T and m-INPOIC domains, which are enlarged to 14.8 and 35.0 nm respectively. 

Further increased domain size and phase separation were observed when 20 wt% IT-M was added. 

Therefore, we conclude the addition of IT-M increases the domain size of both donors and acceptors. 

The ternary blend with 10 wt% IT-M shows the smallest fractal dimension of 2.6, suggesting 

loosely packed aggregates of m-INPOIC, which could extend to larger regions facilitating both 

exciton dissociation and charge transport.52,53 This quantitative observation is consistent with the 

more pronounced contrast and domain size within the TEM images of the ternary blends.  

Table 1. Fitting parameters of 1D GISAXS profiles for PBDB-T:m-INPOIC and its ternary films. 

 
ξ (nm) η (nm) D 2Rg (nm) 

PBDB-T:m-INPOIC 13.3 13.9 2.8 32.1 

With 10% IT-M 14.8 16.2 2.6 35.0 

With 20% IT-M 16.0 16.7 2.9 39.7 

 

Due to the competition between phase separation and molecular ordering,29 we further 

investigate the effect of the addition of the third component IT-M on the molecular packing and 

orientation via grazing incidence wide-angle X-ray scattering (GIWAXS) measurements. The 2D 

diffraction patterns and 1D profiles are shown in Figure 3. It is immediately apparent in the 2D 

GIWAXS patterns that the face-on p-p stacking of the blends is gradually enhanced upon the 

incorporation of IT-M. As shown in Figure 3d-e, the binary PBDB-T:m-INPOIC film shows a weak 

and broad p-p peak in the out-of-plane (OOP) direction and a sharp lamellar stacking in the in-plane 

(IP) direction, which is the character of preferential face-on orientation.54 Deconvolution of this 
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broad p-p peak gives two convolved peaks located at qz » 1.73 Å-1 and qz » 1.80 Å-1 (see in Figure 

S1), which can be assigned to PBDB-T and m-INPOIC components respectively.47 With the 

addition of IT-M, no obvious diffraction peaks from IT-M were observed, which is consistent with 

the low structural order of IT-M.31 Meanwhile, stronger p-p stacking diffraction in the OOP 

direction and PBDB-T lamellar stacking in the IP direction were observed in Figure 3b and c. 

Deconvolution of these broad p-p peaks from 1.60 to 1.90 Å-1 using multi- Gaussian peak fitting is 

shown in Figure S1. With the addition of IT-M, the p-p peak positions of PBDB-T and m-INPOIC 

slightly shift to higher q values, suggesting a tighter stacking distance. Comparing the intensity 

changes of the deconvoluted peaks, the main contribution to the enhanced p-p stacking comes from 

PBDB-T in the ternary blend, with negligible changes of m-INPOIC. This suggests enhanced 

ordering of PBDB-T, which is most pronounced with the addition of 20 wt% IT-M. We regard this 

enhanced ordering as resulting from the increased domain size within the ternary blends, allowing 

PBDB-T molecules to pack efficiently without the interruption of acceptor molecules. The fact that 

the p-p stacking intensity of m-INPOIC barely changes suggests the good miscibility between 

m-INPOIC and IT-M, which might form an alloy as observed in many ternary system.55,56 The 

increased packing of PBDB-T in the OOP direction within the slightly larger domains will increase 

the hole mobility (results presented in a later section) to facilitate carrier transport along the vertical 

direction towards the anode.57  
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Figure 3. 2D GIWAXS patterns of (a) PBDB-T:m-INPOIC film, and its ternary blends with (b) 10 

wt%, (c) 20 wt% IT-M. Corresponding (d) out-of-plane and (e) in-plane 1D profiles of GIWAXS 

patterns along the qz- and qxy-axis. 

It is well accepted that the efficiency of OSCs is greatly related to the photon absorption of the 

photoactive layer.27 Thus we further investigated the absorption spectra of the binary and ternary 

films where the overall donor/acceptor weight ratio was kept at 1:1. Referring to the absorption 

spectra in Figure 4a, the prominent peaks at 635 and 800 nm correspond to the absorption of 

PBDB-T and m-INPOIC respectively. With the addition of IT-M, the absorption is enhanced in the 

wavelength range from 500 to 700 nm. We attribute this to two reasons, firstly the stronger 

absorption of IT-M in this range, and secondly the enhanced molecular packing of PBDB-T 

(discussed above in the GIWAXS section) which will also enhance photon absorption.29 With the 

addition of 20 wt% IT-M, however, the absorption at longer wavelengths reduces notably, which 

results from the reduced fraction of m-INPOIC in the blend.  
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Figure 4.澳(a) Absorbance of PBDB-T:m-INPOIC films with different IT-M contents, (b) Champion 

J–V curves, and (c) EQE of devices fabricated with different IT-M contents.  

Table 2. The photovoltaic parameters of PBDB-T:m-INPOIC OSCs with varying IT-M content 

obtained under simulated AM 1.5 G illumination at 100 mW/cm2. The statistical data were obtained 

from over 20 individual devices. 

A series of inverted binary and ternary devices were fabricated to evaluate the effects of these 

morphological characteristics on device performance. The overall donor to acceptor ratio was kept 

constant at 1:1 in this work. The J-V curves of best-performing devices are shown in Figure 4b and 

the device metrics for each composition are summarized in Table 2. The control device refers to the 

PBDB-T:m-INPOIC binary cell, which exhibits a PCEmax of 12.8%, with a FF of 70.8%, a Jsc of 

20.7 mAcm-2 and a Voc of 0.85 V. Incorporating 10 wt% IT-M into the PBDB-T:m-INPOIC blend 

leads to simultaneous improvements of the Jsc to 22.2 mAcm-2, FF to 71.3% and Voc to 0.86V, 

resulting in a PCEmax of 13.9%. The larger domain sizes in the ternary OSCs will facilitate charge 

carrier transport, on the other hand, the reduced D/A interface area and the longer distance that 

excitons have to migrate are harmful to efficient exciton dissociation.16 As a result, when 20 wt% 

IT-M was incorporated to generate domains with excessive sizes, the FF of the device further 
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increases to 72.4% and the Voc increases to 0.87V, but the Jsc decreases abruptly to 19.1 mAcm-2, 

leading to a low PCEmax of 12.2% only. In general, the Voc of the device is associated with the 

offsets between the highest occupied molecule orbital (HOMO) of the donor and the lowest 

unoccupied molecule orbital (LUMO) of the acceptor.58,59 Here, the gradually increasing Voc is in 

line with the IT-M content, suggesting that IT-M acts as an energy-level modulator to monotonically 

elevate the LUMO levels of the mixed acceptors due to its higher-lying LUMO. 

The external quantum efficiency (EQE) spectra of the best-performing devices are shown in 

Figure 4c. When the binary blend had 10 wt% IT-M added, the EQE spectra of the device shows 

marked increase in the broad region between 450 and 800 nm, which is consistent with the 

enhanced absorption in this region. Significantly increased charge dissociation and collection as 

well as suppressed recombination account for the improved EQE values (discussed below). Further 

increasing the content of IT-M to 20% leads to slightly reduced photon to current efficiency from 

450 to 650 nm. This indicates that excessive amount of IT-M begins to hamper current generation 

due to inefficient generation of free charges from excitons, because of sub-optimal phase separation. 

To further investigate the effect of the varying degree of phase separation on exciton 

dissociation and collection, the photocurrent density (Jph) as a function of the effective voltage (Veff) 

were measured, as shown in Figure 5a.60 Here Jph = JL- JD, in which JL and JD are the photocurrent 

densities under illumination and dark respectively. Veff = Vo - Va, where Vo is the voltage when JL = 

JD and Va is the applied voltage. Assuming that all the generated excitons have dissociated and been 

collected by electrodes at large Veff, a saturated photocurrent density (Jsat) will be reached. The 

maximum Jsat of the ternary device with 10 wt% IT-M is partly due to the efficient energy transfer 

from IT-M to m-INPOIC. The exciton dissociation possibility (Pdiss) and charge collection 

efficiency (Pcoll) are defined as Jph/Jsat values under short-circuit condition and maximal power 

output condition respectively. As displayed in Table 3, the Pdiss values of the ternary OSC with 10% 

IT-M content is higher than the binary OSC. But at the higher amount of 20 wt% IT-M, excessive 

phase separation and reduced D/A interfaces results in the inhibition of exciton dissociation. The 

dramatically increased Pcoll for 10% IT-M is attributed to the more ordered molecular packing of 
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PBDB-T and the formation of bicontinuous networks, enabling efficient charge carrier transport 

with suppressed carrier recombination.  

Additionally, we took J-V measurements of OSCs under different light intensity (Plight) to gain 

more insight into the charge recombination behavior of devices. The profiles of Jsc and Voc as a 

function of light intensity (Plight) are described in Figure 5b and c. By analyzing the Voc versus 

ln(Plight) plot, the dominant charge recombination mechanism can be distinguished. At the 

bimolecular recombination condition, the slope of Voc versus ln(Plight) is close to KT/q, where K is 

the Boltzmann constant, T is the absolute temperature and q is the elementary charge. The slope will 

be larger than KT/q for trap-assisted recombination. The slope of Voc versus ln(Plight) for the binary 

device is 1.32 KT/q, which decreases to 1.21 KT/q and 1.28 KT/q for ternary devices with 10% and 

20% IT-M respectively, suggesting the most effectively suppressed trap-assistance recombination 

with the addition of 10% IT-M. Meanwhile, the slopes of log(Jsc) versus log(Plight) plots were 

analyzed to evaluate the degree of bimolecular recombination. As shown in Figure 5c, the slopes 

are 0.96, 0.98 and 0.96 for the binary and ternary devices with 10% IT-M and 20% IT-M, 

respectively. A slope close to unity signifies that bimolecular recombination dominates in these 

devices.  

 

Figure 5. (a) Photocurrent density (Jph) versus effective voltage (Veff) curves. (b) Dependence of 

Voc on light intensity and (c) dependence of Jsc on light intensity for the devices with different 

amounts of IT-M. 

We finally investigated the effect of IT-M on carrier mobilities (µ) using the space charge 
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respectively. The J1/2-V curves are shown in Figure S2, and the mobilities are extracted and 

summarized in Table 3. The µh and µe of the PBDB-T:m-INPOIC binary device are 2.6´10-4 

cm2V-1s-1 and 2.1´10-4 cm2V-1s-1 respectively. After the incorporation of 10% IT-M, the ternary 

device displays higher µh and µe of 2.8´10-4 cm2V-1s-1 and the hole and electron transport becomes 

balanced as determined by the µh/µe ratio of unity. The enhanced molecular order of PBDB-T and 

improved bicontinuous pathways account for these increased mobilities. As more IT-M was added, 

µh continuously increases to 4.2´10-4 cm2V-1s-1 and µe increases to 3.0´10-4 cm2V-1s-1, thus the 

µh/µe becomes unbalanced, which will increase charge accumulation and recombination, worsening 

device performance. 

Table 3. Jsat, Pdiss, Pcoll, hole and electron mobilities of PBDB-T:m-INPOIC and its ternary OSCs 

with different contents of IT-M. 

IT-M content  
Jsat  

[mA cm-2] 
Pdiss Pcoll 

Hole mobility 

(µh) 

[cm2 V-1 s-1] 

Electron mobility 

(µe) 

[cm2 V-1 s-1] 

µh/µe 

0% 22.1 97.5% 83.3% 2.6´10-4 2.1´10-4 1.2 

10% 22.9 98.3% 88.8% 2.8´10-4 2.8´10-4 1.0 

20% 20.9 97.2% 86.9% 4.2´10-4 3.0´10-4 1.4 

 

In summary, PBDB-T:m-INPOIC binary non-fullerene OSCs with a maximum PCE of 12.8% 

were enhanced to 13.9% PCE by employing 10 wt% IT-M (relative to the acceptor) as a ternary 

component, with simultaneously increased Jsc, FF and Voc. Morphological studies show appreciably 

enlarged phase domain size via the addition of IT-M, helping to increase the molecular packing of 

PBDB-T, as well as creating continuous donor and acceptor networks for efficient charge transport 

towards the respective electrodes. The optimized morphology via tuning of the phase separation of 

the ternary system leads to increased light absorption and charge mobility, balanced charge 

transport and suppressed carrier recombination. We have there demonstrated that ternary component 

implementation is an effective strategy to prepare high-performance ternary non-fullerene OSCs 

consisting of components with low structural orders. 
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