

This is a repository copy of Influences of non-fullerene acceptor fluorination on three-dimensional morphology and photovoltaic properties of organic solar cells.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/156041/

Version: Supplemental Material

Article:

Chen, M., Liu, D., Li, W. et al. (11 more authors) (2019) Influences of non-fullerene acceptor fluorination on three-dimensional morphology and photovoltaic properties of organic solar cells. ACS Applied Materials & Interfaces, 11 (29). pp. 26194-26203. ISSN 1944-8244

https://doi.org/10.1021/acsami.9b07317

This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.9b07317

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting Information

Influences of non-fullerene acceptor fluorination on three-dimensional morphology and photovoltaic properties of organic solar cells

Mengxue Chen^{1,2}, Dan Liu^{1,2}, Wei Li^{1,2}, Robert S. Gurney^{1,2}, Donghui Li^{1,2}, Jinlong Cai^{1,2}, Emma L.
K. Spooner³, Rachel C. Kilbride³, James D. McGettrick⁴, Trystan M. Watson⁴, Zhe Li⁵, Richard A.
L. Jones³, David G. Lidzey³, Tao Wang^{1,2}*
¹School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China E-mail: twang@whut.edu.cn
²State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
³Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
⁴SPECIFIC, College of Engineering, Bay Campus, Swansea University, Swansea, SA1 8EN, UK

⁵School of Engineering, Cardiff University, Cardiff, Wales UK, CF24 3AA

Figure S1 (a) Chemical structure of PBDB-T-2F. (b) Energy level diagram of donors (PBDB-T, PBDB-T-2F) and IT-4F. (c) Absorbance of donors (PBDB-T, PTB7-Th, PBDB-T-2F). (d) J-V characteristics of our best performing PBDB-T:IT-4F and PBDB-T-2F:IT-4F OSCs.

Table S1 Photovoltaic parameters of OSCs measured at an illumination of AM 1.5 G, 100 mW
cm ⁻² . The statistical data were obtained from over 15 individual devices.

Donor:Acceptor	FF	J_{sc}	Calculated J _{sc}	V_{oc}	$PCE_{max}(PCE_{avg})$
	[%]	$[mA cm^{-2}]$	$[mA cm^{-2}]$	[V]	[%]
PBDB-T:IT-4F	73.1	19.4	18.3	0.67	9.6 (9.2±0.5)
PBDB-T-2F:IT-4F	75.1	20.3	20.9	0.85	13.1 (12.8±0.4)

Figure S2 Ψ of (a) ITIC, (b) IT-4F, (c) IEICO, (d) IEICO-4F films as a function of temperature. The thickness of acceptor's films is fitted by the Cauchy model.

Figure S3 AFM height images (5 μ m×5 μ m) of (a) PBDB-T:ITIC, (b) PBDB-T:IT-4F, (c) PTB7-Th:IEICO and (d) PTB7-Th:IEICO-4F films.

Figure S4 Water contact angles (θ) and surface energies (γ) of (a) ITIC, (b) IT-4F, (c) PBDB-T, (d) IEICO, (e) IEICO-4F and (f) PTB7-Th pure films.

Figure S5 Root square plots of (a) electron densities versus voltage of the ITO/ZnO/Active layer/Ca/Ag electron-only devices and (b) hole densities versus voltage of the ITO/PEDOT:PSS/Active layer/MoO₃/Ag hole-only devices. A linear fit was applied in the voltage range from 0 to 6 V.

Figure S6 Nyquist plots of impedance spectra of various devices under 1 sun irradiation with an applied bias at V_{oc} .