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Abstract 

Process analytical Technologies (PAT) applied to process monitoring and control generally 

provide multiple outputs that can come from different sensors or from different model outputs 

generated from a single multivariate sensor. This paper provides a contribution to current data 

fusion strategies for the combination of sensor and/or model outputs in the development of 

multivariate statistical process control (MSPC) models. Data fusion is explored through three 

real process examples combining output from multivariate models coming from the same 

sensor uniquely (in the near infrared (NIR)-based end-point detection of a two-stage polyester 

production process) or the combination of these outputs with other process variable sensors 

(using NIR-based model outputs and temperature values in the end-point detection of a 

fluidised bed drying process and in the on-line control of a distillation process). The three 

examples studied show clearly the flexibility in the choice of model outputs (e.g., key 

properties prediction by multivariate calibration, process profiles issued from a multivariate 

resolution method, etc.) and the benefit of using MSPC models based on fused information 
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including model outputs towards those based on raw single sensor outputs for both process 

control and diagnostic and interpretation of abnormal process situations. The data fusion 

strategy proposed is of general applicability for any analytical or bioanalytical process that 

produces several sensor and/or model outputs. 

Keywords: Data fusion, Multivariate statistical process control, Near-infrared, 

spectroscopic sensors, Chemometrics. 
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1. Introduction 

Recent process analytical technology (PAT) applications in analytical and bioanalytical 

processes generally use data from process analysers, mostly based on spectroscopic 

measurements, to provide single or several outputs related to process quality indicators [1–5]. 

The outputs based on spectroscopic measurements come from the use of different multivariate 

analysis tools, e.g. multivariate calibration models provide prediction of product key properties 

[6], multivariate curve resolution (MCR) deliver concentration profiles associated with the 

evolution of compounds in a process [7] and multivariate statistical process control (MSPC) 

gives indicators that may tell whether the process is on- or off-specifications [8]. In addition to 

the spectroscopic sensors, most processes are also monitored with simpler devices providing 

other univariate measurements, such as temperature, pressure, pH or flow rates. 

To handle and interpret the measurements of the sensors above in a process monitoring 

context, MSPC is a well-established methodology for statistical process control and fault 

diagnosis and identification [9, 10]. However, MSPC tends to be used either on the original 

multivariate sensor information, e.g., spectroscopic information [1, 11–13] or on sets of 

univariate process sensors, e.g., temperature, flow, etc. [14–17], but the combination of both 

kinds of sensors is seldom found. 

Indeed, few works are found in the literature combining information from spectroscopic 

sensors with other process variables to build MSPC models. Gabrielsson et al. have shown that 

an MSPC model combining UV spectroscopy and process data provides better performance 

than models built separately for each kind of data set [2]. In this case, no compression of the 

spectroscopic information was used in the data fusion. Independent MSPC models were 

developed using data from an electronic nose based on an array of sensors, NIR spectroscopy, 

mass spectrometry, on-line HPLC and standard on-line bioreactor sensors in a tryptophan 

fermentation process, but neither the sensor measurements nor the output of the individual 

MSPC models were combined afterwards [18]. Another work used forward variable selection 

and cascade artificial neural network procedures to monitor a yoghurt fermentation process 

[19]. To do so, variables were selected from an electronic nose for prediction of key properties 

in a primary net followed by a secondary net that used the predicted key properties from the 

previous net combined with selected NIR wavelength channels and temperature measurements 

for estimation of a discrete process state variable. However, such a fusion was not meant to 

perform process control. Another data fusion strategy used for classification problems was 
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conceived under a mid-level data fusion framework where the multivariate information was 

merely compressed into scores (typically from Principal Component Analysis, PCA) and fused 

with other sensor outputs for further analysis; however, no examples of this strategy are found 

for process control [20]. 

Data fusion in MSPC offers two main assets: a) the model or sensor outputs joined 

probe different physicochemical aspects of the processes under study and offer a more accurate 

description of the system of interest, and b) the fact of considering the different sensor and 

model outputs together allows testing not only the behavior of each of the process parameters 

fused, but also that the natural relationship among them be the correct one, something 

absolutely impossible out of a fusion scenario. 

In this study, the concept of data fusion for process control is widened to enclose both 

the combination of several model outputs from a single multivariate sensor and/or of several 

sensor outputs in a single data structure following a mid-level fusion strategy [21]. In this way, 

both measurement and modeling tasks for the same process are interconnected. Indeed, model 

outputs derived from multivariate sensors, such as predictions of key properties, process 

concentration profiles, etc., are compressed information much more specific, diverse and 

interpretable than mere scores and help better to find out the cause of process malfunctions or 

off-specification situations in a data fusion context. 

The data fusion MSPC strategies presented in this work are applied to three real scenarios 

described below that show diverse combinations of multivariate model outputs and process 

sensor information. 

a) Pharmaceutical drying process. This process is monitored with NIR spectroscopy and 

with temperature sensors placed at different points of a fluidised bed dryer reactor. 

Process end-point detection is carried out via a data fusion MSPC model combining 

NIR-based multivariate model outputs, such as moisture prediction and NIR-based 

MSPC indicators, with temperature measurements (see Fig. 1(a)). 

b) Polyester production process. This process is monitored only with NIR spectroscopy. 

Process end-point detection is carried out using a data fusion MSPC model combining 

different NIR-based model outputs coming from predictions of key properties and NIR-

based MSPC information (see Fig. 1(b)). 



5 

 

c) Distillation process. This process is monitored by NIR spectroscopy and vapour 

temperature measurements [7]. Here, the evolution of the distillation process was 

controlled via data fusion on-line MSPC models based on the combination of 

compressed NIR-based information, expressed by the concentration profiles derived 

from multivariate resolution analysis (MCR) of the process spectra and vapour 

temperature measurements (see Fig. 1(c)). 

More detailed comments on the way to build the data structures displayed in Fig. 1 and on 

the interpretation of the related data fusion MSPC models will be described throughout the 

text. 

 

Fig. 1 Data fusion strategies used to combine the several sensor and/or model outputs for batches from (a) Process 2, 

(b) Process 1; and (c) Process 3 

The three processes studied are very different in nature, models and sensors combined in 

order to show the general applicability of this methodology in any analytical or 

bioanalytical process context. In all cases, the performance of MSPC models built with the 

proposed data fusion strategies (hereafter DF-MSPC models) is compared with that of 

MSPC models built with the sole NIR information (hereafter MSPCNIR) through control 

charts obtained from validation batches. The results obtained clearly show that the use of 

information coming from different models and/or sensor outputs in data fusion process 

control models overcomes the performance of the control procedures based on single sensor 

information and provides a more useful way to identify the causes related to process faults 

and off-specification situations. 
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2. Experimental 

Three case studies illustrate the different data fusion strategies employed to build 

multivariate statistical process control (MSPC) models. The experimental monitoring of these 

processes where NIR spectroscopy and other process variables are monitored is described 

below. 

2.1. Process 1: Fluidized bed drying of pharmaceutical granules 

Fourteen batches of 500 g (1-L equivalent) of pharmaceutical wet granules (dry mass 

fraction of Mannitol >50 %, Avicel PH-101 <30 %, Hypromellose 2910 < 10 %, and other 

excipients <10 %) were dried in a 4-L fluidized bed (4M8-Trix Formatrix, ProCepT, Belgium). 

The fluidized bed air inlet flow was controlled at 0.6 or 0.85 m3/min and a temperature of 22 to 

30 ºC. Temperature sensor readings of the fluidized material (Tbed), inlet (Tin) and outlet air (Tout) 

were recorded simultaneously for each in-situ NIR spectrum. The spectra cover a wavelength 

range of 1750 to 2150 nm at 1 nm intervals using a spectrophotometer with a novel MEMS 

Fabry-Perot interferometer (N-Series 2.2, Spectral Engines, Finland) coupled to a diffuse 

reflectance immersion probe (OFS-6S-100HO/080704/1, Solvias, Switzerland). In-line 

measurements were collected approximately every second. Off-line reference moisture content 

analysis was carried out using a thermogravimetric moisture analyzer (MB120, Ohaus, 

Germany) from samples retrieved at six-minute interval. These moisture reference values were 

used afterwards to build NIR-based models for moisture predictions. On-specification moisture 

content was set to be below 2 %. More information can be found in reference [22]. 

2.2. Process 2: Polyester production process 

The production of saturated polyester resins following a commercial recipe was used 

in this process example and is described in reference [23]. Thirteen batches were carried out 

with an average batch run time of 22 h. Process monitoring was carried out by in-line NIR 

absorbance spectra collected inside the two-liter round flask reactor using a NIR immersion 

probe (Excalibur 20, Hellma Analytics, Germany) with an optical pathlength of 5 mm working 

in the transmission mode and connected through 2-m fiber optic cables to a spectrophotometer 

with MEMS Fabry-Perot interferometer (N-Series 1.7, Spectral Engines, Finland) in the (1350 

to 1650) nm wavelength range. Spectra were collected every 4 seconds. The key properties 

selected to follow the progress of the reaction were the acid value (AV) and the high shear 
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viscosity (V). Off-line determination of AV was carried out by manual acid-base titration 

following the ASTM D1639-03 method. Off-line values of V were obtained using a cone/plate 

viscometer (CAP 2000, Brookfield, USA) operating at 200 °C following the procedure 

described in the ASTM D4287-00 method. These reference values were used to build NIR-

based calibration models for in-line prediction of AV and V values. This polyester production 

process involves two steps and end-point detection models had to be built for each one of them. 

The targeted ranges to indicate the end-point for the first step are 8 to 12 mg KOH g-1 for AV 

and 10 to 14 P for V, whereas the end-point of the second d stage requires 45 to 63 mg KOH 

g-1 for AV and 25 to 45 P for V. More information can be found in reference [23]. 

2.3. Process 3: Automated benchtop batch gasoline distillation 

An automated batch distillation process with synchronized temperature readings, 

percentage of distilled mass fraction of initial sample weight and in-line FT-NIR absorption 

spectra (900 nm to 2600 nm, Rocket, ARCoptix ANIR, Switzerland) was designed and used to 

monitor the distillation of 100-ml volume of synthetic gasolines [7]. The gasoline batches were 

prepared by mixing ethanol AR (99 % Sigma-Aldrich) and pure gasoline (type A, from 

Petrobras refinery) at different ratios. A set of 23 blends was performed: 11 samples containing 

a volume fraction of 27 % ethanol (on-specification gasolines) and 12 with 10 % to 25 % and 

30 % to 40 % ethanol (off-specification gasolines, according to Brazilian legislation). More 

detailed information can be found elsewhere [7]. NIR spectra in the 1103 – 2228 nm 

wavelength range (573 channels) and vapor temperature were recorded every unit of percent 

of distilled mass fraction in the 5 % to 90 % range. 

3. Data treatment 

3.1. NIR data preprocessing 

For processes 1 and 2, similar preprocessing steps were employed to filter out noise and 

baseline fluctuations on NIR spectra observations. A certain number of consecutive raw spectra 

measurements, NRAW, were averaged into a single spectrum, then a moving average smoothing 

with window size, NMA, was employed using the previously averaged spectra. Finally, to remove 

any unwanted baseline spectral variation in the moving averaged spectra, standard normal 

variate (SNV) normalization [24] was applied in Process 1 and Savitzky-Golay derivative [25] 

(1st order derivative, 2nd order polynomial function and 15 points window) in Process 2 data. 
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Temperature measurements were averaged as NIR spectra in Process 1, covering the same time 

window as the number of spectra NRAW averaged to obtain a single one. 

Fig. 2(a) shows the raw (left plot) and preprocessed (center plot) NIR observations 

using NRAW = 10 and NMA = 75 for one typical drying process batch (Process1). The right plot 

shows the related batch temperature profiles. Fig. 2(b) shows the raw (left plot) and (right plot) 

preprocessed NIR observations using NRAW = 13 and NMA = 30 for the polyester production 

process batch (Process 2). 

 

Fig. 2 Data related to a batch from (a) Process 1: raw (left) preprocessed (center) NIR spectra and (right) 

temperature profiles, for better visualization the interval was set to 5 minutes. (b) Process 2: raw (left) and preprocessed 

(right) NIR spectra. (c) Process 3: raw (left) and preprocessed (center) NIR spectra and distillation curve of vapor 

temperature (right). Color scale indicates the temporal variation of batch observations, from the beginning (blue) to 

the end (red) 

In Process 3, raw NIR spectra were preprocessed for baseline correction by Savitzky-

Golay derivative (1st order derivative, 2nd order polynomial function and 9 points window) 

followed by spectral normalization to mitigate signal intensity fluctuations. Fig. 2(c) shows the 

raw (left plot) and preprocessed (center plot) NIR spectra, respectively, and the related 
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distillation curve (right plot) with recorded boiling temperatures during the 5 to 90 % 

distillation fractions of an on-specification batch. 

3.2. NIR-based model outputs used in data fusion MSPC models 

As could be seen in Fig. 1, different kinds of information, issued from the application 

of different multivariate analysis methods, were used to build MSPC data fusion models. 

Below, a brief description of the multivariate methods used and the kind of outputs provided 

is presented. 

Partial least squares regression (PLS) was used to build models able to predict key 

properties of processes that can be estimated from NIR measurements. PLS was used to build 

models able to predict moisture in Process 1 and acid number or viscosity in Process 2. PLS 

is the most often used multivariate calibration method in chemometrics [26, 27]. This method 

relates the X matrix (formed by NIR spectra in these examples) to the matrix of parameters to 

be predicted Y (e.g. formed by moisture content, acid number or viscosity values) to build a 

calibration model with predictive ability that expresses the maximum covariance between X 

and Y. More details and description of PLS algorithm can be found elsewhere [28–30]. Y 

predicted values by PLS models are afterwards used in the design of data fusion MPSC models 

for both Processes 1 and 2, as seen in Figures 1 (a) and 1 (b), respectively. 

Multivariate curve resolution - alternating least squares (MCR-ALS) is a method 

that can provide concentration profiles and related spectral signatures for the compounds 

involved in a process using only the spectroscopic information recorded during process 

monitoring. MCR-ALS was used to model the NIR data of the distillation process, Process 3. 

MCR-ALS assumes a bilinear model, D = CST + E, which is the multiwavelength extension of 

the Lambert-Beer's law [31–34]. In this context, D is a data table with the NIR spectra from 

several on-specification distillation batches. ST contains the pure spectra profiles of the 

components needed to describe the distillation process and C the related concentration 

(distillation) profiles.  Thus, MCR-ALS provides the concentration and spectral profiles of the 

different distillation fractions of the system. To ensure obtaining meaningful process and 

spectra profiles, MCR-ALS was applied using non-negativity and unimodality constraints to 

model C profiles, whereas ST profiles were not constrained. Details on the implementation of 

MCR-ALS for Process 3 modelling can be found in reference [7]. As shown in Fig. 1 (c), C 

profiles are afterwards used as input information for on-line batch MSPC data fusion models 

described in the next section. 
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Multivariate Statistical Process Control (MSPC) models aim at providing statistical 

boundaries that allow building control charts that help to know whether a process is on- or off-

specification based on the measurement of NIR spectra. MSPC models based uniquely on NIR 

multivariate observations were used to provide an additional compressed indication of process 

evolution (see more detail afterwards in this same section about the MSPC model construction). 

Summarizing, MSPC indicators 𝑇" and 𝑄 serve as parameters to enclose information related 

to the unspecific NIR variation linked to the expected process variation and to the acceptable 

residual variation, respectively. These NIR-derived indicators are afterwards used in data 

fusion strategies linked to Process 1 and Process 2, as seen in Fig. 1(a) and Fig. 1(b). 

3.3. Construction of Multivariate statistical process control 

(MSPC) models 

This section covers the steps required to build an MSPC model, either based on the raw 

output of an NIR sensor or on combined information leading to a data fusion scenario, as 

previously described. PCA-based MSPC models are always built using multivariate 

observations from normal operating condition (NOC) batches to set the statistical boundaries 

of normal operation. Afterwards, observations of new batches are submitted to the MSPC 

model to check whether they are within the normal operation boundaries or not. 

MSPC models can have different goals, such as end-point detection or checking the 

process evolution. For Processes 1 and 2, MSPC models were designed for batch end-point 

detection; meanwhile, for Process 3, local on-line batch MSPC models were built to check the 

process evolution using the strategy described in reference [7]. 

To use MSPC either for end-point detection or for on-line batch evolution monitoring, 

MSPC models should be built using datasets formed by NOC observations, XNOC, which can be 

full NIR spectra or the combination of different NIR-based model and/or sensor outputs, as 

shown in Fig. 1. The dataset 𝐗NOC, is modeled by PCA in order to set the statistical boundaries 

of the experimental domain (space) of NOC observations according to the equation below [35], 

𝐗𝐍𝐎𝐂 	= 	𝐓𝐍𝐎𝐂𝐏𝐍𝐎𝐂
𝐓 	+ 	𝐄𝐍𝐎𝐂 

(1) 

where 𝐓𝐍𝐎𝐂 is the scores matrix of the NOC observations used to build the model and 𝐏𝐍𝐎𝐂
𝐓 , 

the loadings matrix (which is the link between scores and original variables in XNOC). 𝐄NOC 
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describes the residual variation unexplained by the PCA model and is used to define the Q-

statistic control chart limit, 𝑄./0., according to Jackson and Mudholkar equation [36]. 

For any new observation (NIR spectrum or the combined information) acquired in real-

time, 𝐱345, the PCA model is used to obtain its related score value, 𝐭345, as follows: 

𝐭345 	= 	 𝐱345𝐏𝐍𝐎𝐂 
(2) 

Then, the residuals for the new observation are obtained as: 

𝐞𝐧𝐞𝐰 	= 	 𝐱345 − 𝐭345𝐏;<=
>

 
(3) 

And the related Q-statistic value as: 

 𝑄 = 𝐞𝐧𝐞𝐰
𝐓 𝐞𝐧𝐞𝐰 

(4) 

When the new observation follows the NOC described by the MSPC models, the 

residual 𝐞𝐢,𝐧𝐞𝐰 will be small and the related 𝑄 value will appear below the chart control limit. 

Conversely, when the observation does not follow the NOC, the related 𝑄 value will appear 

above the control chart indicating that the process is deviating from the normal process 

trajectory or that the batch is far from the end-point, depending on the type of MSPC model 

used. The contribution plot associated with a high 𝑄 value can be assessed by plotting the 

related 𝐞𝐧𝐞𝐰 vector for the sought observation. High absolute values related to elements in 𝐞𝐧𝐞𝐰 

will identify variables showing abnormal behavior. 

From the PCA model another statistical parameter can be obtained, the Hotelling’s 𝑇", 

which represents the estimated Mahalanobis distance to the compressed subspace represented 

by the PCA model built with NOC observations. 

The 𝑇" is calculated for any new observation using the predicted 𝐭345 and the following 

equation: 

 𝑇" = 𝐭𝐧𝐞𝐰
T 𝚯

−1
𝐭𝐧𝐞𝐰 

(5) 

where 𝚯 is the PCA scores covariance matrix [37, 38]. 

𝑇" can also be used to build MSPC control charts [7]. However, in this work, 𝑇" together with 

𝑄 statistics were also used as means to represent compressed process information from purely 

NIR-based MSPC models in Processes 1 and 2, as mentioned in section 3.2. 



12 

 

Often, for an easier interpretation of MSPC control charts and indicators, reduced NIR-

MSPC statistics (𝑄DEF. and 𝑇DEF.
" ) are calculated by dividing the obtained 𝑄  and 𝑇"  values by 

their related 95 % confidence interval (CI) control limit; therefore, the control limit of derived 

charts becomes equal to one. 

Software 

Data handling and chemometric model building were carried out using own routines 

programmed in Matlab R2017a (Mathworks, USA) and PLS_Toolbox 8.2.1 (Eigenvector 

Research, USA) running under Matlab. 

4. Results and discussion 

The specific details of the data fusion strategies and the related DF-MSPC results are 

presented for each process application studied in this work. The aim of this section is showing 

the high performance of DF-MSPC models and how these models clearly improve the 

performance of models based on the sole use of NIR spectra (MSPCNIR) both in terms of 

detecting process faults and identifying the causes of the abnormal process behaviour. 

4.1. Process1: Fluidized Bed Drying Process 

In this process, the DF-MSPC model combines temperature sensor readings of the 

fluidized material (Tbed), inlet (Tin) and outlet air (Tout) and information coming from two NIR-

based multivariate models, a PLS regression model for prediction of moisture content and a 

MSPCNIR model for end-point detection, which provided 𝑇DEF,GHI
"  and 𝑄DEF,GHI  process 

indicators. The PLS model was built using the off-line moisture content values as measured 

with the reference method and the related NIR spectra from the off-line pharmaceutical 

granules sampled. Meanwhile, an MSPCNIR end-point model was built with NIR spectra related 

to process observations obeying the moisture content specification at the end-point (below 2 

%). Details of the drying process and the results describing the quality of moisture 

determination PLS models and MSPCNIR end-point detection model were discussed in a previous 

work [22]. 

To combine the temperature and the NIR sensor information, a data fusion strategy was 

implemented as shown in Fig. 1(b), including MPLS %, 𝑇DEF,GHI
"  and 𝑄DEF,GHI and the three 
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temperature values Tbed, Tin, and Tout. After variable autoscaling, a DF-MSPC model for end-point 

detection using NOC batches was built. 

The performance of the DF-MSPC model for end-point detection on new batches is 

shown using two validation batches, an on-specification batch (labelled batch 5) and an off-

specification batch (batch 12). Fig. 3 shows the information to be submitted to the DF-MSPC 

model, i.e., Tbed, Tin, and Tout and M %, 𝑇DEF,GHI
"  and 𝑄DEF,GHI  for validation batches 5 and 12 during 

the drying process. 

 

Fig. 3 Information to be analyzed by the DF-MSPC model for two validation batches a) Batch 5 (on-

specification) and b) Batch 12 (off-specification). Tbed, Tin and Tout are the temperature sensors readings placed at granules, 

inlet and outlet air, respectively MPLS % is the predicted moisture by PLS, 𝑻𝒓𝒆𝒅,𝑵𝑰𝑹
𝟐  and 𝑸𝒓𝒆𝒅,𝑵𝑰𝑹, are the process 

indicators obtained from MSPCNIR model . First 20 minutes are not shown because of unstable measurements at the 

beginning of the process 

Fig. 3(a) shows the information submitted to DF-MSPC for validation batch 5, 

considered to be on-specification. At the end of the drying process, the predicted moisture level 

(MPLS %) was found to be 1.8 %, the temperature readings were Tbed, 28.4 ºC, Tin, 28.8 ºC and Tout, 

25.8 ºC, and the MSPC indicators 𝑄DEF,GHI., 0.5, and 𝑇DEF,GHI
" , 0.2, both below the control limit 

set equal to one, indicating that the end-point was detected and the batch was considered 

correct. Batch 12 in Fig. 3(b) is an example of off-specification batch. At the end of the drying 

process, the predicted moisture level was 2.7 %, the temperature readings Tbed, 24.4 ºC, Tin, 25.0 

ºC and Tout, 22.9 ºC, respectively, and the MSPC indicators 𝑄DEF,GHI., 1.9, and 𝑇DEF,GHI.
" , 1.3, 

were both above the control limit set equal to one indicating that the batch did not reach the 

end-point and could be considered as off-specification. The main reason why the batch 12 did 

not reach the specification moisture level during the drying process time was because of the 

low inlet air temperature, about 4 ºC lower than in batch 5, which could be due to changes in 

the process environment or other uncontrolled causes. 
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The data fusion information from each validation batch, shown in Fig. 3, was submitted 

to the DF-MSPC model for end-point detection. To understand the better performance of the 

DF-MSPC model when compared with the MSPCNIR model, Figure 4 shows overlapped 𝑄DEF 

charts for both approaches. The blue line shows the evolution of 𝑄DEF,ST , derived from the DF-

MSPC model, and the dashed orange line the evolution of 𝑄DEF,GHI , derived from the MSPCNIR 

model, 

 

Fig. 4 Reduced 𝑸 (𝑸𝒓𝒆𝒅) MSPC charts for drying end-point detection using DF-MSPC model, 𝑸𝒓𝒆𝒅,𝑫𝑭 (solid 

blue curve) and MSPC model based on the sole NIR information, 𝑸𝒓𝒆𝒅,𝑵𝑰𝑹 (dash-dotted orange curve) for validation 

batches a) Batch 5 (on-specification) and b) Batch 12 (off-specification). 95 % CI reduced 𝑸 control limit is represented 

by the dashed red flat line equal to one. Inset plots show a zoom of the last minutes at the end of each batch drying 

process 

For batch 5, where moisture content reached the desired 2 % level, both data fusion and 

NIR-based control charts detected the end-point at approximately 60 min of drying time, as 

shown in Fig. 4(a). On the other hand, batch 12 did not reach the specified moisture level and 

both control charts did not detect the end-point during the entire batch duration, see Fig. 4(b). 

However, 𝑄DEF,ST. values, coming from the DF-MSPC model, diagnose significantly better off-

specification observations than 𝑄DEF,GHI., obtained using only NIR spectral information. This 

is clearly noticed during the last minutes of batch 12, where 𝑄DEF,ST. values are significantly 

higher and clearly further from the control limit than 𝑄DEF,GHI. values, as a consequence of 

including the information from process temperature in the DF-MSPC models. Moreover, for 

both batch 5 and 12, the use of DF-MSPC models also provides a much clearer difference 

between the 𝑄DEF,ST. values before and after moisture stabilization than the 𝑄DEF,GHI. values, 

being the decrease of the 𝑄DEF,ST curve always much steeper than that of 𝑄DEF,GHI. 
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In off-specification situations, it is also important to observe the contribution plots 

associated with the abnormal observations to understand the causes of the process malfunction. 

The contribution plot of observation at 100 min of drying batch 12 related to the 𝑄DEF,ST  DF-

MSPC chart is shown in Fig. 5 (bar plot in orange). To compare with the residual level of an 

on-specification observation, the contribution plot related to the observation at 95 min of batch 

5 is shown as well (bar plot in blue). It was observed that the main contributions to the high 

𝑄DEF,ST. values of batch 12 are the high 𝑄DEF,GHI. and high MPLS % prediction for moisture 

content. Indeed, the moisture content is higher than expected in on-specification values and, as 

a consequence, the residual related to the spectral shape expected at the end point (represented 

by 𝑄DEF,GHI.	 from MSPCNIR model) is also higher. Fig. 5 also indicates that the temperature 

readings gave low contribution to the residuals, but the absolute value was higher than their 

contribution to batch 5 observation. The negative temperature contribution of batch 12 is in 

line of the fact that Tin at 100 min was lower than the expected temperature at the end-point 

stage of a NOC dry batch and, such a fact, caused the lower values for the related Tbed and Tout. 

 

Fig. 5 Residual contribution plots related to the observations at 95 min for batch 5 and 100 min for batch 12 

evaluated with the DF- MSPC model for drying end-point detection 

In this example, both types of MSPC models have shown satisfactory performance for 

the detection of on- and off-specification situations. However, end-point control charts based 

on the DF-MSPC model provide a much clearer diagnostic of on- and off-specification 

situations and include all available process information, i.e. sensor and model outputs. 

4.2. Process 2: Polyester production process 

The singularity of this example is that, in this case, the data fusion concept is understood 

as the fusion of several model outputs coming from a single NIR sensor. In this process, the 

task of end-point detection should be applied to two different reaction stages and, therefore, 

two separate DF-MSPC models are built. The information for each DF-MSPC model comes 
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from two PLS models for prediction of acid number (AVPLS) and viscosity (VPLS) and one MSPCNIR 

model for end-point detection, providing the 𝑇DEF,GHI
"  and 𝑄DEF,GHI  process indicators (see Fig. 

1(a)). Acting in this way, key process parameters were used together with general unspecific 

NIR information linked to other physicochemical aspects of the end-point process stage. The 

two PLS models were built using the in-line NIR spectra related to off-line AV and V reference 

measurements from samples taken during the production process of calibration batches. 

Meanwhile, the NIR-based MSPC models were built with NIR spectra from the last 15 minutes 

measurements at the end-point from each process stage to define properly the process stage to 

be controlled. Details of the polymerization process and the results describing the quality of 

PLS models for the determination of AN and V and the use of MSPCNIR models for end-point 

detection for the two stages of the process were discussed in a previous work [23]. 

The DF-MSPC models linked to the end-point of the two reaction stages were built 

using information of NOC batches, as shown Fig. 1(a). Thus, outputs from PLS models (AVPLS 

and VPLS) and from the end-point detection MSPCNIR model, 𝑇DEF,GHI
"  and 𝑄DEF,GHI , were 

combined into a data fusion matrix that was further autoscaled before model building. 

The two DF-MSPC models related to end-point detection of each of the reaction stages 

were validated using real-time observations compressed in the same way as shown in Fig. 1 (a) 

for new batches. Fig. 6 shows the information from PLS and MSPCNIR models for three 

validation batches of the polymerization process (labelled batch 10, 11 and 13), used to show 

three different situations encountered in the batch polyester production process. Because of the 

presence of solids in the reaction, which caused spectra saturation, the information in Figure 6 

is omitted for the first 12 to 15 hours of the first reaction stage and for approximately one hour 

between stage transitions. 

Batch 10, shown in Fig. 6(a), represents a batch in which only the first stage of the 

process reached the end-point specification. The first stage ended at approximately 21 h of 

process time; at this point, AVPLS and VPLS were 9 mg KOH/g and 12 P, respectively, and 𝑄DEF,GHI , 

0.4, and 𝑇DEF,GHI
",

, 0.2, both below the control limit equal to one, where  the batch was considered 

on-specification. On the other hand, the second stage was terminated at approximately 23.5 h, 

but did not meet the desired specifications. At this time AVPLS and VPLS were 62 mg KOH/g and 

32 P, respectively, and 𝑄DEF,GHI  and 𝑇DEF,GHI.
" , 10.2 and 0.6, respectively. Although the 

predictions of process key properties were within the targeted ranges and 𝑇DEF.
"  below the 

control limit, the high 𝑄DEF. value indicates the off-specification situation of the NIR 
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observations at the end of the second stage of batch 10, which was afterwards confirmed 

through off-line determinations of the end-product. 

 

Fig. 6 Information to be analyzed by the DF-MSPC model from the polyester production process validation 

batches (a) Batch 10 (1st stage on-specification, 2nd stage off-specification), (b) Batch 11 (1st stage off-specification) and 

(c) Batch 13 (1st and 2nd stages on-specification). AVPLS /mg KOH g-1 and VPLS /P are represented by blue solid and dashed 

curves (left axis), respectively. 𝑸𝒓𝒆𝒅,𝑵𝑰𝑹. and 𝑻𝒓𝒆𝒅,𝑵𝑰𝑹
𝟐 , are represented by orange solid and dashed curves, respectively 

(right axis) 

Batch 11 was terminated before completing the first stage because of gel formation 

inside the reactor. The related data fusion information is shown in Fig. 6(b). At approximately 

14.5 h of process time, AVPLS, 8 mg KOH/g and VPLS, 1 P, and 𝑄DEF,GHI., 28.6 and 𝑇DEF,GHI
" , 18.1, 

both above the control limit indicating that indeed batch 11 did not reach the end-point 

specification. 

Batch 13 reached the end-point specifications for both process stages and the related 

information is shown in Fig. 6(c). The first stage ended at approximately 16.5 h of the process 

time; at this point AVPLS was 10 mg KOH/g and VPLS, 12 P. 𝑄DEF,GHI., 0.2, and 𝑇DEF,GHI.
" , 0.3, were 

both below the control limit indicating that the MSPCNIR model detected the process stage end-

point and the batch was considered on-specification. The second stage was completed at 

approximately 20.5 h with AVPLS and VPLS of 50 mg KOH/g and 35 P, respectively, and 𝑄DEF,GHI. 

and 𝑇DEF,GHI
" , 0.3 and 0.1, respectively, which indicate that batch 13 was considered on-

specification for both process stages. 
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Fig. 7 𝑸𝒓𝒆𝒅 MSPC charts for polymerization process stage end-point detection using DF-MSPC model (solid 

blue curve) and MSPCNIR model (dashed orange curve) for validation batches a) Batch 10 (1st stage on-specification, 2nd 

stage off-specification), b) Batch 11 (off-specification) and c) Batch 13 (1st and 2nd stages on-specification). 95 % CI 𝑸𝒓𝒆𝒅 

control limit is represented by the dashed red flat line equal to one. Inset plots show a close view of the last minutes at 

the end of the 1st stage from batches 10 and 11 and the end of both stages for batch 13 

The information shown in Fig. 6 for each validation batch was submitted to the related 

stage end-point detection DF-MSPC model. Fig. 7 shows overlapped 𝑄DEF charts for the DF-

MSPC model (blue line) and the MSPCNIR model (orange dotted line). 

Fig. 7(a) shows the MSPC control charts for batch 10, which met the end-point 

specifications only for the first stage, as indicated by the low 𝑄DEF < 1 values at approximately 

21 h of process time in both DF-MSPC and MSPCNIR control charts. For the second stage, after 

22 h of process time, 𝑄DEF values were above the control limit in both control charts, but clearly 

higher when using the DF-MSPC model as a consequence of including the explicit predictions 

of product quality parameters, i.e. AV and V, in the model. Batch 11 represents a faulty batch 

in the first process stage and no end-point was detected in batch 11 control charts shown in Fig. 

7(b). 𝑄DEF,ST. values obtained from DF-MSPC models were extremely higher and further from 

the control limit that 𝑄DEF,GHI. values issued from MSPCNIR models, which can only be seen when 

the control charts are represented in a log-scale, as shown in the inset graph of Fig. 7(b). 

Conversely to batches 10 and 11, batch 13 was found to be a NOC batch and, therefore, both 

process stages reached the end-point specifications, see Fig. 7(c). Both DF-MPSC and MSPCNIR 
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control charts detected the batch end-points at approximately 16 h and 20 h of process time for 

the first and second stages, respectively, see inset of Fig. 7(c). 

Like in Process 1, end-point control charts based on the DF-MSPC model provide a 

much clearer diagnostic of on- and off-specification situations for both polymerization process 

stages. This conclusion seems to point out that using compressed and interpretable NIR 

information, such as key properties and process evolution indicators, seems to be more efficient 

than the mere use of direct NIR spectral information for process control. 

4.3. Process 3: Gasoline Distillation 

This example shows a different combination of temperature and NIR sensor model 

outputs for process evolution control and is the clearest example of combination of integral 

process modeling (as provided by the C profiles from MCR-ALS, see section 3.2.) and process 

control. In this case, NIR observations from NOC distillation batches were modelled with 

MCR-ALS, which provided distillation profiles (C) and NIR spectral signatures (ST) for the 

four different fractions distilled in the gasoline system studied. The four distillation profiles 

from the MCR-ALS C matrix were combined with the related boiling temperature 

measurements from each batch as shown in Fig. 1(c). The data fusion matrix from NOC batches 

was hereafter used to build local on-line batch DF-MSPC models based on the fixed sized 

moving window (FSMW) strategy described in [7]. 

Local on-line batch MSPC models were built as described in reference [7]. In this 

process, the information per batch observation is formed by five values, the four concentration 

values of the distilled fractions and the related distillation temperature. To control the process 

evolution, as many local DF-MSPC models as process observations are built, each one 

representing the variability allowed per each process observation by taking as initial 

information the observation at a particular distillation stage (% distilled mass fraction) and a 

window of 15 neighbouring observations. 
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Fig. 8 Information related to gasoline distillation batch 11 (on-specification gasoline). a) Top plot: distillation 

temperature; bottom plot: concentration profiles of distilled fractions; batch 11 information (solid line curves), NOC 

batches information (thin dashed line curves are the average and the related ± 2 standard deviation bounds are the 

shaded area). b) 𝑸𝒓𝒆𝒅,𝑵𝑰𝑹 control charts from DF-MSPC models (solid blue curve) and from MSPCNIR model (orange 

dashed curve) models using the FSMW on-line MSPC strategy 

Fig. 8(a) and Fig. 9(a) show the information (distillation curve and NIR-based MCR 

concentration profiles of distilled fractions) for the NOC batches used to build the local DF-

MSPC models and for two validation batches submitted to the local DF-MSPC models for 

testing. In both Figures 8 (a) (showing an on-specification batch) and 9 (a) (showing an off-

specification batch), the information from the validation batches is represented in solid lines. 

Instead, the behaviour of NOC distillation batches used for DF-MSPC model building is shown 

through a thin dashed line and a colour band surrounding it that represents the NOC average ± 

2 standard deviation bounds. 



21 

 

 

Fig. 9 Information related to gasoline distillation batch 22 (off-specification gasoline). a) Top plot: distillation 

temperature; bottom plot: concentration profiles of distilled fractions; batch 22 information (solid line curves), NOC 

batches information (thin dashed line curves are the average and the related ± 2 standard deviation bounds are the 

shaded area). b) 𝑸𝒓𝒆𝒅,𝑵𝑰𝑹 control charts from DF-MSPC models (solid blue curve) and from MSPCNIR model (orange 

dashed curve) models using the FSMW on-line MSPC strategy. y-axis is represented with log10 scale 

Batch 11 is a distillation batch from an on-specification gasoline, i.e. contains 27 % of 

ethanol. As depicted in Fig. 8(a), the output from the boiling temperature sensor and the 

distillation C profiles obtained from NIR spectra by MCR-ALS indicate that it follows the 

expected NOC behaviour. On the other hand, Figure 9 (a) shows the information from the off-

specification batch 22, with 35 % of ethanol, which clearly shows the deviation from the NOC 

behaviour after 15 % distilled mass fraction. 
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The related data fusion information from each validation batch, shown in Fig. 8(a) and 

Fig. 9(a), was submitted to the related local DF- MSPC models. For comparison, Fig. 8(b) and 

Fig. 9(b) show the control charts obtained for each validation batch when using the local DF-

MSPC models (blue line) or the MSPCNIR models (orange dotted line). Please note that the 

𝑄DEF,ST  and 𝑄DEF,GHI  value associated with every observation in Figures 8(b) and 9(b) comes 

from a different local DF-MSPC or MSPCNIR model, respectively, as described in detail in [7]. 

In this example, the x-axis in the control charts refer to % distilled mass fraction and 𝑄DEF 

values need to be always below one to indicate that the process evolves correctly. One or more 

values above one indicate that, in those particular process stages, the new batch does not 

proceed as NOC batches. 

Fig. 8(b) shows that all 𝑄DEF values related to process observations in batch 11 (on-

specification gasoline), issued from DF-MSPC and MSPCNIR models, are below the control 

limit, which agrees with the results shown in Fig. 8(a). Moreover, as observed in the previous 

examples, the overall 𝑄DEF,ST  values are lower than 𝑄DEF,GHI  values, indicating more clearly 

the on-specification scenario. On the other hand, control charts for validation batch 22, which 

contains 35 % of ethanol, showed the deviation from the NOC batch distillation behaviour 

using 𝑄DEF,ST  or 𝑄DEF,GHI  values in Fig. 9(b). However, faulty observations were detected 

earlier when using the DF-MSPC models, which coincides with the deviation observed after 

13 % from the NOC MCR-ALS distillation profiles in Fig. 9(a). Furthermore, 𝑄DEF,ST  values 

obtained when data fusion information was used were, in general, higher than 

𝑄DEF,GHI 			confirming the more efficient diagnostic for faulty observations of data fusion 

models over those using pure NIR information. 

Although the detection of on- or off-specification distillation batch is clear in Figures 8 

(a) and 9 (a) when looking at the distillation temperature plot and the concentration profile plot, 

control charts based on the DF-MSPC approach provide a much clearer diagnostic of on- and 

off-specification situations based on a multivariate statistical approach considering not only 

each individual variable but their interactions as well. Ref. [7] shows that off-specification 

situations in batches where the nominal concentration of faulty batches was much closer to the 

NOC composition were equally identified as non-acceptable. Like in the previous examples, 

using compressed and interpretable NIR information obtained from MCR-ALS decomposition 

combined with temperature sensor information is more efficient than the mere use of direct 

NIR spectral information for on-line batch process control. 
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In this particular scenario, the use of MCR results could have also been done selecting 

only some of the profiles, related to key fractions in the distillation process, to be submitted to 

the DF-MSPC model. This possibility is generalizable to any reaction process modelled by 

MCR, where not all concentration profiles would be necessarily included in the MSPC model, 

but only those related to critical components in the process evolution. The option of selecting 

a particular part of the NIR-based information would be completely impossible if non-

compressed NIR spectra or PCA-based scores were taken as original information for MSPC 

models. 

5. Conclusions 

This work provides a relevant contribution to the current data fusion PAT strategies for 

the development of MSPC models combining all available process related information. In this 

sense, data fusion strategies extend to incorporate the combination of outputs from multivariate 

models coming from the same sensor or the combination of these model outputs with other 

process variable sensors. In this way, modelling and measurement tasks linked to the same 

process are considered altogether for the process control diagnostic. This concept has been 

illustrated with data fusion-based MSPC models for three different PAT applications. 

Multivariate spectral information was compressed by means of multivariate models into 

process meaningful information such as key process quality parameters from PLS, 

concentration profiles from MCR-ALS or statistical process parameters according to each 

application. DF-MSPC models based on the different strategies were successfully validated for 

batch process end-point detection and on-line batch statistical process control. In all process 

examples, the data fusion methodologies have shown a high performance at detecting on- and 

off-specification batch situations and the model outputs used, much more interpretable than 

compressed abstract scores, were clearly helpful to identify the sources of process 

abnormalities. 

The presented strategies could be extended to other industrial and bioprocess 

applications where dealing with several process outputs derived from multivariate and 

univariate sensors for building statistical process control are envisioned. The combination of 

modelling outputs used in the DF-MSPC models is very flexible and can be tailored according 

to the relevant information, e.g., key properties, evolution of one or more process compounds 

of the process under study. In this way, only the relevant information related to the multivariate 
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sensor measurement is used for process control and a more efficient and interpretable 

information on process performance is provided. 
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