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Abstract: Wind power industry has developed rapidly in China, however the effect of wind power 

projects on ecosystem is far from clearly understood. The objective of the current study is to evaluate 

the negative impact of wind power plants on ecosystem. In this research, Least-cost distance (LCD) 

and Least-cost path (LCP) models were employed to establish potential ecological corridors based 

on the resistance at the site of the wind power projects, which is located in the ecological function 

area in Qinyuan, South Shanxi Province, China. Landscape connectivity was evaluated using a set 

of connectivity indices. In addition, the impacts on corridor patency, length and connectivity 

between ecological corridors were analyzed. The results showed that the wind power projects could 

not only significantly increase the migration resistance that hampers the formation of ecological 

corridors of the species at landscape scale, but also have an obvious cutting effect on the landscape, 

resulting in the increase in the length of the ecological corridors and the decrease in corridor patency 

and landscape connectivity. The average increased corridor length was 95 km. There was also a 

positive relationship between length increase and the distance between source patches. In addition, 

the connectivity was enhanced with the increase in distance threshold. This study evaluated the 

ecological impacts of onshore wind power projects at the landscape level, filling the gap in such 

research on landscape ecology, especially in the key ecological function protected area. Meanwhile, 

the results are beneficial to guide the selection of wind power projects location and minimize the 

negative impact on the key ecological corridors. 
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1. Introduction 

China’s economy has developed rapidly in the last four decades with cost of degradation of 

ecology and environment (Yang et al., 2012; Yang et al., 2014a). The root cause for the ecosystem 

degradation is the heavily relying on fossil energy, particularly coal (Han et al., 2018). At present, 

China is still in the process of rapid urbanization and industrialization, and the demand for energy 

continues to grow. How to maintain the balance between rapid economic growth and environmental 

protection has been a big challenge for China (Yang, 2014; Yang et al., 2013). In the last decade, 

China has made great efforts to reverse the environment degradation. One of the most important 

measures is to gradually reduce coal consumption and increase the use of nonfossil energy, 

reshaping the energy structure of China (Dai et al., 2016; Yang et al., 2016; Yang et al., 2017). 

Wind power is one of important renewable energies. With the increasing demand of energy, 

wind power is considered to be a promising renewable energy as a result of its technical maturity, 

low cost, flexible installation, simple operation, less land occupation and little pollution (Hepbasli 

et al., 2004). In China, wind power industry has developed rapidly duo to technological progress, 

power guiding policies, and improved energy price mechanism (Feng et al., 2015; Sun et al., 2015). 

Along with the expansion of wind power industry, there are many researches on wind power 

technology (Khosravi et al., 2018; Zhao et al., 2015; Zhou et al., 2010), industrial development 

(Alexandre et al., 2012; Luo et al., 2016; Zhao et al., 2013), policy recommendations (Kang et al., 

2012; Liu et al., 2010; Wolsink, 2010), and economic analysis on the investment and operation (Li 

et al., 2013). 

However, there are potentially adverse environmental and ecological impacts of wind power 

projects, which should not be overlooked (Leung et al., 2013). The low frequency noise generated 

by the turbine rotation can cause detrimental impacts on human and other organisms (Laratro et al., 

2014; Wasala et al., 2015). The lights and shadows have visual impacts on the local communities 

(Juan et al., 2004). The turbine blades can cause interference to radio signals (Mroziński et al., 2015). 

Researches on the ecological impacts of wind power projects mainly focused on the influence on 

animals and plants (Escobar et al., 2015; Welcker et al., 2016; Whang et al., 2015). The impacts 

may be direct, such as mortality caused by rotating turbines (Peste et al., 2015; Wang et al., 2015), 

or indirect, such as damage on foraging and breeding caused by habitat loss (Braunisch et al., 2015; 

Law et al., 2018; Madsen et al., 2008; Pescador et al., 2019). Moreover, the operation of the wind 

farm can affect vegetation species and biomass (Fagúndez, 2010). 

In particular, it is worth noting that construction of wind power projects changed the original 

landscape. Landscape pattern determines the landscape characteristics, such as spatial heterogeneity, 

landscape diversity, landscape connectivity and so on (Cook, 2002; Peng et al., 2015). Landscape 

process refers to the circulation and migration of internal and external material, energy, information, 

as well as the evolution of landscape system (Klunder, 2004). The impacts of wind power projects 

stem from substance retrospection above the landscape scale, which is crucial for ecological corridor 

construction, the maintenance of ecosystem function and regional ecological security (Skarin et al., 

2015). The fragmentation of the landscape pattern causes the material flow, the information flow 

and the species flow to be blocked, affecting the ecological process in the horizontal direction of the 

landscape and damaging landscape (Liu et al., 2005). 

The environmental impact of wind power projects can be analyzed using Geographical 

Information System (GIS) methods. GIS-based spatial models have been applied to effectively 

assess the impact of wind farms on animal behavior and habitat (Roscioni et al., 2013). GIS-assisted 
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approaches have also been developed and applied to predict and evaluate visual impact of wind 

farms (Molina-Ruiz, 2011). In addition, GIS-based approaches can be used for wind resource 

assessment as well as for its planning to support the decision-making process by taking into account 

comprehensive factors that covered geological characteristics, economic cost and environmental 

constraints (Haaren et al., 2011; Li, 2018; Siyal, et al., 2015). With the development of GIS 

technology, Least-cost distance (LCD) and Least-cost path (LCP) models have been increasing 

applied to quantitatively research the ecological corridors, landscape connectivity, ecological 

network construction, conservation planning and so on (Avon et al., 2016; Barrows et al., 2011; 

Rabinowitz et al. 2010). Ecological corridors are land linkages to facilitate wildlife migration 

between green spaces, and to enhance landscape connectivity to promote dispersal and other types 

of movement (Balbi et al., 2019; Zhu et al., 2005). The field observation has confirmed that 

migration corridor and habitat connectivity for some species have been disrupted owing to 

construction of onshore wind power projects (Francis et al., 2018; Roscioni et al., 2014; Skarin et 

al., 2015). However, little has been known about the potential effect on ecological processes caused 

by fragmentation at landscape scale. Therefore, it is still very important for a quantitative ecological 

impact analysis of wind power projects at a large scale, coupling ecological corridor with landscape 

connectivity, which would be necessary for the trade-off between wind power development and 

ecological conservation. 

Shanxi Province, which is located in the eastern part of the Loess Plateau and borders on the 

southern part of Inner Mongolia with many hills, deep valleys and rugged terrain, has abundant 

wind energy resources due to its geomorphological conditions (He et al., 2014). As one of the largest 

energy bases in China (Cao, 2017), Shanxi Province has been aggressively pursuing optimization 

of energy structure to mitigate serious environmental pollution and ecological damages (Li et al., 

2018; Wei et al., 2018; Yang et al., 2012) from high dependence on fossil energy. In recent years, 

large-scale centralized wind farms have been built in Shanxi (Wang et al., 2018). By the end of 

2017, the total installed wind power capacity in Shanxi was 8.72×106 kW, accounting for 11% of 

electricity installed capacity. The target for wind power development in 2020 has been set to 16×106 

kW, nearly double the amount in 2017 (Zhou et al., 2018). Although environmental impact 

assessment is required for the wind farm project, the impact on ecological corridor and landscape 

connectivity is largely over simplified or even ignored. Hence increasing understanding of the 

ecological corridor and landscape connectivity is still necessary to provide a macro-perspective 

ecological impact analysis at landscape scale. 

This study made the effort to fill the gap of the impact of wind power projects on ecological 

corridor and landscape connectivity in Shanxi Province, especially in the key ecological function 

protected area. The main research aims of the current study are: (1) to estimate the effects of wind 

power projects on ecological corridor by simulating corridor construction process under multiple 

influence factors in the selected built-up wind power area; and (2) to explore the landscape 

connectivity affected by wind power projects based on estimating relevant connectivity indices by 

using resistance distance. 

The rest of the paper is organized as follows. In Section 2, two important approaches – selecting 

origination of landscape process, and determining the distribution of resistance surface with multiple 

factors including wind farms – were used as the basis for applying LCD and LCP methods to assess 

the ecological corridor and landscape connectivity. In Section 3, the spatial distribution 

characteristics of research region were presented, and status of ecological corridor patency, corridor 
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length and landscape connectivity in the area before and after the construction of wind power 

projects were compared, as a key criterion to assess the changes of the migration routes and 

landscape connectivity. In Section 4, the reasons for the adverse effect on landscape ecological 

indicators caused by onshore wind power were discussed, and some suggestions to mitigate the 

impacts were proposed. 

 

2. Material and Methods 

2.1 Study Area 

The Taiyue Mountain Wind Power Project with a capacity of 250MW is located in the north 

of Qinyuan County of Shanxi Province, China (36°51′N, 112°3′E) (Fig. 1). The project was 

proposed in 2010 and went into operation in 2014. The study area, including turbines and roads and 

buffer area within 2 km, covers an area of 165.68 km2 and reaches a height of around 2100 m above 

sea level (asl). The average annual wind speed is 7.2 m/s and the wind power density is 319 W/m2, 

showing large potential for developing wind power plants. The study area is located in the warm 

temperate semi-arid and semi-humid continental monsoon climate zone, with annual mean 

temperature of 8.6℃ and annual average precipitation of 656.7 mm. The main soil type is mountain 

meadow soil and the main types of vegetation are short grasses and alpine plants (Zhang, 2016). 

The Taiyue Mountain Wind Power Project is the first wind power project to be built and put 

into production in the southeast of Shanxi Province. The study area is located in the ecological 

function area for water conservation, which is one of the most typical subalpine meadows in Shanxi 

Province. In addition, the wind power project lies in the experimental area of Mianshan Nature 

Reserve (Fig. 2). Due to its ecological importance, this area was selected to assess the ecological 

impact of the wind power projects. 

 

2.2 Data 

Landsat TM images with a resolution of 30 m during the research period of 2005-2017 obtained 

from the Geospatial Data Cloud (http://www.gscloud.cn/search) were used to analyze the NDVI 

(Normalized Difference Vegetation Index). NDVI indicates the amount of green vegetation present 

in the pixel by measuring the difference between near-infrared which vegetation strongly reflects 

and red light which vegetation absorbs. Higher NDVI values denote more green vegetation in the 

pixel. The Landsat TM images in 2005 and 2017 were classified into different land use types. The 

locations of wind turbines and the distances from the turbine were obtained from the Landsat TM 

images in 2017. These images were processed using ENVI (The Environment for Visualizing 

Images) Version 5.0 (Esri, Redlands, CA). The slope and relief were obtained from GDEM Product 

(Global Digital Elevation Model) from the Geospatial Data Cloud 

(http://www.gscloud.cn/sources/?cdataid=302&pdataid=10), with a spatial resolution of 30 m. 

Daily precipitation data was provided by Shanxi Meteorological Station and calculated by using 

Kriging interpolation in ArcGIS 10.2 (Esri, Redlands, CA). The vegetation coverage was calculated 

based on NDVI as follows: 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛                     (1) 

where NDVImin and NDVImax represent the minimum and maximum value of NDVI, 

respectively. 
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2.3 Methods 

The methodology of this research is schematically illustrated in Fig. 3. Firstly, to identify the 

starting point of ecological expansion, the source patches were selected based on variation trend 

analysis of NDVI. Secondly, ArcGIS was applied to build a landscape resistance surface that 

synthesised the multiple factors affecting landscape process in the wind farms. Thirdly, LCD and 

LCP methods were used to establish the ecological corridors derived from source patches and the 

landscape resistance surface. A connectivity analysis was also performed using a set of connectivity 

indices based on resistance of corridors. Finally, the effects of the wind power projects on ecological 

corridor and landscape connectivity were assessed based on corridor patency, corridor length and 

connectivity indices. 

 

2.3.1 Selection of source patches 

In landscape ecology, the source patches are basic units that can promote the development of 

landscape ecological process (Leitao et al., 2002; Sun et al., 2018). In general, the high vegetation 

cover area can provide more suitable habitats which are important for wildlife survival (Jiménez-

Alfaro, et al., 2016). In order to study species migration process in the areas with good vegetation 

cover which can be indicated by NDVI, the pixels with an increase trend in NDVI that linked up 

with each other to form a continuous area rather than emerged dispersedly, were selected as the 

sources by outlined with closed curve. 

Monadic linear regression trend analysis can simulate the changing trend of each grid, 

reflecting the spatiotemporal variations of the whole area. The change trend of NDVI was evaluated 

by using the following Monadic linear regression equations (Stow et al. 2003): 

 S = 𝑛×∑ (𝑖×𝑁𝐷𝑉𝐼𝑖)−(∑ 𝑖)(∑ 𝑁𝐷𝑉𝐼𝑖𝑛𝑖=1 )𝑛𝑖=1𝑛𝑖=1 𝑛×∑ 𝑖2𝑛𝑖=1 −(∑ 𝑖𝑛𝑖=1 )2                               (2) 

 

where S is pixel’s NDVI change rate; n is total years, i is an annual sequence; NDVIi is NDVI 

value in the year of i. S can reflect the improvement or degradation of NDVI. S > 0 indicates the 

increase in NDVI with time; the larger the value is, the more apparent the improvement is. On the 

contrary, S < 0 indicates the decrease in NDVI with time. 

 

2.3.2 Determination of resistance surface 

Resistance surfaces are the basis for modeling connectivity and designing conservation 

initiatives (Zeller et al., 2012). Different methods can be used for quantifying resistance surface. In 

order to avoid the risk of oversimplification, a range of indicators were used to calculate migration 

resistance. 

Land cover type and topography are two basic factors affecting the landscape (Diffendorfer et 

al., 2014). Slope and topography are the resistance factors affecting vegetation growth (Zhao et al., 

2014). In addition to the direct impact on the natural environment, noise pollution and visual impact 

caused by the wind power projects affect species migration. The low frequency noise and shadow 

on the ground generated by the rotation of the turbines have negative impacts on ecosystem (Juan 

et al., 2004; Laratro et al., 2014; Wasala et al., 2015). The species needs to keep a certain distance 
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far from the turbines to avoid the negative impacts. Based on these, the land use type, slope, relief, 

vegetation coverage, the impact on vegetation, noise pollution, and visual impact were selected as 

factors in the assessment of migration resistance. 

Vegetation growth can be affected by climate change and human activity. Wind power projects, 

as a kind of human activity, has a certain level of impact on vegetation. In order to assess the impact 

of wind power projects on vegetation, the impact of climate change needs to be eliminated. The 

residual analysis method, proposed by Evans and Geerken (2015), was used to conduct regression 

analysis of the NDVI and climate indicators for each pixel for obtaining the prediction value of 

NDVI, which can be considered as the effect of climate factors on NDVI. Then, the vegetation 

influenced by human activities was calculated as the difference between the real NDVI value and 

predicted NDVI value as follows: 

 𝜀 = 𝑁𝐷𝑉𝐼𝑟𝑒𝑎𝑙 − 𝑁𝐷𝑉𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑                        (3) 

 

where 𝜀 is residual value of NDVI for each pixel. 𝜀 > 0 indicates a positive impact of human 

activities; 𝜀 = 0 means no impact; and 𝜀 < 0 suggests a negative impact. NDVIreal is the real NDVI 

value of the pixel, which was obtained from Landsat TM images. NDVIpredicted is the NDVI value 

which was predicted by the linear regression equation between NDVI and climate indicators. Since 

the study area is located in mountain region with water limitation, the main factor reflecting climate 

characteristics is precipitation and NDVI change is largely correlated with precipitation (Zhao et al., 

2011). 

According to the in situ survey of the wind power projects, the blade length of the turbines is 

about 45 m. The shadows of different lengths are formed on sunny days. Considering the effect of 

the noise, a safe distance between the wind turbines and residential areas or roads should be at least 

200 m (Wang, 2011). The attenuation effect of the turbines noise in the air is mainly related to the 

propagation distance. With attenuation, the noise contribution value at  500 m from the turbines is 

less than the minimum noise level in the night (Wang, 2011). Therefore, the noise pollution and 

visual impact can be calculated by the distance from the turbine. 

For a landscape factor, the resistance value was determined according to the different degrees 

of impacts on migration. Table 1 summarizes the relative resistance values of different landscape 

factors. Within the resistance value range of 1-100, the species move freely when the resistance 

value is close to 1; however, they cannot move when the value is close to 100. The resistance value 

of forest was the smallest, followed by grassland, farmland, and construction land. The larger slope 

and relief are, the greater the resistance value is. 

The comprehensive analysis was performed to synthesize the spatial layers of each factor by 

running ArcGIS. Each resistance factor was classified using the reclassify tool and the 

corresponding resistance value was assigned to each landscape unit for each factor layer. The 

resistance surface was determined by overlaying these factors layers together. 

 

2.3.3 Establishment of ecological corridors by Least-cost distance and Least-cost path 

The relationship between landscape pattern and ecological process is the core of landscape 

ecology (Fu et al., 2011). The landscape pattern and the spatial combination characteristics of 

different landscape elements are relatively static in the certain period of time, but the real ecological 

process can be dynamic in the same period. Source-sink landscape theory breaks through the 
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limitation in the traditional sense, which makes the landscape pattern dynamic and reflects both the 

influence of the pattern on the process and the effect of the process on the pattern (Chen et al., 2003; 

Chen et al., 2008). The approaches for regulating the ecological process were analyzed based on the 

the spatial balance of the "source" landscape. The extension of species to the surrounding is the 

competitive control of land use, which must be achieved by overcoming the resistance, so the 

resistance surface can reflect the spatial trend of species migration. With the advantage of evaluating 

the landscape spatial patterns by analyzing the effects of different landscape types on the target 

species, LCD and LCP have been applied to evaluate the impact of different land use types on the 

ecological flow (Balbi et al., 2019; Chetkiewicz et al., 2009). Similarly, LCD and LCP models were 

used to establish ecological corridors based on resistance surface in this study (Walker et al., 1997). 

LCD is the accumulated cost distance of the most likely route where an individual would take 

to move between two habitat patches (Walker et al., 1997). Since many factors affect species 

migration, a range of distances rather than only one is used, causing variation in species dispersal 

distances (Adriaensen et al., 2003). In the LCD model, a single path of the least resistance between 

two nodes is identified based on the resistance surface (Adriaensen et al., 2003). All paths between 

two habitat patches are used to calculate resistance distance, which represents the effective distance 

separating the two habitat patches for a species (Ayon et al., 2016). Resistance distance has been 

widely used to evaluate functional landscape connectivity between patches (Avon et al., 2016; 

Rabinowitz et al. 2010; Richard et al., 2010). In addition, LCP is the single path for a species to 

move between two source patches.  

Both LCD and LCP methods were performed in ArcGIS 10.2. In LCD model, cumulative cost 

from each pixel to the nearest source was obtained by inputting source patches and resistance surface 

achieved before. As a further calculation based on LCD, LCP identified a single path of the least 

cost connecting every two source patches based on cumulative cost. The paths were the potentially 

ecological corridors. 

 

2.3.4 Assessment of landscape connectivity  

The connectivity of each habitat patch in the network was assessed using a measure of the 

relative change in the integral index of connectivity (IIC) and probability of connectivity (PC) 

(Pascual-Hortal and Saura 2006; Saura and Pascual-Hortal 2007) following the equations: 

 IIC = ∑ ∑ 𝑎𝑖×𝑎𝑗1+𝑛𝑙𝑖𝑗𝑛𝑗=1𝑛𝑖=1 𝐴𝐿2                                     (4) PC = ∑ ∑ 𝑎𝑖×𝑎𝑗×𝑃𝑖𝑗𝑛𝑗=1𝑛𝑖=1 𝐴𝐿2                                 (5) 

 

where ai and aj are the area of each habitat patch; nlij is the number of links in the shortest path 

(topological distance) between patches i and j; AL is total area; and Pij is the maximum product 

probability of all paths between patches i and j. If patches i and j are close enough, the maximum 

probability path will simply be the step between nodes i and j. If patches i and j are more distant, 

the maximum probability path will probably be composed of several steps through intermediate 

stepping stone patches.  

The impact of the wind power projects on landscape connectivity of core patches was evaluated 

by using equivalent connected area (ECA), including equivalent connected area of integral 
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connectivity (EC(IIC)) and equivalent connected area of probability connectivity (EC(PC)) using 

Conefor 2.6 (Saura and Torne, 2009). 

 

3. Results  

3.1 Spatial patterns of NDVI variation trend and resistance surface 

Fig. 4 and Table 2 show the statistical characteristics of NDVI changing trends during the 

period of 2005-2017. The variation trends were divided into serious degradation (S≤ -0.01), 

degradation (-0.01<S≤ -0.005), unchanged (-0.005<S<0.005), increase (0.005<S<0.01), and 

significant increase (S>0.01) according to S values. Approximately 59.35% of NDVI values 

remained basically unchanged, 26.69% of NDVI showed an increasing trend and 13.97% of NDVI 

showed a decreasing trend. 

NDVI values in the northern part of the study area were less affected by human activities and 

were in the growth period, showing an increasing trend. Despite the effect of human activities and 

climate change, the NDVI of shrub and grassland in the central and southern parts of the study 

remained largely unchanged during the study period. 

NDVI variation trend was related to the change of land use type. Table 3 and Fig. 5 show the 

different land use categories with and without the wind power projects. Forests, including deciduous 

broad-leaved forest, evergreen needle forest, and deciduous broad-leaved shrub, accounted 77.13% 

to the whole area in 2017. Grassland, including grass and meadow, accounted 14.10%. Farmland, 

residence land and industrial land areas accounted 3.04%, 0.09% and 5.64%, respectively. 

Compared with the pre-construction of the wind power projects in 2005, the area of the main 

patterns of land use in source patches, evergreen needle forest and deciduous broad-leaved forest 

increased in 2017, indicating the ecosystem in source patches was less impacted by the wind power 

projects. 

Fig. 6 shows the spatial distribution of different landscape resistance with and without the wind 

power projects. The resistance distribution is continuous and low resistance dominated in the study 

area without wind power projects. When the wind power projects were built, the resistance values 

were obviously stratified, and the largest resistance values appeared in the wind power projects area. 

 

3.2 Effects of wind power projects on ecological corridor and landscape connectivity 

Based on NDVI evaluation results, seven sources were identified in the study area. Considering 

ecological corridors with the least cumulative resistance, potential ecological corridors connecting 

every two source patches with and without the wind power projects were created based on LCD 

values (Fig. 7). There seven sources  in different locations throughout the study area. In order to 

maintain landscape connectivity and ensure that species can move smoothly between sources, every 

two source patches were connected by an ecological corridor. The overlap of ecological corridors 

with and without the wind power projects was small, indicating that the construction of wind power 

projects had changed the ecological corridors. 

 

3.2.1 Effects on corridor patency 

Fig. 8 shows the comparison of resistance increment resulting from with and without the wind 

power projects. The construction of the wind power projects reduced the corridor patency between 
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source patches, which is reflected in the increase in LCD values. Although the LCD values of one 

corridor decreased, this corridor does not go through the region of the wind power projects, 

indicating little impact of the wind power projects on this corridor. The average, minimum and 

maximum of LCD increased to 1019.66, 71.35 and 3557.43, respectively. The high resistance 

corridors generally crossed over the wind power projects, resulting in the enhanced reduction effect 

on corridor patency. 

 

3.2.2 Effects on corridor length 

Fig. 9 shows the comparison of corridor length increment between with wind power projects 

and without the wind power projects. The wind power projects lengthened most of corridors, thus 

increasing the migration distance. The length of one corridor decreased, while the lengths of others 

increased by different levels, the average increase is 95 km. The increase was related to the distance 

between the source patches. The farther the distance was, the larger the increase was. The distance 

between the source patches of no.1 and no.7 was the largest, which made the length of corridors 

increase by 119.460 km. A thorough change in the route between source patches of no.3 and no.5 

leaded to 6.5 times increase in the length. 

The relationships between reduction rate of corridor patency and increase rate of corridor 

length were expressed as P=0.268 L-24.804 and L=3.499 P+125.726, where P is reduction rate of 

corridor patency (%) and L is increase rate of corridor length (%). The determination coefficient (R2) 

is 0.937, indicating a well fitted linearly relationship. 

 

3.2.3 Effects on landscape connectivity 

Habitat network models were used to calculate a set of connectivity indices including EC(IIC) 

and EC(PC), using Conefor 2.6. Patch connectivity is related to the scales of different ecological 

processes, and the calculation of the connectivity index needs to specify the distance threshold for 

patch connectivity (Ramirez-Reyes et al., 2016). When the resistance distance exceeds the distance 

threshold, the two patches are not related; otherwise, they are related. According to the real LCD 

values, 1000, 3000, 5000 were set as the distance thresholds, representing weak, medium, and strong 

migration ability respectively (Table 4). Comparison between with and without wind power project 

indicates the construction of the wind power projects weakened the ecological processes of different 

migration abilities. The reduction rates of EC(IIC) under different distance thresholds were 25.09%, 

0.85%, and 0, respectively. The reduction rates of EC(PC) under different distance thresholds were 

11.06%, 3.91%, and 2.35%, respectively. The value of connectivity index increased gradually along 

with the growth of the distance threshold, indicating that the larger the scale of the ecological process 

was, the higher the connectivity of the same landscape was. 

 

4. Discussions 

4.1 NDVI variation trend and resistance surface characteristics 

LCD model was used to identify the ecological corridors in this study. In the application of a 

concrete model, source patches and resistance surface should be considered. The source patches 

were identified based on NDVI variation trend. Potential ecological corridors connecting source 

patches were calculated based on the resistance surface value. 
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Wind power projects not only include the large size of turbines (point projects), but also the 

associated infrastructure required to support an array of turbines, such as roads and electrical 

transmission lines (line projects). Although the land occupation of a turbine footing is small, the 

number of turbines is large and they span a wide range of area. The study area was located mainly 

in high-quality land for the growth of forest and meadow, the construction of the wind power 

projects unavoidably destroyed the original vegetation. Meanwhile, the construction of turbines and 

roads caused various levels of interference on the landscape structure, wildlife movement, and land 

use change in the surrounding areas (Fu et al., 2010; Loro et al., 2015; Obermeye et al., 2011; Shi 

et al., 2018). The range of interference may be further expanded with a large scale of development. 

As shown in Table 1, the resistance value was negatively correlated with vegetation coverage and 

distance from the turbine, so the construction of the wind power projects contributed significantly 

to the increased resistance. 

 

4.2 Effects of wind power projects on ecological corridor and landscape connectivity 

Ecological corridors can be the habitat of the wildlife, and they can act as a channel, source, 

sink, obstruction, and filter for biological movement with many functions such as biodiversity 

conservation, contamination filtration, erosion prevention and flood control (Forman, 1995; Zhu et 

al., 2005). As an industrial zone with fully-equipped infrastructure to support specified targeted 

industries, the wind power projects are not conducive for the formation of ecological corridors due 

to the lack of ecological function. In addition, the wind power projects, as point and linear landscape 

units, have an obvious cutting effect on the landscape (Kuvlesky et al., 2007; Obermeye et al., 2011). 

It cut the entire landscape into isolated patches, causing the extensive fragmentation of landscape 

and isolation of wildlife. Therefore, the wind power projects have negative impacts on ecological 

corridor patency, ecological corridor length and landscape connectivity resulting from the 

construction of turbines as well as infrastructure development, such as roads. 

On the one hand, the construction of the wind power projects altered the direction of the 

corridors between the source patches in the landscape, which hindered the migration and diffusion 

of the species (Kuvlesky et al., 2007), leading to the reduction in corridor patency. On the other 

hand, the construction of the wind power projects also changed the landscape structure and 

weakened the species exchange among the patches. A species can move a larger geographical 

distance through permeable landscapes than through high resistance landscapes (Avon and Berges, 

2016). When the species has to migrate over high resistance areas, the corridor length increases at 

the same time. Our results confirm the significant relationship between increase rate of corridor 

length and reduction rate of corridor patency. The corridor length caused by corridor change 

increased greatly, leading to increase in resistance. Even though the distance in the source patches 

between no.1 and no.2 decreased, the resistance still increased. Increased resistance means that 

ecological corridors with rich biodiversity and important ecological functions will play less 

important roles. Clearly, the negative impacts of wind power projects should not be ignored. 

Wildlife are sensitive to human infrastructure and activity, and they have to adjust their migration 

routes to avoid the low frequency noise and shadow on the ground generated by the rotation of the 

turbines (Cabrera-Cruz et al., 2016; Harrison et al., 2017).  

In addition, studies found the landscape configuration became fragmented and the connectivity 

of the natural landscape declined along with wind energy development (Kuvlesky et al., 2007; 
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Obermeye et al., 2011). The wind power projects in the study area include 164 turbines and 80 

connecting roads. The construction has an obvious cutting effect on the landscape, causing 

landscape fragmentation and decline in connectivity. Fragmentation is detrimental to both the 

integrity of ecological systems and the long-term viability of associated wildlife, and may magnify 

deleterious effects to species and ecosystems by limiting the species ability to adapt or migrate 

(Ewers et al., 2006). Therefore, more attention should be paid to protect the current ecological 

corridors and construct new ones in the proper locations. 

 

4.3 Comparison between the current study with previous results 

This study focuses on ecological corridors and landscape connectivity to better reflect 

landscape pattern and landscape ecological structure. In view of the ecological impacts of onshore 

wind power projects, there are some differences in research objectives, methods and results between 

this study and previous studies (Table 5). Different from many researches which focus on certain 

species, especially birds, this study did not take the migration corridors of a specific species, but 

take the landscape ecology as the prime importance to determine the potential ecological corridor, 

which can provide the paths for wildlife migration and plays an important role in connecting the 

isolated and dispersed ecosystem (Zhu et al., 2005). Our purpose is to quantitatively evaluate the 

ecological impacts of the wind power projects on ecological corridor and landscape connectivity. 

Meanwhile, with the GIS technology, this study took into account the specific factors of the wind 

power projects to accurately assess the impacts on ecosystem. Previous studies showed that the 

construction of wind power projects altered the migration corridors (Cabrera-Cruz et al., 2016; 

Harrison et al., 2017; Pocewicz et al., 2013; Skarin et al., 2015), reinforcing our results of ecological 

corridors change from the aspect of wildlife migration. 

 

4.4 Implication and application of the results 

Landscape planning for species of concern requires detailed knowledge of the amount and 

quality of habitat as well as the connectivity or spatial configuration of the habitat (Fahrig, 2001). 

The construction of ecological corridor is beneficial for biodiversity conservation. Landscape 

connectivity is an important factor for considering during the decision-making process. The wind 

power projects can be routed optimally so that the disturbance can be minimized. 

The construction of projects at different stages can have various impacts on ecosystems 

(Hazem et al., 2019; Lin, 2018). In order to reduce the negative impact of a wind power project on 

landscape ecology, ecological impact assessment should be carried out strictly before the 

construction and ecological restoration should be carried out properly afterwards. It is necessary to 

make scientific planning and identify the optimal location for wind power projects. Quantitative 

assessment of the impact of the wind power projects on ecological corridor and landscape 

connectivity is the foundation of scientific planning in ecological sensitive areas. Figs. 8 and 9 show 

the comparison of impacts on ecological corridor with and without the wind power projects, and 

Table 4 show the comparison of impacts on landscape connectivity, which can be used to evaluate 

the ecological impact of the proposed wind power projects before the construction. Traditionally, 

the location selection of the wind power projects focuses on local wind resource, but the negative 

impacts on ecosystems should not be ignored. According to the results in Figures. 7, 8, 9 and Table 

4, in order to minimize the impact of the wind power projects on the ecological system, it is 
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necessary to pay attention to the ecological corridors with large changes after the wind farm 

construction, find out the wind farms that cause corridor changes, and select the suitable location 

for wind farms with minimal impact on ecosystem. In addition, ecological restoration is mainly to 

improve the local ecosystem services functions. In our study area, the main aim of ecological 

restoration is to improve water conservation and maintain biodiversity. Around the built-up area of 

the wind power projects, local dominant species of dwarf grass alpine plants, such as purple fescue, 

lanceola, and others, should be planted. 

This study analyzed the ecological impact of the wind power projects at the landscape level, 

filling the gap in the research on the impact of the wind power projects on the landscape process in 

Shanxi Province. In addition, this study focused on the pre-construction and operational phase of 

the wind farms, so it is beneficial to guide the location selection of future wind power projects and 

avoid the key ecological corridors in the area. Reducing carbon emission by replacing fossil energy 

with renewable energy, such as wind energy, has received increasing attentions in most countries. 

In the meantime, the measures are also still needed to mitigate the environmental and ecological 

impacts of the renewable energy development (Yang et al., 2014b). 

 

4.5 Limitation and future study 

Similar as many studies, there are some limitation of the current study. LCD method has been 

widely used for landscape ecology evaluation (Avon et al. 2016; Chen et al. 2017), but it is difficult 

to accurately set the resistance values. Due to the lack of observation data, the simulation results 

were not able to be calibrated, probably resulting in a certain level of biases in the results. However, 

performance evaluation is based on the comparison, not directly simulating the observed results. 

For this reason, the impact of the biases on the calculated results due to uncertainties of resistance 

values is minor (Shi et al., 2018). In addition, this study did not analyze the obstructed situation of 

different species such as flying birds, large animals and small animals, which could affect the 

pertinence of the calculation results. Even so, the ecological influence of the wind power projects 

revealed in this study is helpful for the sustainable wind power development (Francis et al., 2018; 

Skarin et al., 2015). In the future studies, the field observation of different species migration can be 

applied to further improve the simulation results. 

 

5. Conclusions 

This study evaluated the impacts of onshore wind power projects on ecological corridor and 

landscape connectivity in the Taiyue Mountain Wind Power Project in Qinyuan, Shanxi, China. 

The results showed that the wind power projects not only significantly increased the resistance 

that is not conducive to the formation of ecological corridors at the landscape level, but also had an 

obvious cutting effect on the landscape, resulting in the increase of the length of the ecological 

corridors and the decrease of corridor patency and landscape connectivity. The resistance 

distribution determines the construction of corridors that are beneficial for species migration. When 

the wind power projects were built, the resistance value was obviously stratified, and the largest 

resistance value appeared in the wind power projects area. The construction of the wind power 

projects reduced corridor patency between source patches, which was reflected in the increase in 

migration resistance. The average increased value and rate were 1019.66 and 148.63%, respectively. 

The construction of the wind power projects altered the direction and length of the corridor between 
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the source patches, which hindered the migration and diffusion of species. The wind power projects 

made the growth of most corridors’ length, and the average length increased by 95 km. The further 

the distance was, the larger the increased value was. The relationships between reduction rate of 

corridor patency and increase rate of corridor length were expressed as P=0.268 L-24.804 and 

L=3.499 P+125.726 (P is reduction rate of corridor patency (%) and L is increase rate of corridor 

length (%)). The construction of the wind power projects weakened the landscape connectivity, 

which was displayed in the reduction of connectivity indices. In addition, the larger the scale of the 

ecological process was, the higher the connectivity of the same landscape was. When resistance 

thresholds were 1000, 3000, 5000 m, the reduction rates of EC(IIC) were 25.09%, 0.85%, and 0, 

respectively, while the reduction rates of EC(PC) were 11.06%, 3.91%, and 2.35%, respectively. 

Our results indicate the ecological impact of wind power plants, and therefore it is crucial for 

strict ecological impact assessment before the construction of a wind power plant and proper 

ecological restoration afterwards to minimize its ecological damages. 
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Table 1 The relative resistance values of different landscape factors 

Factors Classification Value Factors Classification Value 

The land use type Forest 1 Vegetation coverage (%) >75 1 

Grassland 10 60-75 10 

Farmland 50 45-60 50 

Construction land 100 30-45 75 

Slope (°) <8 1 <30 100 

8-15 10 NDVI residual <-0.05 1 

15-25 50 -0.05-0.05 50 

25-35 75 >0.05 100 

>35 100    

Relief <25 1 Distance from the turbine 

(m) 

>500 1 

25-50 10 200-500 50 

50-75 50 <200 100 

 

Table 2 Statistical summary of NDVI variation trends 

Variation trend Serious degradation Degradation Unchanged Increase Significant increase 

Area (m2) 3.48 19.66 98.32 41.20 3.02 

Percent (%) 2.10 11.87 59.35 24.87 1.82 

 

Table 3 Land use categories 

Type 

Area (km2) 

2005 2017 
Change between 2005 

and 2017 

Evergreen needle forest 25.92 27.21 1.30 

Deciduous broad-leaved forest 78.11 86.74 8.63 

Deciduous broad-leaved shrub 23.93 13.82 -10.11 

Grass 8.33 4.98 -3.35 

Meadow 23.54 18.20 -5.34 

Farmland 5.37 5.00 -0.37 

Residence land 0.45 0.41 -0.03 

Wind power projects land 0.00 9.27 9.27 

 

Table 4 Landscape connectivity indices under different distance thresholds 

Distance threshold 

(m) 

Without wind power project With wind power project 

EC(IIC) EC(PC) EC(IIC) EC(PC) 

1000 19.41 22.51 14.54 20.02 

3000 22.41 24.02 22.22 23.08 

5000 22.41 24.29 22.41 23.72 

 

Table 5 Comparison between this study with previous studies  

Objective Methods Results Data sources 

Eagles and other 

raptors along 

migratory routes 

GPS-data The frequency of collisions or 

displacement of raptors away from their 

usual migratory pathways increased as 

wind energy projects grow. 

Katzner et al., 2012 

Distribution of 

migratory bird 

stopovers 

Migratory 

concentration 

models 

73% of high potential wind development 

area intersects the important bird 

migration concentration areas in 

Wyoming. 

Pocewicz et al., 2013 

Landscape 

connectivity for 

bats  

Species 

Distribution 

Model 

54% of the existing and 72% of planned 

wind farms interfere with important 

corridors connecting western and eastern 

parts of the study areas. 

Roscioni et al., 2014 

Reindeer migration 

and movement 

corridors 

GPS-data During construction of the wind farms, 

use of original migration routes and 

movement corridors declined by 76 %. 

Skarin et al., 2015 

Migratory bald 

eagles 

Dynamic 

Brownian bridge 

movement model  

There was small overlap between bald 

eagle migration corridors and viable wind 

power areas in northeastern North 

Mojica et al., 2016 
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America. 

Migratory raptor Radar and hawk-

watch monitoring 

observations  

Migratory raptors adjusted their flight 

trajectories to avoid wind farms. 

Cabrera-Cruz et al., 

2016 

Habitat selection 

by wintering geese 

Linear models Geese strongly avoided power-lines, and 

wind turbines. 

Harrison et al., 2017 

Migration corridor 

of white storks 

Multi-criterial 

evaluation model 

Approximately 60% of the patches in the 

predicted migration corridor had either a 

moderate or high potential for wind 

energy generation. 

Francis et al., 2018 

Ecological corridor 

and landscape 

connectivity 

LCD and LCP Wind power projects reduced corridor 

patency, lengthened most of corridors, and 

weakened landscape connectivity. 

This study 

 

 

 

Fig.1. Location of the study area in Qinyuan, Shanxi Province, China. 
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Fig.2. Wind power project, the road, and core, buffer and experimental zones of Mianshan Nature Reserve in the 

study area. 
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Fig. 3. Methodology of the study. 

Note: Rhombuses represent data sources or products, and rectangles represent processes or methods. 
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Fig.4. The spatial distribution of the change rates of pixel’s NDVI. 
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Fig.5. Land use categories: (a) without the wind power projects; and (b) with the wind power projects. 

 

 

Fig.6. The spatial distribution of resistance: (a) without the wind power project; and (b) with the wind power 

project. 
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Fig.7. Potential ecological corridors with and without the wind power projects. 

Note: Numbers 1-7 represents different sources. 
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Fig.8. The impact of the wind power project on corridor patency. 

 

 

Fig.9. The impact of the wind power project on corridor length. 
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