
This is a repository copy of Decompositions of some Specht modules I.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/155924/

Version: Accepted Version

Article:

Donkin, Stephen and Geranios, Haralampos (2020) Decompositions of some Specht 
modules I. Journal of Algebra. pp. 1-22. ISSN 1090-266X 

https://doi.org/10.1016/j.jalgebra.2019.12.017

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Decompositions of some Specht modules I

Stephen Donkin and Haralampos Geranios

Department of Mathematics, University of York, York YO10 5DD

stephen.donkin@york.ac.uk, haralampos.geranios@york.ac.uk

22 December 2019

Abstract

We give a decomposition, as a direct sum of indecomposable modules,
of several types of Specht modules in characteristic 2. These include the
Specht modules labelled by hooks, whose decomposability was considered
by Murphy, [15]. Since the main arguments are essentially no more difficult
for Hecke algebras at parameter q = �1, we proceed in this generality.

1 Introduction

Let K be a field and r a positive integer. We write Sym(r) for the sym-
metric group of degree r. For each partition � of r we have the Specht
module Sp(�) and for each composition ↵ of r the permutation module
M(↵). The Specht module Sp(�) may be viewed as a submodule of M(�).
James proved, [12, 13.17], that unless the characteristic of K is 2 and � is
2-singular, the space of homomorphisms HomSym(r)(Sp(�),M(�)) is one di-
mensional. It follows that Sp(�) has one dimensional endomorphism algebra
and in particular that Sp(�) is indecomposable (unless K has characteristic
2 and � is 2-singular).
We now suppose K has characteristic 2. Then, for � a 2-singular par-

tition, the Specht module Sp(�) may certainly decompose but in general
neither a criterion for decomposability nor the nature of a decomposition as
a direct sum of indecomposable components is known. The first example of
such a module, discovered by James, [13], is the Specht module Sp(5, 1, 1)
for the symmetric group Sym(7). Some years later G. Murphy generalised
James’ example and in [15] gave a criterion for the decomposability of Specht
modules labelled by hook partitions, i.e. partitions of the form � = (a, 1b).
More recently, Dodge and Fayers found in [4] some new decomposable Specht
modules for partitions of the form � = (a, 3, 1b).
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In the more general context of the Hecke algebras Hec(r) with parameter
q 6= �1, Dipper and James showed in [3] that the corresponding Specht
modules are indecomposable. Recently Speyer generalised Murphy’s cri-
terion regarding the decomposability of Specht modules labeled by hook
partitions for Hecke algebras with q = �1, see [17].
Our motivation comes from the 2-modular representation theory of sym-

metric groups, which is covered by taking q equal to �1, and hence 1, in a
field of characteristic 2. We here obtain many new families of decomposable
Specht modules for Hecke algebras at parameter q = �1 and describe explic-
itly their indecomposable components. More precisely, we give a decompo-
sition of the Specht modules Sp(a,m�1,m�2, . . . , 2, 1b), with a � m, b � 1
and a�m even and b odd. Moreover, we show that there is no uniform bound
on the number of indecomposable summands in such a decomposition. We
also point out that the decomposition of Sp(a,m � 1,m � 2, . . . , 2, 1b) lays
the foundations for the discovery of many other families of decomposable
Specht modules. In fact, using this approach we describe decompositions
of Specht modules of the form Sp(a, 3, 1b) which do not appear in the list
produced by Dodge and Fayers. More results in this direction will appear
in a follow up paper, [10].
Our method is to compare the situation with an analogous problem for

certain modules for the general linear groups and apply the Schur functor, as
in [7, Section 2.1]. The key feature which we are able to exploit at q = �1
is that the Schur functor on a tensor product of symmetric and exterior
powers of the natural module is the same as on a tensor product of the
corresponding symmetric powers only (see Section 6).
Section 2 is devoted to preliminaries on rational and polynomial repre-

sentations, the associated combinatorics, and connections with the Hecke
algebra. In Section 3 we give an explicit description of certain weight mul-
tiplicities in certain simple polynomial modules. This is used in Section 4
to decompose certain tensor products of symmetric powers of the natural
module from which the corresponding decomposition for certain q permuta-
tion modules is deduced. In Section 5 we use some operators on the ring of
symmetric polynomials to identify certain induced modules as block com-
ponents of a certain tensor product of symmetric and exterior powers of
the natural module. In Section 6 we use this information to obtain, via
the Schur functor, our main result on the decomposition of Specht modules
labelled by a family of partitions which include the hook partitions. In Sec-
tion 7 we illustrate that our methods may also be used beyond these cases
by decomposing Specht modules labelled by certain partitions of the form
(a, 3, 1b).
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2 Preliminaries

2.1 Combinatorics

The standard reference for the polynomial representations of general linear
groups is the monograph [11]. Though we work in the quantised context this
reference is appropriate as the combinatorics is essentially the same and so
we adopt the notation of [11] wherever convenient. Further details may also
be found in the monograph [7], which treats the quantised case.
We begin by introducing some of the associated combinatorics. By a par-

tition we mean an infinite sequence � = (�1,�2, . . .) of nonnegative integers
with �1 � �2 � . . . and �j = 0 for j sufficiently large. If n is a positive
integer such that �j = 0 for j > n we identify � with the finite sequence
(�1, . . . ,�n). The length len(�) of a partition � = (�1,�2, . . .) is 0 if � = 0
and is the positive integer n such that �n 6= 0, �n+1 = 0, if � 6= 0. For
a partition �, we denote by �0 the transpose partition of �. We define the
degree of � = (�1,�2, . . .) by deg(�) = �1 + �2 + · · · .

We fix a positive integer n. We set X(n) = Z
n. There is a natural partial

order on X(n). For � = (�1, . . . ,�n), µ = (µ1, . . . , µn) 2 X(n), we write
�  µ if �1+ · · ·+�i  µ1+ · · ·+µi for i = 1, 2, . . . , n�1 and �1+ · · ·+�n =
µ1+· · ·+µn. We shall use the standard Z-basis ✏(1), . . . , ✏(n) of X(n), where
✏(i) = (0, . . . , 1, . . . , 0) (with 1 in the ith position), for 1  i  n. We write
!(i) for the element ✏(1) + · · ·+ ✏(i) of X(n), for 1  i  n.

We write X+(n) for the set of dominant n-tuples of integers, i.e., the set
of elements � = (�1, . . . ,�n) 2 X(n) such that �1 � · · · � �n. We write
Λ(n) for the set of n-tuples of nonnegative integers and Λ

+(n) for the set
of partitions into at most n-parts, i.e., Λ+(n) = X+(n)

T

Λ(n). We shall
sometimes refer to elements of Λ(n) as polynomial weights and to elements
of Λ+(n) as polynomial dominant weights. For a nonnegative integer r we
write Λ+(n, r) for the set of partitions of r into at most n parts, i.e., the set
of elements of Λ+(n) of degree r.

We fix a positive integer l. We write X1(n) for the set of l-restricted
partitions into at most n parts, i.e., the set of elements � = (�1, . . . ,�n) 2
Λ
+(n) such that 0  �1 � �2, . . . ,�n�1 � �n,�n < l.
A dominant weight � 2 X+(n) has a unique expression � = �0 + l�̄ with

�0 2 X1(n), �̄ 2 X+(n), moreover if � 2 Λ
+(n) then �̄ 2 Λ

+(n). We call
this the standard expansion for �. It will be used a great deal in what
follows.

2.2 Rational Modules and Polynomial Modules

Let K be a field. If V,W are vector spaces over K, we write V ⌦W for
the tensor product V ⌦K W . We shall be working with the representation
theory of quantum groups over K. By the category of quantum groups over
K we understand the opposite category of the category of Hopf algebras over
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K. Less formally we shall use the expression “G is a quantum group” to
indicate that we have in mind a Hopf algebra over K which we denote K[G]
and call the coordinate algebra of G. We say that � : G ! H is a morphism
of quantum groups over K to indicate that we have in mind a morphism
of Hopf algebras over K, from K[H] to K[G], denoted �] and called the
co-morphism of �. We will say H is a quantum subgroup of the quantum
group G, over K, to indicate that H is a quantum group with coordinate
algebra K[H] = K[G]/I, for some Hopf ideal I of K[G], which we call the
defining ideal of H. The inclusion morphism i : H ! G is the morphism
of quantum groups whose co-morphism i] : K[G] ! K[H] = K[G]/I is the
natural map.
Let G be a quantum group over K. The category of left (resp. right) G-

modules is the the category of right (resp. left) K[G]-comodules. We write
Mod(G) for the category of left G-modules and mod(G) for the category of
finite dimensional left G-modules. We shall also call a G-module a rational
G-module (by analogy with the representation theory of algebraic groups).
A G-module will mean a left G-module unless indicated otherwise. For a
finite dimensional G-module V and a non-negative integer d we write V ⌦d

for the d-fold tensor product V ⌦ · · · ⌦ V and we write V (d) for the direct
sum V � · · ·� V of d copies of V .
Let V be a finite dimensional G-module with structure map ⌧ : V !

V ⌦K[G]. The coefficient space cf(V ) of V is the subspace of K[G] spanned
by the “coefficient elements” fij , 1  i, j  m, defined with respect to a
basis v1, . . . , vm of V , by the equations

⌧(vi) =
m
X

j=1

vj ⌦ fji

for 1  i  m. The coefficient space cf(V ) is independent of the choice of
basis and is a subcoalgebra of K[G].

We fix a positive integer n. We shall be working with G(n), the quantum
general linear group of degree n, as in [7]. We fix a non-zero element q of K.
We have a K-bialgebra A(n) given by generators cij , 1  i, j  n, subject
to certain relations (depending on q) as in [7, 0.20]. The comultiplication
map � : A(n) ! A(n) ⌦ A(n) satisfies �(cij) =

Pn
r=1 cir ⌦ crj and the

augmentation map ✏ : A(n) ! K satisfies ✏(cij) = �ij (the Kronecker delta),
for 1  i, j  n. The elements cij will be called the coordinate elements and
we define the determinant element

dn =
X

⇡2Sym(n)

sgn(⇡)c1,⇡(1) . . . cn,⇡(n).

Here sgn(⇡) denotes the sign of the permutation ⇡. We form the Ore local-
isation A(n)dn . The comultiplication map A(n) ! A(n) ⌦ A(n) and aug-
mentation map A(n) ! K extend uniquely to K-algebra maps A(n)dn !
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A(n)dn ⌦ A(n)dn and A(n)dn ! K, giving A(n)dn the structure of a Hopf
algebra. By the quantum general linear group G(n) we mean the quantum
group over K with coordinate algebra K[G(n)] = A(n)dn .

We write T (n) for the quantum subgroup of G(n) with defining ideal
generated by all cij with 1  i, j  n, i 6= j. We write B(n) for the
quantum subgroup of G(n) with defining ideal generated by all cij with
1  i < j  n. We call T (n) a maximal torus and B(n) a Borel subgroup
of G(n) (by analogy with the classical case).
We now assign to a finite dimension rational T (n)-module its formal char-

acter. We form the integral group ring ZX(n). This has Z-basis of for-
mal exponentials e�, which multiply according to the rule e�eµ = e�+µ,
�, µ 2 X(n). For 1  i  n we define c̄ii = cii + IT (n) 2 K[T (n)],
where IT (n) is the defining ideal of the quantum subgroup T (n) of G(n).
Note that c̄11 . . . c̄nn = dn + IT (n), in particular each c̄ii is invertible in

K[T (n)]. For � = (�1, . . . ,�n) 2 X(n) we define c̄� = c̄�1

11 . . . c̄
�n
nn. The el-

ements c̄�, � 2 X(n), are group-like and form a K-basis of K[T (n)]. For
� = (�1, . . . ,�n) 2 X(n), we write K� for K regarded as a (one dimen-
sional) T (n)-module with structure map ⌧ : K� ! K� ⌦K[T (n)] given by
⌧(v) = v ⌦ c̄�, v 2 K�. For a finite dimensional rational T (n)-module V
with structure map ⌧ : V ! V ⌦K[T (n)] and � 2 X(n) we have the weight
space

V � = {v 2 V | ⌧(v) = v ⌦ c̄�}.

Moreover, we have the weight space decomposition V =
L

�2X(n) V
�. We

say that � 2 X(n) is a weight of V if V � 6= 0. The dimension of a finite
dimensional vector space V over K will be denoted by dimV . The character
chV of a finite dimensional rational T (n)-module V is the element of ZX(n)
defined by chV =

P

�2X(n) dimV �e�.
For each � 2 X+(n) there is an irreducible rational G(n)-module Ln(�)

which has unique highest weight �, and � occurs as a weight with multiplicity
one. The modules Ln(�), � 2 X+(n), form a complete set of pairwise non-
isomorphic irreducible rational G-modules. For a finite dimensional rational
G(n)-module V and � 2 X+(n) we write [V : Ln(�)] for the multiplicity of
Ln(�) as a composition factor of V .

We write Dn for the one dimensional G(n)-module corresponding to the
determinant. Thus Dn has structure map ⌧ : Dn ! Dn ⌦ K[G], given by
⌧(v) = v ⌦ dn, for v 2 Dn. We have Dn = Ln(!(n)) = Ln(1, 1, . . . , 1). We
write En for the natural G(n)-module. Thus En has basis e1, . . . , en, and
the structure map ⌧ : En ! En⌦K[G(n)] is given by ⌧(ei) =

Pn
j=1 ej ⌦ cji.

We also have that En = Ln(1, 0, . . . , 0).
A finite dimensional G(n)-module V is called polynomial if cf(V ) 

A(n). The modules Ln(�), � 2 Λ
+(n), form a complete set of pairwise

non-isomorphic irreducible polynomial G(n)-modules. We have a grading
A(n) =

L

1
r=0A(n, r) in such a way that each cij has degree 1. More-
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over each A(n, r) is a finite dimensional subcoalgebra of A(n). The dual
algebra S(n, r) is known as the q-Schur algebra. A finite dimensional G(n)-
module V is polynomial of degree r if cf(V )  A(n, r). We write pol(n)
(resp. pol(n, r)) for the full subcategory of mod(G(n)) whose objects are the
polynomial modules (resp. the modules which are polynomial of degree r).

An arbitrary finite dimensional polynomial G(n)-module V may be writ-
ten uniquely as V =

L

1
r=0 V (r) in such a way that V (r) is polynomial of de-

gree r, for r � 0. Let r � 0. The modules Ln(�), � 2 Λ
+(n, r), form a com-

plete set of pairwise non-isomorphic irreducible polynomial G(n)-modules
which are polynomial of degree r. We write mod(S) for the category of
left modules for a finite dimensional K-algebra S. The category pol(n, r) is
naturally equivalent to the category mod(S(n, r)).

We shall also need modules induced from B(n) to G(n). (For details of
the induction functor Mod(B(n)) ! Mod(G(n)) see, for example, [6].) For
� 2 X(n) there is a unique (up to isomorphism) one dimensional B(n)-
module whose restriction to T (n) is K�. We also denote this module by K�.

The induced module ind
G(n)
B(n)K� is non-zero if and only if � 2 X+(n). For

� 2 X+(n) we set rn(�) = ind
G(n)
B(n)K�. Then rn(�) is finite dimensional

and its character is given by Weyl’s character formula and it is the Schur
symmetric polynomial corresponding � for � 2 Λ

+(n). The G(n)-module
socle of rn(�) is Ln(�). The module rn(�) has unique highest weight �

and this weight occurs with multiplicity one.
A filtration 0 = V0  V1  · · ·  Vr = V of a finite dimensional rational

G(n)-module V is said to be good if for each 1  i  r the quotient Vi/Vi�1

is either zero or isomorphic to rn(�
i) for some �i 2 X+(n). For a rational

G(n)-module V admitting a good filtration for each � 2 X+(n), the multi-
plicity |{1  i  r |Vi/Vi�1

⇠= rn(�)}| is independent of the choice of the
good filtration, and will be denoted (V : rn(�)).
For �, µ 2 X+(n) we have Ext1G(n)(rn(�),rn(µ)) = 0 unless � > µ.

Given Kempf’s Vanishing Theorem, [7, Theorem 3.4], this follows exactly
as in the classical case, e.g., [5, Lemma 3.2.1], (or the original source [2,
Corollary (3.2)]). It follows that if V has a good filtration 0 = V0  V1 

· · ·  Vt = V with sections Vi/Vi�1
⇠= rn(�i), 1  i  t, and µ1, . . . , µt is a

reordering of the �1, . . . ,�t such that µi < µj implies that i < j then there
is a good filtration 0 = V 0

0 < V 0
1 < · · · < V 0

t = V with V 0
i /V

0
i�1

⇠= rn(µi), for
1  i  t.
Similarly it will be of great practical use to know that

Ext1G(n)(rn(�),rn(µ)) = 0 when � and µ belong to different blocks. Here
the relationship with cores of partitions diagrams will be crucial for us. For
a partition � we denote by [�] the corresponding partition diagram (as in
[11]). The l-core of [�] is the diagram obtained by removing skew l-hooks,
as in [12]. If �, µ 2 Λ

+(n, r) and [�] and [µ] have different l-cores then the
simple modules Ln(�) and Ln(µ) belong to different blocks and it follows in

6



particular that ExtiS(n,r)(r(�),r(µ)) = 0, for all i � 0. A precise description
of the blocks of the q-Schur algebras was found by Cox, see [1, Theorem 5.3].
For a polynomial G(n)-module V and an l-core � we mean by the expression,
the component of V corresponding to �, the sum of all block components
for blocks consisting of partitions with core �.
For � 2 Λ

+(n, r) we write In(�) for the injective envelope of Ln(�) in the
category of polynomial modules. Then In(�) is a finite dimensional module
which is polynomial of degree r. Moreover, the module In(�) has a good
filtration and we have the reciprocity formula (In(�) : rn(µ)) = [rn(µ) :
Ln(�)] see e.g., [6, Section 4, (6)].

2.3 The Frobenius Morphism

It will be important for us to make a comparison with the classical case
q = 1. In this case we will write Ġ(n) for G(n) and write xij for the
coordinate element cij , 1  i, j  n. Also, we write L̇n(�) for the Ġ(n)-
module Ln(�), � 2 X+(n), and write Ėn for En.

We return to the general situation. If q is not a root of unity, or if K has
characteristic 0 and q = 1 then all G(n)-modules are completely reducible,
see e.g., [6, Section 4, (8)]. We therefore assume, from now on that q, is a
root of unity and that if K has characteristic 0 then q 6= 1. We denote by l
the smallest positive integer such that 1 + q + · · ·+ ql�1 = 0.
We have a morphism of Hopf algebras ✓ : K[Ġ(n)] ! K[G(n)] given by

✓(xij) = clij , for 1  i, j  n. We write F : G(n) ! Ġ(n) for the morphism

of quantum groups such that F ] = ✓. Given a Ġ(n)-module V we write V F

for the corresponding G(n)-module. Thus, V F as a vector space is V and if
the Ġ(n)-module V has structure map ⌧ : V ! V ⌦K[Ġ(n)] then V F has
structure map (idV ⌦ F ) � ⌧ : V F ! V F ⌦K[G(n)], where idV : V ! V is
the identity map on the vector space V .
For an element � =

P

⇠2X(n) a⇠e
⇠ of ZX(n) we write �F for the el-

ement
P

⇠2X(n) a⇠e
l⇠. For a finite dimensional Ġ(n)-module V we have

chV F = (chV )F . Moreover, we have the following relationship between
the irreducible modules for G(n) and Ġ(n), see [7, Section 3.2, (5)].

Steinberg’s Tensor Product Theorem For �0 2 X1(n) and �̄ 2 X+(n)
we have

Ln(�
0 + l�̄) ⇠= Ln(�

0)⌦ L̇n(�̄)
F .

Usually we shall abbreviate the quantum groups G(n), B(n), T (n) to G,
B, T and Ġ(n) to Ġ. Likewise, we usually abbreviate the modules Ln(�),
rn(�), In(�) and L̇n(�) to L(�), r(�), I(�) and L̇(�), for � 2 Λ

+(n), and
abbreviate the modules En and Dn to E and D.
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2.4 A truncation functor

Let N,n be positive integers with N � n. We identify G(n) with the
quantum subgroup of G(N) whose defining ideal is generated by all cii � 1,
n < i  N , and all cij with 1  i 6= j  N and i > n or j > n. We have
an exact functor (the truncation functor) dN,n : pol(N) ! pol(n) taking
V 2 pol(N) to the G(n) submodule

L

↵2Λ(n) V
↵ of V and taking a morphism

of polynomial modules V ! V 0 to its restriction dN,n(V ) ! dN,n(V
0). For

a discussion of this functor at the level of modules for Schur algebras in the
classical case see [11, Section 6.5].
By [7, Section 4.2], the functor dN,n has the following properties:

(i) for polynomial G(N)-modules X,Y we have dN,n(X ⌦ Y ) = dN,n(X) ⌦
dN,n(Y );
(ii) for � 2 Λ

+(N, r) and X� = LN (�) or rN (�) then dN,n(X�) 6= 0 if and
only if � 2 Λ

+(n, r);
(iii) for � 2 Λ

+(n, r), dN,n(LN (�)) = Ln(�) and dN,n(rN (�)) = rn(�).

Let � 2 Λ
+(N, r), for some r � 0, ↵ 2 Λ(N, r) and �i = ↵i = 0, for

n < i  N . We identify � and ↵ with elements of Λ+(n, r) and Λ(n, r) in
the obvious way. It follows that dimLN (�)↵ = dimLn(�)

↵.

2.5 Connections with the Hecke algebras

We now record some connections with representations of Hecke algebra
of type A. We fix a positive integer r. We write len(⇡) for the length of a
permutation ⇡. The Hecke algebra Hec(r) is the K-algebra with basis Tw,
w 2 Sym(r), and multiplication satisfying

TwTw0 = Tww0 , if len(ww0) = len(w) + len(w0), and

(Ts + 1)(Ts � q) = 0

for w,w0 2 Sym(r) and a basic transposition s 2 Sym(r). For brevity we
will denote the Hecke algebra Hec(r) by H(r). We write K (resp.Ksgn) for
the one dimensional H(r)-module on which each basic transposition Ts acts
as multiplication by q (resp.�1).
For � a partition of degree r we denote by Sp(�) the corresponding

(Dipper-James) Specht module and by Y (�) the corresponding Young mod-
ule. For ↵ 2 Λ(n, r) we write M(↵) for the permutation module correspond-
ing to ↵.
Let n � r. We have the Schur functor f : mod(S(n, r)) ! mod(H(r)), see

[7, Section 2.1]. By [7, Sections 4.4 and 4.5] the functor f has the following
properties:
(i) f is exact;
(ii) for � 2 Λ

+(n, r) we have f(r(�)) = Sp(�);
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(iii) for � 2 Λ
+(n, r) we have f(I(�)) = Y (�).

For a finite string of non-negative integers ↵ = (↵1, . . . ,↵m) we have the
polynomial G(n)-modules

S↵E = S↵1E ⌦ · · ·⌦ S↵mE

and
V↵E =

V↵1 E ⌦ · · ·⌦
V↵m E.

For ↵ 2 Λ(n, r) we write H(↵) for the subalgebra H(↵1)⌦ · · ·⌦H(↵n) of
H(r). By [7, Section 2.1, (20)] we have:
(iv) f(S↵E) = H(r)⌦H(↵) K = M(↵);
(v) f(Λ↵E) = H(r)⌦H(↵) Ksgn.

3 Some weight space multiplicities

We shall need some information about weight spaces of simple modules.
Our considerations reduce to the case n = 2 so we recall the weight space
multiplicities in this case. First consider the group Ġ(2).

For a prime p and a non-negative integer r we have the base p expansion
r =

P

1
i=0 p

iri (where 0  ri < p for all i and ri = 0 for i large), or just
r =

PN
i=0 p

iri, if r < pN+1.

Definition 3.1. Let r, b be integers with r � 0 and p � 0. We shall say that
the pair (r, b) is p-special if
(i) p = 0, �r  b  r and r � b is even.
(ii) p is a prime, r has base p expansion r =

P

1
i=0 p

iri and there exists an
expression b =

P

1
i=0 p

iti with �ri  ti  ri and ri � ti even for all i � 0.

Lemma 3.2. For (a, b) 2 Λ
+(2, r) and (c, d) 2 Λ(2, r), we have

dim L̇(a, b)(c,d) =

(

1, if (a� b, c� d) is p-special;

0, otherwise.

Proof. All non-zero weights spaces of ṙ(�), and hence L̇(�) have dimension
1, for � 2 Λ

+(2). If K has characteristic zero then L̇(�) = ṙ(�), for
� 2 Λ

+(2). By restricting to the group scheme SL2 over K, for example, we
see that for � = (a, b), µ = (c, d) the weight space L̇(�)µ is non-zero is and
only if � and µ have the same degree, and (a�b, c�d) is 0-special. Similarly,
if K has characteristic p > 0, then we have L̇2(�) = ṙ2(�) if a � b < p. It
follows from the usual form of Steinberg’s tensor product theorem, for the
group scheme SL2 over K (see e.g. [14, II,3.17]) that L̇(�)µ 6= 0 if and only
if � and µ have the same degree and (a� b, c� d) is p-special.
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Remark 3.3. Recall that if � 2 Λ
+(n, r), ↵ 2 Λ(n, r) and L(�)↵ 6= 0 then

↵  �. Moreover if � has length m and ↵i = 0 for i > m then

dimL(�)↵ = dimLm(�)↵ = dim(Dm⌦L(��!(m)))↵ = dimL(��!(m))↵�!(m).

Remark 3.4. We note that if � = (a, b) 2 Λ
+(2) is l-restricted then

L(�) = r(�), e.g. by block considerations, and hence the weights of L(�)
are (a, b), (a� 1, b+ 1), . . . , (b, a).

For a positive integer m we write �(m) for the partition (m,m� 1, . . . , 1)
(of length m) and �(m) for (l � 1)�m.

Proposition 3.5. Assume that n � 2 and µ 2 Λ
+(n). Let m � 1 and

⌧ = (u, v) with u, v � 0.
(i) dimL(�(m) + lµ)�(m)+l⌧ = dimL(�(1) + lµ)�(1)+l⌧ .
(ii) If µ = (c, d) and has the same degree as ⌧ , then

dimL(�(m) + lµ)�(m)+l⌧ = dim L̇(µ)⌧ =

(

1, if (c� d, u� v) is p-special;

0, otherwise.

Proof. (i) First notice that if L(�(m) + lµ)�(m)+l⌧ 6= 0 then �(m) + lµ �

�(m) + l⌧ and so µ � ⌧ . Hence we may assume that len(µ)  2.
For m � 2 we have L(�(m) + lµ)�(m)+l⌧ = L(�(m � 1) + lµ)�(m�1)+l⌧ by
Remark 3.3. Now the result follows immediately by induction on m.
(ii) By (i) we have that dimL(�(m) + lµ)�(m)+l⌧ = dimL(�(1) + lµ)�(1)+l⌧ .
Now L(�(1) + lµ) = L(�(1))⌦ L̇(µ)F . We consider L(�(1) + lµ) as a G(2)-
module. By Remark 3.4 a weight of L(�(1)) ⌦ L̇(µ)F has the form ↵ + l�,
where

↵ 2 {(l � 1, 0), (l � 2, 1), . . . , (0, l � 1)}

and � is a weight of L̇(µ) and all non-zero weight spaces are one dimensional.
The dimension of the �(1)+l⌧ weight space is the number of solutions ↵+l�.
Since �(1)+ l⌧ then first entry is �1 modulo l and the only possibility for ↵
is (l� 1, 0). Hence we have dimL(�(1) + lµ)�(1)+l⌧ = dim L̇(µ)⌧ , and hence
the result by Lemma 3.2.

4 Decompositions of some polynomial modules

We use the weight space calculations of the previous section to give a
decomposition of a certain tensor product of symmetric powers.
Suppose that n � r. Then, for ↵ 2 Λ(n, r), the module S↵E is injective

and we have

S↵E =
M

�2Λ+(n,r)

I(�)(dλα) (1)

10



where d�↵ = dimL(�)↵, [7, Section 2.1 (8)].
Applying the Schur functor to (1), for any ↵ 2 Λ(n, r), we get

M(↵) =
M

�2Λ+(n,r)

Y (�)(dλα).

Proposition 4.1. Assume n � m � 2. Let µ 2 Λ
+(n) and ⌧ = (u, v) with

u, v � 0. The component of
S�(m)+l⌧E

corresponding to the core �(m) is

M

µ

I(�(m) + lµ)

where the sum is over all partitions µ = (c, d) such that, c+ d = u+ v and
(c� d, u� v) is p-special.

Proof. We note that if, for ⌫ 2 Λ
+(n), the module I(⌫) occurs in S�(m)+l⌧E

then, by (1) above, L(⌫)�(m)+l⌧ 6= 0 and so ⌫ � �(m) + l⌧ . Hence ⌫ has
length at most m. It follows that if ⌫ has core �(m) then ⌫ has the form
�(m) + lµ, for some µ 2 Λ

+(n). The result now follows from (1) above and
Proposition 3.5.

Applying the Schur functor we then obtain the following.

Corollary 4.2. Let µ 2 Λ
+(n). Let m � 2 and ⌧ = (u, v) with u, v � 0.

The component
M(�(m) + l⌧)

corresponding to the core �(m) is

M

µ

Y (�(m) + lµ)

where the sum is over all partitions µ = (c, d) such that c + d = u + v and
(c� d, u� v) is p-special.

5 Adapted partitions and symmetric polynomials

For � 2 Λ
+(n) we write s(�) for the Schur symmetric function corre-

sponding to �. The elements s(�) of ZX(n), as � varies over partitions
with at most n parts, form a Z-basis of the ring of symmetric functions
Z[x1, . . . , xn]

Sym(n) .
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Let � 2 Λ
+(n) be an l-core. For a polynomial G(n)-module V we write

V (�) for the component of V corresponding to �. We write C⇤
� for the

endomorphism of the ring of symmetric functions such that

C⇤

�(s(�)) =

(

s(�), if � has core �;

0, otherwise

for � 2 Λ
+(n).

Lemma 5.1. Let � 2 Λ
+(n) be an l-core. For a finite dimensional polyno-

mial module V we have

chV (�) = C⇤

�(chV ).

Proof. Since both sides are additive on short exact sequences of G(n)-
modules, it is enough to check for a set of polynomial modules that gener-
ate the Grothendieck group of finite dimensional polynomial G(n)-modules.
Hence it is enough to check for V = r(�), � 2 Λ

+(n), and for these modules
it is clear from the definition.

From now on we restrict attention to the case l = 2. The cores available
are the staircase partitions �(m) = (m,m�1, . . . . , 1), m � 0 (where �(0) =
0). We need to keep track of the part of a symmetric function corresponding
to such a partition. To this end we introduce the following notion.

Definition 5.2. Let m be a non-negative integer and � = (�1,�2, . . .) be
a partition. We say that � is m-adapted if �i > m � i, for all i � 1 with
�i > 0.

We write Cm for the additive endomorphism of the ring of symmetric
functions in n variables such that

Cm(s(�)) =

(

s(�), if � is m-adapted;

0, otherwise

for � 2 Λ
+(n).

Lemma 5.3. For a symmetric polynomial g (in n variables) and 0  r  n
we have

Cm+1(gs(1
r)) = Cm+1(Cm(g)s(1r)).

Proof. It is enough to check this for g = s(�) for a partition �, with at most
n parts. By Pieri’s Formula, [16, 5.17], we have

s(�)s(1r) =
X

µ

s(µ)

where the sum is over all partitions µ with at most n parts, whose Young
diagram may be obtained from the Young diagram of � by adding a box in
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each of r distinct rows. Hence we have µi  �i + 1 for each µ appearing in
the above sum.
If � is not m adapted then Cm(s(�)) = 0. Moreover, in this case, we

have �i  m � i for some i, and so, for µ appearing in the above sum we
have µi  �i + 1  (m + 1) � i. Hence, µ is not (m + 1)-adapted and
Cm+1(s(µ)) = 0. Therefore we get Cm+1(s(�)s(1

r)) = 0.
Suppose now that � is m-adapted. Thus we have

Cm+1(Cm(s(�))s(1r)) = Cm+1(s(�)s(1
r))

and we are done.

Proposition 5.4. Let m � 2, a � m and b � m � 1. Then, for all n
sufficiently large, we have

Cm(s(a)s(1b)s(1m�2) . . . s(1))

= s(a+ 1,m� 1, . . . , 2, 1b�m+1) + s(a,m� 1, . . . , 2, 1b�m+2).

Proof. We argue by induction on m. First suppose m = 2. Then

s(a)s(1b) = s(a+ 1, 1b�1) + s(a, 1b)

by Pieri’s Formula. Both (a+1, 1b�1) and (a, 1b) are 2-adapted, so the result
holds in this case.
Now suppose that m � 3 and the result holds for m� 1. By Lemma 5.3

and the induction hypothesis we have

Cm((s(a)s(1b)s(1m�3) . . . s(1))s(1m�2))

= Cm(Cm�1(s(a)s(1
b)s(1m�3) . . . s(1))s(1m�2))

= Cm(s(a+ 1,m� 2, . . . , 2, 1b�m+2)s(1m�2))

+ Cm(s(a,m� 2, . . . , 2, 1b�m+3)s(1m�2)).

But now, again by Pieri’s Formula, for � = (a + 1,m � 2, . . . , 2, 1b�m+2)
we have

s(�)s(1m�2) =
X

µ

s(µ)

where the sum is over all partitions whose diagram is obtained by adding a
box to m � 2 rows of the Young diagram of �. But such a diagram is not
m-adapted unless the boxes are added to rows 2 up to m � 1 and in this
case we have µ = (a+ 1,m� 1, . . . , 2, 1b�m+1). Hence we obtain

Cm(s(a+ 1,m� 2, . . . , 2, 1b�m+2)s(1m�2)) = s(a+ 1,m� 1, . . . , 2, 1b�m+1)

and similarly

Cm(s(a,m� 2, . . . , 2, 1b�m+3)s(1m�2)) = s(a,m� 1, . . . , 2, 1b�m+2)

so we are done.
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We write C⇤
m for C⇤

�(m). We note that for a symmetric polynomial g

contributions to C⇤
m(g) can only come from Schur polynomials s(�) with � an

m-adapted partition. So we have C⇤
m(g) = C⇤

m(Cm(g)). Using Proposition
5.4 it is now easy to verify the following.

Corollary 5.5. Let m � 2, a � m and b � m� 1. Then we have, for all n
sufficiently large,

C⇤

m(s(a)s(1b)s(1m�2) . . . s(1))

=

8

>

>

<

>

>

:

s(a+ 1,m� 1, . . . , 2, 1b�m+1), if a�m is odd and b�m is even;

s(a,m� 1, . . . , 2, 1b�m+2), if a�m is even b�m is odd;

0, otherwise.

Now the module

SaE ⌦
VbE ⌦

Vm�2E ⌦ · · ·⌦
V2E ⌦ E

has a good filtration, e.g. by [6, Section 4, (3)]. Interpreting Corollary 5.5
in terms of G(n)-modules we obtain the following.

Corollary 5.6. Assume that m � 2. Let a � m and b � m � 1. For all n
sufficiently large, the component of the module

SaE ⌦
VbE ⌦

Vm�2E ⌦ · · ·⌦
V2E ⌦ E

corresponding to the core �(m) is:

r(a+ 1,m� 1, . . . , 2, 1b�m+1), if a�m is odd and b�m is even;

r(a,m� 1, . . . , 2, 1b�m+2), if a�m is even b�m is odd;

0, otherwise.

We specialise to the following.

Corollary 5.7. Assume that m � 2. Let a � m and b � m� 1 with a�m
even and b�m odd. Then, for all n sufficiently large, the component of the
module

SaE ⌦
VbE ⌦

Vm�2E ⌦ · · ·⌦
V2E ⌦ E

corresponding to the core �(m) is

r(a,m� 1, . . . , 2, 1b�m+2).
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6 Decomposable Specht modules

We continue to assume that q = �1 and so l = 2. Let n, r � 0 with n � r.
Recall that for ↵ 2 Λ(n, r) we write H(↵) for the subalgebra
H(↵1)⌦ · · ·⌦H(↵n) of H(r) and that we have

f(S↵E) = H(r)⌦H(↵) K

f(Λ↵E) = H(r)⌦H(↵) Ksgn

For finite strings of non-negative integers ↵ = (↵1, . . . ,↵a) and � =
(�1, . . . ,�b) we write (↵ |�) for the concatenation (↵1, . . . ,↵a,�1, . . . ,�b).
Assume that a+ b  n and that deg(↵) = r1, deg(�) = r2 with r = r1 + r2.
Then it follows that

f(S↵E ⌦
V� E) = H(r)⌦H(↵ |�) (K ⌦Ksgn).

But since q = �1 we have that Ksgn
⇠= K, and so

f(S↵E ⌦
V� E) = H(r)⌦H(↵ |�) K = M(↵ |�).

Applying the Schur functor to Corollary 5.7 yields the following result.

Corollary 6.1. Assume that m � 2. Let a � m and b � m� 1 with a�m
even and b�m odd. Then the block component of the module
M(a, b,m� 2, . . . , 2, 1) corresponding to the core �(m) is

Sp(a,m� 1, . . . , 2, 1b�m+2).

Comparing now Corollary 4.2 with Corollary 6.1 we get our main result.

Theorem 6.2. Assume that m � 2. Let a � m and b � m � 1 with
a�m = 2u even and b�m = 2v � 1 odd. Then we have

Sp(a,m� 1, . . . , 2, 1b�m+2) =
M

µ

Y (�(m) + 2µ)

where the sum is over all partitions µ = (c, d) such that c + d = u + v and
(c� d, u� v) is p-special.

We give now an example of such a decomposition to point out that there
is no uniform bound on the number of indecomposable summands.

Example 6.3. Assume that K has characteristic 2. By Theorem 6.2 and
using a simple inductive argument it follows that for k � 1 we have

Sp(2k + 2, 12
k�1) =

k
M

j=1

Y (2k + 2j , 2k � 2j + 1).
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Remark 6.4. We note that in fact we already have a supply of cases in
which Sp(�) is a Young module, namely when � is, in the terminology of
[9], a Young partition, [9, Proposition 3.2 (i)]. However, in these cases the
Sp(�) is the indecomposable Young module Y (�). So these partitions are not
of interest from the point of view of our current investigation.

7 Further Remarks

7.1 Hook partitions

As an immediate application of Theorem 6.2 for m = 2, one obtains a
decomposition for the Specht module Sp(a, 1b) where a is even and b is odd.
We point out here that our method gives also a decomposition of Sp(a, 1b)
when a is odd and b is even. In fact, we have the following result.

Proposition 7.1.1. Let a, b � 1 and assume that a and b have different
parity. Then we have the following decompositions.
(i) For a even and b odd with a = 2 + 2u and b = 2v + 1 we have

Sp(a, 1b) =
M

µ

Y (�(2) + 2µ)

where the sum is over all partitions µ = (c, d), such that c+ d = u+ v and
(c� d, u� v) is p-special.
(ii) For a odd and b even with a = 2u+ 1 and b = 2v we have

Sp(a, 1b) =
M

µ

Y (�(1) + 2µ)

where the sum is over all partitions µ = (c, d), such that c+ d = u+ v and
(c� d, u� v) is p-special.

Proof. (i) This follows directly from Theorem 6.2 with m = 2.
(ii) We consider the tensor product SaE ⌦

VbE. This module decomposes
as

SaE ⌦
VbE = r(a+ 1, 1b�1)�r(a, 1b), (†)

(since the 2-cores �(2) of (a+ 1, 1b�1) and �(1) of (a, 1b) are different).
Applying the Schur functor to (†) we get, as in Section 6,

M(a, b) = Sp(a+ 1, 1b�1)� Sp(a, 1b).

Hence, the block component of M(a, b) corresponding to the core �(1) is
Sp(a, 1b).
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It is easy to see, as in Corollary 4.2, that the block component of M(a, b)
corresponding to the core �(1) is

M

µ

Y (�(1) + 2µ)

where the sum is over all partitions µ = (c, d), such that c + d = u + v
and (c � d, u � v) is p-special. Thus we get the desired decomposition of
Sp(a, 1b).

7.2 More Decomposable Specht Modules

We point out here that the argument giving the decomposition of the
Specht modules described in Theorem 6.2, lays the foundations for the dis-
covery of other families of decomposable Specht modules. We describe such
a case here and take our considerations further in [10]. For simplicity we
assume that K has characteristic 2 throughout this subsection, so that the
Hecke algebra is the group algebra of the corresponding symmetric group.
The Hecke algebras analogues of the results of this section will appear in a
much more general form in [10].

Since K has characteristic 2 there is no need from now on to distinguish
between the irreducible modules L(�) and L̇(�). We will need the following
lemma describing the dimension of some weight spaces for certain irreducible
G(n)-modules.

Lemma 7.2.1. Let n � 3. Let a, b � 2 with a = 2u+ 2 = 4w + 2 ⌘ 2 (mod
4) and b = 2v+1 odd. Let µ be a two part partition with standard expansion
µ = µ0 + 2µ̄. Then

dimL(�(2) + 2µ)(a,b,2)

=

(

2 dimL(µ)(u+1,v) + dimL(2µ̄)(u�2,v), if µ0 = �(2);

2 dimL(µ)(u+1,v), otherwise.

Proof. Since (a, b, 2) has at most 2 parts the weight space multiplicity
dimL(�(2)+ 2µ)(a,b,2) is determined by the case n = 3. The weights for the
G(3)-module L(�(2)) are

(2, 1, 0), (2, 0, 1), (0, 2, 1), (0, 1, 2), (1, 0, 2), (1, 2, 0), (1, 1, 1) (⇤)

(with (1, 1, 1) appearing with multiplicity 3 and all other weights with mul-
tiplicity 1) e.g. by considering the Schur function s(2, 1, 0). Since a is even
and b is odd the only weights in this list that can contribute to the (a, b, 2)
weight space of L(�(2)+2µ) = L(�(2))⌦L(µ)F are (2, 1, 0) and (0, 1, 2). In
these cases we can have (a, b, 2) = (2, 1, 0) + 2⇢ and (a, b, 2) = (0, 1, 2) + 2⇠,
with ⇢ = (2w, v, 1) and ⇠ = (2w + 1, v, 0). Therefore we get
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dimL(�(2) + 2µ)(a,b,2) = dimL(µ)(2w,v,1) + dimL(µ)(2w+1,v). (†)

The possibilities for µ0 are (0, 0), (1, 0), (1, 1), (2, 1) and we consider these
in turn.

Case (i) : µ0 = (0, 0).
The we have L(µ) = L(µ̄)F , which only has even weights divisible by 2 so

that
dimL(µ)(2w,v,1) = dimL(µ)(2w+1,v) = 0

and the assertion of the Lemma holds.

Case (ii): µ0 = (1, 0).
The weights of L(1, 0, 0) are (1, 0, 0), (0, 1, 0), (0, 0, 1) (with multiplicity 1)

and Steinberg’s tensor product theorem implies that any weight of L(µ) has
precisely one odd entry. We may assume that v = 2z is even (for otherwise
the weight space multiplicity given by the statement of the lemma and by
(†) is 0). Now (†) and Steinberg’s tensor product theorem gives

dimL(�(2)+2µ)(a,b,2) = dimL(µ̄)(w,z)+dimL(µ̄)(w,z) = 2dimL(µ)(2w+1,v).

Case (iii): µ0 = (1, 1).
Similar to (ii).

Case (iv): µ0 = (2, 1).
If v is odd then, by (*), there are no weights of L(µ0) which have precisely

two odd entries. Steinberg’s tensor product theorem then implies that

dimL(µ)(2w,v,1) = dimL(µ)(2w+1,v) = L(µ̄)(2w�2,v) = 0

and the assertion holds. Thus we assume v = 2z is even. Then (⇤) and
Steinberg’s tensor product theorem gives

dimL(µ)(2w,v,1) = dimL(µ̄)(w�1,z) + dimL(µ̄)(w,z�1)

and
dimL(µ)(2w+1,v) = dimL(µ̄)(w,z�1).

Hence from (†) we have

dimL(�(2) + 2µ)(a,b,2) = 2dimL(µ̄)(w,z�1) + dimL(µ̄)(w�1,z)

= 2dimL(µ)(2w+1,v) + dimL(2µ̄)(2w�2,v).

(We have assumed w > 0. If w = 0 the calculation gives
dimL(�(2) + 2µ)(a,b,2) = 2dimL(µ)(1,v) and the desired result still holds
since (�2, 0) is not a weight of a polynomial module so L(2µ̄)(�2,0) = 0.)

This completes the analysis of all the cases and concludes the proof.
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Proposition 7.2.2. Let a � 4, b � 3 with a = 2u+2 ⌘ 2 (mod 4) even and
b = 2v + 1 odd. Then

Sp(a, 3, 1b�1) =
M

µ

Y (�(2) + 2µ) �
M

⇢

Y (�(2) + 2⇢)

where the sums are over all partitions µ and ⇢ such that:
µ = (µ1, µ2, 1), µ1 + µ2 = u+ v and (µ1 � µ2, u� v) is 2-special; and
⇢ = (⇢1, ⇢2) with ⇢ = �(2)+2⇢̄, 2(⇢̄1+⇢̄2) = u+v�2 and (2(⇢̄1�⇢̄2), u�v�2)
is 2-special.

Proof. We consider the G(n)-module SaE ⌦
VbE ⌦ S2E, for n sufficiently

large. This has the following decomposition

SaE ⌦
VbE ⌦ S2E = (r(a+ 1, 1b�1)⌦ S2E)� (r(a, 1b)⌦ S2E)

(since the 2-cores �(1) of (a+ 1, 1b�1) and �(2) of (a, 1b) are different).
Now using Pieri’s Formula we can easily see that the component of r(a+

1, 1b�1)⌦ S2E corresponding to the core �(2) is just r(a+ 2, 1b).
Let V be the component of the module r(a, 1b)⌦ S2E corresponding to

the core �(2). Then V has a good filtration and again by Pieri’s Formula
we see that V actually fits in the short exact sequence

0 ! r(a, 3, 1b�1) ! V ! r(a+ 2, 1b) ! 0.

By [7, Section 4.2 (17)], one has that

Ext1G(n)(r(a+ 2, 1b),r(a, 3, 1b�1)) = Ext1G(2)(r(a+ 1),r(a� 1, 2))

and since a ⌘ 2 (mod 4), we have that Ext1G(2)(r(a + 1),r(a � 1, 2)) = 0,

see for e.g. [8, Corollary 5.12]. Therefore, V = r(a, 3, 1b�1)�r(a+ 2, 1b).
Hence, the block component of SaE ⌦

VbE ⌦ S2E corresponding to the
core �(2) is

r(a, 3, 1b�1)�r(a+ 2, 1b)�r(a+ 2, 1b).

Now as in Sections 4 and 6, applying the Schur functor to the G(n)-
module SaE ⌦

VbE ⌦S2E and projecting onto the to the block component
of M(a, b, 2) corresponding to the core �(2), we get

Sp(a, 3, 1b�1)� Sp(a+ 2, 1b)� Sp(a+ 2, 1b) =
M

µ

Y (�(2) + 2µ)(dµ)

where the sum is over all partitions µ = (µ1, µ2, µ3) with
dµ = dimL(�(2) + 2µ)(a,b,2) 6= 0.
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Assume first that µ3 6= 0. If L(�(2) + 2µ)(a,b,2) 6= 0, then (a, b, 2) 

�(2) + 2µ and so we must have µ3 = 1. Thus

dimL(�(2) + 2µ)(a,b,2) = dimL(�(2) + 2(µ� !(3)))(a�2,b�2)

= dimL(2(µ� !(3)))(a�4,b�3).

Now

dimL(2(µ� !(3)))(a�4,b�3) = dimL(µ1 � 1, µ2 � 1)(u�1,v�1)

and by Lemma 3.2 this dimension is 1 if (µ1 � µ2, u� v) is 2-special and 0
otherwise.
Assume now that µ3 = 0 and so µ = (µ1, µ2). Then Lemmas 7.2.1 and

3.2 give the dimension of L(�(2) + 2(µ1, µ2))
(a,b,2).

Putting these two points together we conclude that the direct sum
Sp(a, 3, 1b�1)� Sp(a+ 2, 1b)� Sp(a+ 2, 1b), decomposes as

M

µ

Y (�(2) + 2µ) �
M

⌫

Y (�(2) + 2⌫)(2) �
M

⇢

Y (�(2) + 2⇢), (1)

where the sums are over all partitions µ, ⌫ and ⇢ respectively such that,
µ = (µ1, µ2, 1), µ1 + µ2 = u+ v and (µ1 � µ2, u� v) is 2-special;
⌫ = (⌫1, ⌫2), ⌫1 + ⌫2 = u+ v + 1 and (⌫1 � ⌫2, u� v + 1) is 2-special;
⇢ = (⇢1, ⇢2) with ⇢ = �(2)+2⇢̄, 2(⇢̄1+⇢̄2) = u+v�2 and (2(⇢̄1�⇢̄2), u�v�2)
is 2-special.
On the other hand, by Theorem 6.2, Sp(a+ 2, 1b) decomposes as

M

⌫

Y (�(2) + 2⌫), (2)

where the sum is over all partitions ⌫ = (⌫1, ⌫2) such that ⌫1+⌫2 = u+v+1
and (⌫1 � ⌫2, u� v + 1) is 2-special.

Comparing now the decompositions given by (1) and (2) we get

Sp(a, 3, 1b�1) =
M

µ

Y (�(2) + 2µ) �
M

⇢

Y (�(2) + 2⇢)

where the sums run over all partitions µ and ⇢ as described in the statement
of the proposition.

Remark 7.2.3. Proposition 7.2.2 gives many new decomposable Specht
modules of the form Sp(a, 3, 1b) which do not appear in the list of Dodge
and Fayers, [4, Theorem 3.1 and Corollary 3.2]. For instance we have the
following example.

Example 7.2.4. For a = 14 and b = 9 we have

Sp(14, 3, 18) = Y (14, 9, 2)� Y (18, 5, 2)� Y (14, 11).
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Of course we can now obtain new decomposable Specht modules by con-
sidering the linear duals of the modules appearing above. More precisely,
by [12, Theorem 8.15], in characteristic 2, Sp(�)⇤ = Sp(�0), where Sp(�)⇤ is
the linear dual of Sp(�) and �0 is the transpose of the partition �. Moreover
the Young modules are self-dual. So by considering the linear duals of the
modules appearing in Proposition 7.2.2 we get the following result.

Corollary 7.2.5. Let a � 4, b � 3 with a = 2u + 2 ⌘ 2 (mod 4) and
b = 2v + 1 odd. Then

Sp(b+ 1, 2, 2, 1a�3) =
M

µ

Y (�(2) + 2µ) �
M

⇢

Y (�(2) + 2⇢)

where the sums are over all partitions µ and ⇢ such that,
µ = (µ1, µ2, 1), µ1 + µ2 = u+ v and (µ1 � µ2, u� v) is 2-special; and
⇢ = (⇢1, ⇢2) with ⇢ = �(2)+2⇢̄, 2(⇢̄1+⇢̄2) = u+v�2 and (2(⇢̄1�⇢̄2), u�v�2)
is 2-special.
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