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Abstract

Turbulence observations over an Indian region are used to examine the obser-

vational behaviour of stability-correction functions for momentum (φm) and

heat (φh) under stable conditions within the framework of Monin–Obukhov
similarity theory. The φm is observed to follow the linear functional form in

the case of near-neutral to moderately stable conditions. However, φm is found

to increase with a relatively slower rate as compared with the linear form in

strongly stable conditions. A large scatter in φh is observed with the near-

neutral condition, and they tend to level off in very stable conditions. The opti-

mized co-efficients appearing in the functional form of φm suggested by

Grachev et al. in 2007 are derived using turbulence observations. The present

study recommends the use of these optimized functional forms of φm and φh

for the estimation of surface fluxes over an Indian region in atmospheric

models.
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1 | INTRODUCTION

The lowest part of the atmospheric boundary layer,
wherein the surface fluxes vary by < 10% of their magni-
tude, is known as an atmospheric surface layer (ASL)
(Stull, 1988). The parameterization of the surface layer
turbulent fluxes is required in atmospheric weather
and climate models. The Monin–Obukhov similarity the-
ory (MOST; Monin and Obukhov, 1954) is normally
applied to parameterize the surface fluxes in the atmo-
spheric models (Arya, 1988; Garratt, 1994; Mahrt, 1998;
Skamarock et al., 2008; Jimenez et al., 2012; Pielke, 2013;
Zhang et al., 2015). The dimensionless stability-correction

functions for wind and temperature, φm and φh, respec-
tively, are the key parameters in the estimation of surface
fluxes in atmospheric models. According to the MOST,
φm and φh are universal functions of Monin–Obukhov
stability parameter ζ. However, the theory does not pro-
vide the exact functional form of these functions, except
certain asymptotic predictions in the case of near-neutral
and very stable/unstable conditions. Various functional
forms of these functions have been developed over the
years by analysing the turbulence measurements over dif-
ferent sites in various atmospheric conditions while keep-
ing the theoretical asymptotic limit imposed by the
MOST as primary constraints on the nature of these
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functions (Grachev et al., 2007a). However, the applica-
bility of these “site-specific” empirical functional forms
in different stability regimes is still debatable (Grachev
et al., 2007a; Luhar et al., 2009; Srivastava and Sharan,
2019). Furthermore, these empirical stability-correction
functions are not systematically evaluated over the
Indian subcontinent. In order to validate the parameteri-
zation schemes and possible modification over the Indian
subcontinent, several field experiments were carried out.
Data acquired from the field experiments over the Indian
subcontinent and various other independent micro-
meteorological towers installed at different sites were
used periodically in order to study the turbulent charac-
teristics over the subcontinent (Ramachandran et al.,
1994; Rao et al., 1996; Krishnan and Kunhikrishnan,
2002; Ramana et al., 2004; Rao and Narasimha, 2006;
Patil, 2006; Aditi and Sharan, 2007; Bhat and Narasimha,
2007; Tyagi et al., 2012; Srivastava and Sharan, 2015;
Reddy and Rao, 2016; Sharan and Srivastava, 2016; Rao
and Reddy, 2019). This has led to the improved under-
standing of boundary/surface layer features over land as
well as ocean surfaces. However, to the present authors’
knowledge, no attempt has been made to analyse the
functional behaviour of the stability-correction functions
over the Indian region. It is generally assumed that the
MOST, if it works, removes the dependency on geograph-
ical location or subregion. Consequently, various MOST-
based functional forms such as normalized turbulence
quantities and the stability-correction functions should
exhibit a universal behaviour independent of the regional
features of the measurement site. However, owing to the
empirical nature of the stability-correction functions and
complex physical phenomenon occurring in the weak
wind-stable boundary layer, there is still a need to evalu-
ate the existing functional forms of these functions for
application in numerical models. Further, some of the
recent studies have questioned the applicability of exis-
ting stability-correction functions in a theoretical frame-
work (Sharan and Kumar, 2011; Srivastava and Sharan,
2019). Sharan and Kumar (2011) have pointed out the
unphysical non-monotonic nature of drag co-efficient in
the stable boundary layer predicted by various nonlinear
stability-correction functions and deduced a limit of
applicability of these empirical functions in a theoretical
framework. Recently, Srivastava and Sharan (2019) have
pointed out the inconsistency of the various functional
forms of φm in the light of the occurrence of unusual sec-
ond maxima in the heat flux and stability relationship,
which originates from a too quick levelling off of the
function φm. They argued that the functional forms of φm

should be revised to make the secondary peak appearing
in the heat flux and stability relationship less pro-
nounced. Based on the findings of Srivastava and Sharan,

an attempt is made in the present paper to analyse the
observed functional behaviour of the stability-correction
functions to make them consistent for use in the estima-
tion of surface fluxes over an Indian region.

2 | FORMAL BACKGROUND

According to the MOST, in a homogeneous and station-
ary surface layer, the gradients of mean wind speed and
virtual potential temperature profiles behave as:

kz
u*

∂U
∂z

=φm ζð Þ ð1Þ

kz
θ*

∂θv
∂z

=φh ζð Þ, ð2Þ

where k is the von Karman constant; z is the height
above the ground; u* and θ* are, respectively, friction
velocity and the temperature scales; and φm and φh are,
respectively, the non-dimensional similarity functions.
U and θv, respectively, represent wind speed and temper-
ature at measurement level z. The Monin–Obukhov sta-
bility parameter ζ is defined as:

ζ=
kzg
�θv

θ*
u2*

ð3Þ

where �θv is the mean virtual temperature (K).
The functions φm and φh have the form:

φm ζð Þ= 1+ βmζð Þ ð4Þ

φh ζð Þ=Prt 1+ βhζð Þ, ð5Þ

where βm and βh are constants; and Prt is the turbulent
Prandtl number indicating the dissimilarity between the tur-
bulent transfer of momentum and sensible heat (Grachev
et al., 2007a; Li, 2019). In other words, the turbulent Prandtl
number also describes a ratio between the stability-
correction functions of heat and momentum as Prt = φh/
φm. The dependency of the turbulent Prandtl number on
the extent of stability of the stable atmosphere is still a point
of uncertainty. The contradictory nature of Prt with stability
has been reported in several studies depending upon the
parameter, which is being used to quantify the extent of sta-
bility of the ASL and amount of self-correlation (Grachev
et al., 2007b). The commonly used stability parameters are
the Monin–Obukhov stability parameter ζ, the gradient
Richardson number Ri, the flux Richardson number Rif and
the bulk Richardson number RiB. From the analysis of the
Surface Heat Budget of the Arctic Ocean (SHEBA)
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experiment data set, Grachev et al. (2007b) argued that Prt
decreases with increasing stability and it remains < 1 in
very stable conditions, provided that RiB is used to classify
the stability of the atmospheric boundary layer. For other
stability parameters, the Prt shows contradictory behaviour
due to self-correlation (Grachev et al., 2007b). The linear
functional form (Equations 4 and 5) can also be treated as a
blending between the two extreme stability conditions:
(a) neutral stability in which φm = φh = 1; and (b) very sta-
ble conditions in which turbulence does not effectively com-
municate with the underlying surface and the height above
the surface becomes an insignificant scaling parameter
(Grachev et al., 2013), leading to the expression φm, h = βm,

hζ. The concept that height above the surface is not a
relevant scaling parameter for the MOST relationship
in very stable conditions is termed a local z-less scaling
concept (Wyngaard, 2010; Grachev et al., 2013). The validity
of these linear functions in ζ is limited to ζ ≤ ζc, where ζc is
usually taken as being of the order of 1. To overcome the
limitation of linear functional forms of the similarity func-
tions, various nonlinear expressions for φm and φh have
been proposed by researchers over the years (Clarke, 1970;
Hicks, 1976; Holtslag and De Bruin, 1988; Beljaars and
Holtslag, 1991; Cheng and Brutsaert, 2005; Grachev et al.,
2007a). Those can be used for the computation of surface
fluxes under near-neutral to very stable conditions. Sharan
and Kumar (2011) have pointed out that the functions
suggested by Holtslag and De Bruin (1988), Cheng and
Brutsaert (2005), and Grachev et al. (2007a) are “theoreti-
cally” valid for the entire range of stability. Recently, the
stability-correction functions suggested by Cheng and
Brutsaert (2005) are introduced in the fifth-generation Penn-
sylvania State University–National Center for Atmospheric
Research Mesoscale Model (MM5) parameterization
(Grell, Dudhia, Stauffer, 1994) to parameterize surface fluxes
under stable conditions in the Weather Research and Fore-
cast (WRF) model while those suggested by Grachev et al.
(2007a) are being used in the boundary layer studies over
the Arctic region (Gryanik and Lupkes, 2018).

3 | A BRIEF DESCRIPTION OF
SITE AND DATA SET

This section describes the data set and estimates the tur-
bulence quantities in parallel to that of Sharan and
Srivastava (2016) and Srivastava and Sharan (2019).

Data from a fast-response sensor (CSAT3 Sonic ane-
mometer) installed at 10 m height at the Birla Institute
of Technology Mesra in Ranchi (23.412� N, 85.440� E),
India, with an average elevation 609 masl (http://odis.
incois.gov.in/index.php/project-datasets/ctcz-programme/

data) (Dwivedi et al., 2014) are used. Turbulence measure-
ments at 10 Hz frequency for 2009 are used to calculate
the hourly fluxes using the eddy covariance technique
(Srivastava and Sharan, 2015; Sharan and Srivastava,
2016). Friction velocity u* is calculated using:

u* = �u0w0ð Þ2 + �v0w0ð Þ2
h i1=4

, ð6Þ

where u' , v' and w' are, respectively, the fluctuations in
longitudinal, lateral and vertical wind components. The
stability parameter ζ is calculated from Equation 3.

The slow measurements (1 Hz) of multilevel wind
and temperature observations are used to evaluate the
vertical wind and temperature gradients (Equations 1 and
2). These gradients are obtained by fitting the following
second-order polynomials through a 1 hr profile similar
to Grachev et al. (2005) and Srivastava and Sharan (2019):

U zð Þ= a0 + a1 lnzð Þ+ a2 lnzð Þ2 ð7Þ

θv zð Þ= b0 + b1 lnzð Þ+ b2 lnzð Þ2, ð8Þ

where U(z) and θv(z), respectively, are the wind speed
and temperature at measurement level z. The hourly
averaged wind and temperature observations obtained at
1, 2, 4, 8, 16 and 32 m heights are used to evaluate the
unknown co-efficients ais and bis using a classical least-
squares approach; the hourly wind and temperature
gradients are then estimated. Notice that in the current
formulations, the mean wind defined by Equation 7 does
not satisfy the “no-slip” condition at the ground surface.
Similarly, the virtual potential temperature in Equation 8
does not retrieve the surface temperature at the ground
surface. Thus, instead of fitting these mean variables as a
function of z only, one can fit the multilevel wind and
temperature observations as functions of dimensionless
heights z/z0 and z/zh, where z0 and zh are, respectively,
aerodynamic and thermal roughness lengths. However,
this requires the estimation of roughness lengths of heat
and momentum. The estimation of the roughness length
of heat would require the surface temperature, which is
not available for the current measurement site. Further,
large variability in the roughness lengths would intro-
duce even more uncertainty in the estimated gradients.

The gradient and flux Richardson numbers are
derived, respectively, using:

Ri=
g
�θv

∂θv=∂z

∂U=∂zð Þ2 ð9Þ
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Rif = −
g
�θv

� � �w0θv0
� �

u2* ∂U=∂zð Þ , ð10Þ

The correction functions φm and φh are calculated using
Expressions (1) and (2). The flux Richardson number is
the ratio of the buoyancy term to the shear term of the
turbulent kinetic energy (TKE) budget equation. The
TKE budget equation suggests that for continuous turbu-
lence, the flux Richardson number should be < 1. For the
data presented here, there is a significant amount of data
points for which Rif > 1 (Figure 1). Luhar et al. (2009)
have argued that Rif > 1 is generally associated with the
non-homogenous or unsteady state conditions in which
the MOST is inapplicable. Grachev et al. (2013) have
suggested that the local MOST is applicable only in the
regime for which both the gradient and flux Richardson
numbers are less than the critical value 0.25. Based on
the approach of Grachev et al. (2013) and used by
Srivastava and Sharan (2019), the present study considers

two subsets of data: (1) filtered data for which the gradi-
ent and flux Richardson numbers are < 0.25; and
(1) the whole data set. For the filtered data set, ζ < 1.5
(Figure 1a), while for the whole data, very large ζ,
reaching an approximate order of hundreds (Figure 1b).

4 | FLUX-PROFILE
RELATIONSHIP

The section discusses first the observed variation of φm,
followed by the analysis of observed nature of φh with
stability parameter ζ for the filtered data set. Further, the
observed nature of both φm and φh will be analysed for
the whole data set without imposing the prerequisite on
the flux and gradient Richardson numbers. Since the φm,
φh and ζ cover a wide range of values, logarithmic axes
are chosen in some of the graphs for a better representa-
tion of the results.

Figure 2 shows the stability function of momentum
(φm) plotted versus the Monin–Obukhov stability parame-
ter ζ for Ranchi for the filtered data set. The averages of
φm are computed in equally spaced stability bins within
each decade in the stability, which is shown with red tri-
angles. The linear similarity function φm = 1 + βmζ with
βm = 4.7 (Businger et al., 1971) is drawn with a green
line, while the dotted green line represents the linear
function in an extended range beyond the range of its
applicability, that is, ζ ≤ 1. The functional form suggested
by Cheng and Brutsaert (2005) based on CASES-99 data
is plotted with a red line for comparison. Figure 2a sug-
gests that in near-neutral to moderately stable conditions
(0 < ζ < 0.5), the φm increases with increasing stability
following the classical linear functional form and Cheng
and Brutsaert (2005) functional form with a similar slope.
However, from moderately to strongly stable conditions
(0.5 < ζ < 2.0), the φm increases with a relatively slower
rate as compared with that predicted by the linear func-
tional form. Based on the analysis of field data over vari-
ous sites, a wide range of βm have been reported in the
literature. For example, Brutsaert (1982) has rec-
ommended βm = 5; Foken (2006) has documented that
βm = 6 is generally used for operational purposes. All the
other larger βm support the present argument that φm is
observed to increase with a relatively slower rate as com-
pared with that predicted by linear functional form for
ζ > 0.5. The observed φm are relatively small as com-
pared with that shown by the functional form suggested
by Cheng and Brutsaert (2005) in the range 0.5 < ζ < 2.0.
Figure 2b shows the variation of φm with ζ for the whole
data. As expected, a relatively large scatter in φm is found
to occur as compared with that obtained for the filtered
data set. The φm are observed to increase with increasing

FIGURE 1 Variation of flux Richardson number Rif with

stability parameter ζ for (a) filtered data and (b) whole data. The

corresponding bin-averaged data are shown with red triangles. The

green line represents the theoretical Rif = ζ/φm for linear similarity

function φm = 1 + βmζ (Businger et al., 1971). The dotted green line

represents the corresponding values in an extended range of φm

beyond the range of applicability of linear form, that is, ζ ≤ 1. The

dark blue line shows the Rif obtained using the functional form of

φm suggested by Grachev et al. (2007a)
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stability at a relatively slower rate as compared with that
suggested by the filtered data set. Note that the slow vary-
ing nature of φm is a well-documented fact (Webb, 1970;
Holtslag and De Bruin, 1988; Beljaars and Holtslag,
1991). Based on the analysis of the famous CASES-99
data, Cheng and Brutsaert (2005) noted the slow increas-
ing nature of φm with stability for ζ > 1 and they devel-
oped new functional forms of φm and φh. In fact, this
nature is discussed in detail by Srivastava and Sharan
(2019). Almost all the earlier studies agree with the pre-
diction of the linear functional form for small ζ. How-
ever, most of the earlier observations have pointed out a
“level-off” characteristic for φm at higher stability (Webb,
1970; Cheng and Brutsaert, 2005), which suggests that
φm becomes asymptotically constant at higher stability
(Figure 2b). The assumption of Webb (1970) regarding a
zero slope for ζ > 1 results in a constant φm for ζ > 1.

Cheng and Brutsaert (2005) have also pointed out that φm

asymptotically attains a constant value. This “level-off”
nature leads to a “complete departure” of φm’s function
from the prediction of linear functional form suggested by
Businger et al. (1971) in an extended range of ζ.

Recently, Srivastava and Sharan (2019) have argued
that the functional form of φm suggested by Grachev
et al. (2007a) is relatively more appropriate and consis-
tent for application in numerical models. The functional
form of φm is given by:

φm ζð Þ=1+
amζ 1+ ζð Þ13
1 + bmζ

: ð11Þ

where the co-efficients am and bm take am = 5 and
bm = am/6.5. To develop an observation-based functional

FIGURE 2 (a) Non-dimensional vertical gradients of mean wind speed φm plotted versus the Monin–Obukhov stability parameter ζ for

Ranchi (India) for the filtered data set. The corresponding bin-averaged data are shown with red triangles. The green line represents a linear

similarity function φm = 1 + βmζ (Businger et al., 1971). The dotted green line represents the linear function in an extended range beyond

the range of its applicability, that is, ζ ≤ 1. The dark blue line is the best-fit curve obtained using the functional form suggested by Grachev

et al. (2007a) with modified unknown co-efficients. The red line represents the functional form suggested by Cheng and Brutsaert (2005)

based on CASES-99 data. (b) Non-dimensional vertical gradients of mean wind speed φm plotted versus the Monin–Obukhov stability
parameter ζ for Ranchi for the whole data. The corresponding bin-averaged data are shown with red triangles. The green line represents a

linear similarity function φm = 1 + βmζ (Businger et al., 1971). The dotted green line represents the linear function in an extended range

beyond the range of its applicability, that is, ζ ≤ 1. The dark blue line represents the best-fit curve obtained for filtered data as in (a). The

violet line is the best-fit curve obtained for the whole data. The red line represents the functional form suggested by Cheng and Brutsaert

(2005) based on CASES-99 data. (c) As for (a), but for a combination of universal functions φm and φw as φmφ
−1
w = kz

σw

� �
∂U
∂z , which is not

affected by the self-correlation. The dotted green line represents the ratio of φm = 1+ βmζ (Businger et al., 1971) and φw = 1.25(1+ 0.2ζ)

(Kaimal and Finnigan, 1994). The dark blue line represents the ratio of φm ζð Þ=1+ 5:4ζ 1+ ζð Þ13
1+ 0:89ζ , (Grachev et al., 2007a, with optimized co-

efficients) and φw = 1.21(1+ 1.34ζ)1/3 (the best-fit curve for the present filtered data set)
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form of the φm function, the functional form suggested
by Grachev et al. was adopted and the optimal unknown
co-efficients am and bm were estimated for the data taken
in the present study. These are am = 5.4 and bm = 0.89
for the filtered data set. In Figure 2, the dark blue line
represents the functional form suggested by Grachev
et al. (Equation 11) with these optimal unknown co-effi-
cients. This curve shows good agreement with the indi-
vidual as well as the bin-averaged observational data.
The updated φm function has a relatively smaller slope as
compared with that shown by the linear form of φm func-
tion in strongly stable conditions. However, in the case of
the whole data set in which no prerequisites for flux and
gradient Richardson number are applied, both the linear
as well as a functional form of φm derived from the fil-
tered data are found to overestimate φm (Figure 2b). In
such a condition, the optimal co-efficients appearing in
the functional form of Grachev et al. (Equation 11) are
am = 2.67 and bm = 0.27, and the curve obtained
with these modified co-efficients shows good agreement

with the observational data (Figure 2b). However, the
functional form of φm with these co-efficients does not
satisfy the condition proposed by Srivastava and Sharan
(2019), which is required for a consistent relationship
between heat flux and stability parameter within the
framework of the MOST. This is associated with the fact
that φm’s are observed to increase with ζ at a very slow
rate. Note that the critical Rif is close to 0.25 for continu-
ous turbulence and larger Rif’s are generally associated
with the weak and intermittent turbulence (Beljaars and
Holtslag, 1991). Grachev et al. (2013) found the collapse
of the inertial subrange for Rif > 0.25 with the existence
of some small-scale turbulence. Thus, an extremely
slower rate of increase as well as the levelling-off charac-
teristic of the φm function with ζ, as observed in the pre-
sent data set and earlier studies, is associated with the
regime in which the MOST is not applicable in its present
form. Figure 3a shows the stability functions of heat φh

plotted versus ζ for the filtered data set. Similar to
Figure 2a, the bin-averaged data are shown with red

FIGURE 3 (a) Non-dimensional vertical gradients of mean temperature φh plotted versus the Monin–Obukhov stability parameter ζ for

Ranchi (India) for the filtered data set. The corresponding bin-averaged data are shown with red triangles. The green line represents a linear

similarity function φh = 1 + βhζ (Businger et al., 1971). The dotted green line represents the linear function in an extended range beyond the

range of its applicability, that is, ζ ≤ 1. The dark blue line is the best-fit curve obtained using the functional form suggested by Grachev et al.

(2007a). The red line represents the functional form suggested by Cheng and Brutsaert (2005) based on CASES-99 data. (b) As for (a), but for

whole data. (c) As for (a), but for a combination of universal functions φh and φθ as φhφ
−1
θ = kz

σθ

� �
∂θ
∂z, which is not affected by the self-

correlation. The dotted green line represents the ratio of φh = 1+ βhζ (Businger et al., 1971) and φθ = 2.0(1+ 0.5ζ)−1 (Kaimal and Finnigan,

1994). The dotted red line represents the ratio of φh ζð Þ=1+ 5ζ+5ζ2

1+ 3ζ+ ζ2
, (Grachev et al., 2007a, with optimized co-efficients) and φθ = 18.0(1

+ 28.1ζ)−0.5 (fitted curve for present filtered data set)
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triangles. The linear form of the φh function is represen-
ted by a green line. The dotted green line represents the
linear function in an extended range beyond the range of
its applicability, that is, ζ ≤ 1. The dark blue line is the
curve obtained using the functional form suggested by
Grachev et al. (2007a). The red line represents the func-
tional form suggested by Cheng and Brutsaert (2005).
The φh’s show a relatively large scatter than those
obtained for φm. The unexpectedly large φh along with a
large scatter in the near-neutral conditions have also
been reported in earlier studies (Yagüe et al., 2006;
Grachev et al., 2007a; Park et al., 2009). Yagüe et al.
(2006) have pointed out that the scatter in φh may be
associated with the fact that the potential temperature
gradient can be very small in the near-neutral conditions,
leading to larger errors in the estimation of φh. The devia-
tions in φh are found to be very large in the case of near-
neutral to moderately stable conditions, and it is hard to
predict a functional dependence of φh on stability. There
is a relatively less scatter in φh for ζ > 0.5 and it shows a
levelling-off characteristic at a relatively higher ζ-
(Figure 3a). The φh’s show an even more larger scatter
with ζ for the whole data set as compared with the fil-
tered data set (Figure 3b). None of the existing formula-
tions can capture the behaviour of the φh observed in the
present data set. Notice that φh is directly proportional to
∂θ/∂z and inversely proportional to θ*. The variation of
φh with respect to ∂θ/∂z and θ* has been analysed sepa-
rately to find the possible cause of the large scattering in
φh (data not shown). It is observed that the scatter in φh,
which occurs in the case of near-neutral conditions as
well as other stability regimes with a relatively large φh,
is better correlated with the scatter in ∂θ/∂z. In the inter-
mediate range for φh, both ∂θ/∂z and θ* appear to be
equally responsible for the scatter in φh, while for a
smaller φh, θ* appears to be the dominant factor in the
scattering in φh. Owing to the large scatter and associated
uncertainty in the estimation of φh in the near-neutral
condition, it is not obvious to propose a functional form
of φh for a full range of ζ for this data set. However, for
consistency with the functional form of φm suggested
above, it is recommend to use the function φh proposed
by Grachev et al. (2007a) in its existing form for applica-
tion purposes over the Indian region.

One can speculate that a functional dependency of
φm on stability parameter ζ might be associated with the
self-correlation due to the shared variables u* and θ* in
both the dependent (φm,h) and independent (ζ) variables.
To overcome the impact of spurious correlation on the
analysis of the functional forms of φm and φh with ζ, the
methodology suggested by Grachev et al. (2013) in which
the shared variable is replaced by another universal func-
tion was adopted. In the analysis of φm with ζ, friction

velocity u* comes as a common variable which is rep-
laced using another universal functional form of the nor-
malized standard deviation of the vertical wind velocity
fluctuation σw as σw/u* = φw. This leads to:

kz
σw

∂U
∂z

=φmφw
−1:

Similarly for φh:

kz
σθ

∂θ

∂z
=φhφθ

−1,

where σθ is the standard deviation of the temperature
fluctuations; and φθ is the corresponding stability-
dependent functional form. The problem of self-
correlation can be overcome in such a hybrid representa-
tion of φm and φh. Babi�c et al. (2016) have found that an
increase in φmφ

−1
w is slower than that predicted by the

linear functional form of φm. Thus, the analysis presented
by Babi�c et al. suggests that a relatively slow rate in the
increase of φm is not caused by self-correlation.

Figure 2c shows the variation of kz
σw

� �
∂U
∂z with ζ in

which the dotted green line represents φmφw
−1 with

φm = 1+ βmζ (Businger et al., 1971) and φw = 1.25
(1+ 0.2ζ) (Kaimal and Finnigan, 1994). The continuous

blue line represents φmφw
−1 with φm ζð Þ=1+ 5:4ζ 1+ ζð Þ13

1+ 0:89ζ ,

(Grachev et al., 2007a) and φw = 1.21(1+ 1.34ζ)1/3, which
is the best-fit curve for the present filtered data set. Simi-

larly, Figure 3c shows the variation of kz
σθ

� �
∂θ
∂z with ζ in

which the dotted green line represents φhφθ
−1 with

φh = 1+ βhζ (Businger et al., 1971) and φθ = 2.0
(1+ 0.5ζ)−1 (Kaimal and Finnigan, 1994). The continuous

blue line represents φhφθ
−1 with φh ζð Þ=1+ 5ζ+5ζ2

1+ 3ζ+ ζ2
,

(Grachev et al., 2007a) and φθ = 18.0(1+ 28.1ζ)−0.5; it is
the best-fit curve for the present filtered data set. In the
case of normalized wind shear (Figure 2c), no substantial
changes are observed in the amount of scattering as com-
pared with that observed for the φm versus ζ plot
(Figure 2a), suggesting that the proposed formulation of
φm is not affected by self-correlation. This is consistent
with the findings of Babi�c et al. (2016) and Grachev et al.
(2018). Further, the combination of the functional form
of φm and φw suggested here can capture the observed

functional dependence of kz
σw

� �
∂U
∂z with ζ. However, in the

case of the temperature gradient, a relatively smaller scat-

ter is observed in the plot of kz
σθ

� �
∂θ
∂z with ζ (Figure 3c) in

near-neutral conditions as compared with that observed
in φh vs ζ plot (Figure 3a), indicating a possible presence
of spurious correlation between the φh and ζ relationship,
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specifically in near-neutral conditions. In addition,
the combination of the functional forms of φh and φθ

suggested here fails to capture the observed functional

dependence of kz
σθ

� �
∂θ
∂z with ζ in a quantitative manner.

This can be attributed to the fact that both the functional
forms of φh and φθ (plot not shown) show a relatively
weak dependence on stability parameter ζ.

5 | CONCLUSIONS

Turbulence observations over an Indian region are used for
the analysis of observational-based functional forms of
stability-correction functions for momentum (φm) and heat
(φh) commonly used for the estimation of surface fluxes in
atmospheric models. The approach of Grachev et al. (2013)
is followed to filter out the cases in which the Monin–
Obukhov similarity theory (MOST) is, in general, assumed
to be invalid. The filtered observational data suggest that
the stability-correction function for momentum increases
with a relatively slow rate as compared with that shown by
the classical linear form in the range 0.5 < ζ < 1. Further,
the observed φm are found to be relatively small for
0.5 < ζ < 2 as compared with those predicted by the func-
tional form suggested by Cheng and Brutsaert (2005). It
does not show a levelling-off characteristic as suggested by
Cheng and Brutsaert (2005) and supports the arguments of
Grachev et al. (2007a) and Babi�c et al. (2016). The func-
tional form of φm suggested by Grachev et al. (2007a) with
optimized unknown parameters based on the present data
set is relatively more appropriate. The functional form of
φm over the region is given by:

φm ζð Þ=1+
amζ 1+ ζð Þ13
1 + bmζ

,

where am = 5.4 and bm = 0.89. A relatively large scatter
with an unexpectedly high φh in near-neutral conditions is
observed, leading to uncertainty in the development of
the functional form of φh function. Owing to an increased
level of observed uncertainty involved in φh, it is perhaps
better to use the functional form suggested by Grachev
et al. (2007a) in its existing form. The modified form of φm

along with the existing form of φh suggested by Grachev
et al. can be used to estimate surface fluxes over an Indian
region in numerical models of the atmosphere. Note that
the validity of the proposed formulations is strictly depen-
dent upon the applicability of the MOST because the con-
cept that “universal stability-correction functions” exist in
the atmospheric surface layer (ASL) holds good only in
the regime in which the MOST is valid. It is still an open

issue to parameterize correctly the turbulent fluxes beyond
the range of applicability of the classical MOST.
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