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ABSTRACT: The polycyclic core of the akuammiline alkaloids
can be synthesized from simple tryptamine and tryptophol
derivatives via a Ag(I)-catalyzed enantioselective dearomative
cyclization cascade sequence. The complex tetracyclic scaffolds
are prepared via a rapid, versatile, three-step modular synthesis
from simple commercially available indole derivatives in high yields
and enantiomeric excess (up to 99% yield and >99% ee).

C omplex polycyclic scaffolds are widely present in
biologically important alkaloid natural products. The

akuammiline alkaloids (see 1−5, Scheme 1A) are prominent
examples, with various members of this diverse family of
bioactive compounds based on a common tetracyclic core 6.1

Accordingly, these alkaloids have attracted considerable
attention from both synthetic and medicinal chemists; several
innovative total syntheses have been accomplished,2 although
these methods often require multiple linear synthetic
operations and are typically directed toward selected akuammi-
line synthetic targets. Alkaloids are unquestionably highly
important in medicine, and strategies to access core alkaloid
frameworks, via short and flexible synthetic sequences, are
arguably of even greater value in medicinally oriented
discovery, given their potential for the rapid assembly of
diverse collections of complex, natural product-like scaffolds.3

The dearomatization of indoles through reactions with
tethered ynones is well established,4 with many of these
methods generating quaternary centers and forming multiple
stereoisomers. However, partly due to the linear nature of the
alkyne unit, controlling the enantioselectivity of such
dearomatization reactions is challenging. This is illustrated by
the limited number of enantioselective dearomatization
reactions of alkyne-tethered indoles reported in the literature.5

Furthermore, to the best of our knowledge, examples of highly
enantioselective (>80% ee) indole dearomatization reactions
employing ynone-tethered precursors have not yet been
reported.
In this manuscript, we report the successful realization of a

Ag(I)-catalyzed enantioselective dearomatizing6 cascade se-
quence for the rapid construction of the akuammiline alkaloid
core scaffold 9 via ynone-tethered indoles 7 (Scheme 1B). Key
to the success of this process was the selection of a chiral π-
acid catalyst able to perform three roles in the proposed
cascade: (1) activation of the ynone moiety tethered to the C2-

Received: January 6, 2020

Scheme 1. (A) Akuammiline Alkaloids 1−5 (E = CO2Me);
(B) Enantioselective Dearomative Cyclization Cascade; (C)
Modular Preparation of Ynone Precursors
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position of a tryptamine or tryptophol derivative to induce
dearomatization of the indole core (7 → 8); (2) activation of
the resulting dienone group in intermediate 8 to facilitate
nucleophilic attack at the vinylogous amide junction; (3)
effective control of enantioselectivity, with the planned
transformation involving the formation of two stereogenic
centers at separate points in the cascade.
To augment the synthetic utility of the cyclization cascade, a

modular approach for the preparation of ynone precursors 7
has also been developed (Scheme 1C). This route starts from
readily available tryptamine and tryptophol derivatives 10 and
allows synthetically useful functionality from modules 11 and
13 to be easily installed at each stage of the synthesis. By
combining the modular precursor synthesis with the key
enantioselective dearomative cascade reaction, diverse complex
tetracyclic akuammiline scaffolds 9 can be been prepared in
three simple synthetic steps (10 → 12 → 7 → 9).
Methods for the dearomatization of indole derivatives using

electrophilic reagents are well established,4−7 and the idea to
trap the resulting products (usually indolenines)6i with a
tethered nucleophile is also known; for example, Bandini et al.
demonstrated the power of this approach for the conversion of
indole-tethered propargyl alcohols 14 into tetracyclic fused
furoindolines 15 using a gold-catalyzed cyclization cascade
(Scheme 2a).6d Indeed, a similar strategy has also been used

for the assembly of tetracyclic alkaloid scaffolds 17 via alkyne
activation,8 exemplified by a gold(I)-catalyzed system reported
by Wang et al. (Scheme 2b);8a the same group also
demonstrated the value of this method in the formal synthesis
of minfiensine and used it for the generation of medicinally
relevant scaffolds.9 Methods to prepare enantioenriched
scaffolds in this way are less well established,10 and are most
commonly achieved via transition-metal catalyzed asymmetric
allylation reactions,10a exemplified by Jiao’s study summarized
in Scheme 2c.3d

We reasoned that the improved reactivity profile typically
offered by indole-tethered ynones in dearomative reactions
(when compared with analogous alkynes lacking the carbonyl
group) would aid the discovery of new asymmetric processes
of this type, by allowing the use of milder reaction conditions.4

The ynone carbonyl was also expected to facilitate substrate
binding to the Lewis- or π-acid catalysts needed to impart

asymmetric induction in the initial dearomative step. To test
this idea, we started by devising a short and versatile method to
construct the requisite ynone cyclization precursors 24
(Scheme 3). Thus, using a radical alkylation approach,

tryptamine derivatives 20 were found to undergo efficient
reaction with various xanthates 21 to directly install the
required Weinreb amide functionality exclusively at the indole
C2-position forming indoles 22. Alkynyl Grignard reagents 23
were then used to promote formation of the ynone cyclization
precursors 24. This modular approach was used to prepare all
starting materials featured in this manuscript, with full
experimental details included in the Supporting Information
(SI).
Attention was then focused toward optimizing the key

enantioselective cyclization cascade, using phenyl-tethered
ynone 24a as a model substrate. A variety of racemic/achiral
metal catalysts known to facilitate alkyne activation were first
tested, including (Au-, Ag-, Cu-, and Pd-based catalyst systems;
see SI for details), with several catalysts found to promote the
desired transformation. Afterward, asymmetric investigations
were pursued, which initially focused on Au- and Cu-based
catalytic systems but following limited success (using Au-
SEGPHOS and Cu-BOX catalysts, see SI), focus switched to
the use of Ag(I) chiral phosphoric acid (CPA)11−14 catalysts
(Table 1). We first investigated the reaction with Ag(I) salts of
commercially available CPAs A and B (Table 1, entries 1 and
2), with moderate conversion into 25a and no/low
enantioselectivity observed; significant silver plating was seen
in each, which likely contributed to the poor performance of
these catalysts. Pleasingly, 4 Å molecular sieves (which are
often included as additives in related catalytic processes)15

were effective at preventing visible silver plating and resulted in
an increased yield (Table 1, entry 3). Reducing the
temperature to 0 °C was shown to further increase
enantioselectivity without affecting yield (entry 5). We then
synthesized and tested a wide range of CPAs based on (R)-
BINOL, (S)-H8-BINOL, and (R)-SPINOL backbones (for
further optimization, see SI), and pleasingly (R)-SPINOL
CPA-H bearing two 9-phenanthryl groups afforded the desired
product 25a as a single diastereoisomer in 99% yield and 97%
ee (entry 12).16 Reducing the catalyst loading (from 10 to 5
mol %, entry 13) was possible in comparable ee, but resulted in
a significant drop in conversion; hence, 10 mol % was retained
as the optimal catalyst loading.
Next, the scope of the enantioselective dearomative

cyclization cascade was explored using (R)-SPINOL CPA-H
(Scheme 4). The protecting group on the tryptamine tether
was varied first, and three common N-protecting groups were
well tolerated, furnishing products (25a−25c) in high yields
and ee. A wide variety of functional groups were tolerated
around the indole phenyl ring to give the desired polycyclic

Scheme 2. Dearomatization/Indolenine Trapping Cascade
Reactions of Indoles

Scheme 3. Modular Preparation of Ynone Cyclization
Precursors 24
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products 25d−25i in excellent yields and ee. Substituents at the
ynone terminus were then investigated, with electron-with-
drawing and electron-donating aryl groups each being
tolerated, as are a range of alkyl groups, protected alcohol,
and sulfide groups directly attached to the ynone terminus.
Interestingly, the ee increased markedly across the series H →

Me → cyclopropyl → n-butyl (25j−25m), indicating that
steric bulk at this position enhances enantioselectivity. The
placement of the steric bulk also appears to be important, as
OTBDPS-substituted tetracycle 25o was formed in 93% yield
but in low ee of 18%; the bulky silyl group is presumably not
oriented in a suitable conformation to promote effective
asymmetric induction in this example. It was also possible to
use oxygen trapping nucleophiles and vary the length of the
trapping tether to generate the oxygen and six-membered
analogues 25s and 25t in high yields. We did not anticipate the
length of the trapping tether would play an important role in
the enantioselective step of the reaction; however, increasing
the tether by a single carbon atom (25t) led to a surprisingly
large decrease in ee. Therefore, it seems that the tethered
nucleophile may be involved in either promoting or disrupting
asymmetric induction, leading to a diminished ee for some
tether lengths. Sulfur and carbon nucleophiles were also tested
in the dearomative cyclization cascade, but neither led to the

formation of the corresponding tetracyclic products.17 The
assigned absolute stereochemistry of these products is based
on X-ray crystallographic data for compound 25d (CCDC
1906384 (S,R-25d)), with the stereochemistry of the other
products assigned through analogy.16 Finally, prototypical
product 25k was converted into 27 (CCDC 1964308) via a
simple two-step reductive ring-opening and Au(III)-catalyzed
recyclization approach (25k → 26k’ → 27), with this

Table 1. Enantioselective Dearomative Cyclization Cascade
Optimization

entrya ligand temp/°C yield/%b ee/%c

1d CPA-A RT 35 0

2d CPA-B RT 51 13

3 CPA-B RT 76 11

4e CPA-B RT 0 −

5 CPA-B 0 76 25

6 CPA-A 0 30 0

7 CPA-C 0 0 −

8 CPA-D 0 73 0

9 CPA-E 0 89 86

10 CPA-F 0 60 14f

11 CPA-G 0 66 7f

12 CPA-H 0 99 97

13g CPA-H 0 59 96
aReactions were performed on 0.05 mmol scale in toluene (0.1 M)
using 4 Å MS at 0 °C for 48 h. Ag-CPAs were formed by premixing
CPAs with AgBF4 for 30 min. bYields based on trimethoxybenzene
internal standard. cEe values measured by HPLC using Chiralpak AD-
H column, eluting with 20% lPA in hexane. Unless stated, the major
enantiomer is the S,R isomer drawn. d4 Å MS not added. eAgBF4 not
added. fThe opposite enantiomer to that drawn (i.e., R,S) was formed
in excess. g5 mol % Ag-CPA loading.

Scheme 4. Substrate Scope of Dearomative Cyclization
Cascade and Elaboration to the Strychnos Alkaloid
Framework
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rearranged polycyclic scaffold widely found in various
Strychnos alkaloid natural products.18

Notably, when the optimized conditions were tested on
propargylic alcohol 28 (analogous to 24a but lacking the
carbonyl group), a significantly diminished yield and ee of
polycycle 29 were observed (20% yield, 1:1 dr and 40% ee),
attesting to the importance of the ynone moiety in achieving
high conversion and ee (Scheme 5).

To examine the roles of different catalytic species in the final
trapping step, untrapped intermediate 26a (itself formed from
the ring opening of 25a using LHMDS at −78 °C) was treated
with catalytic amounts of Ag-CPA-B and AuNTf2PPh3
(Scheme 6). Complete cyclization into polycyclic scaffold

25a was observed in just 20 min at room temperature when
using Ag-CPA-B (blue line, Scheme 6). In contrast, in a
control reaction in which the Ag-CPA catalyst was omitted, no
cyclization was observed after 3 h of stirring at room
temperature, clearly showing the key role played by the
catalyst in the second cyclization. Interestingly, the same
reaction could also be catalyzed by AuNTf2PPh3, but a longer
reaction time (3 h) was needed to ensure full conversion;
Au(I) catalysts are often preferred to Ag(I) in related processes

involving alkyne activation,19 but were less effective in this
study.20

A plausible mechanism for the overall transformation of 24a
into 25a is presented in Scheme 7. First, dearomatization of

indole 24a is proposed (24a → A), facilitated by π-acid
coordination of the Ag-CPA catalyst to the ynone alkyne
moiety, with this being the stereochemistry defining step.
Indolenine salt A could then be trapped by nucleophilic attack
of the tethered nucleophile (in this example the Boc-protected
amine, A → D) or tautomerize to B and cyclize via an
alternative conjugate addition mode (B → C). Protodemeta-
lation (e.g., D → 25a) is also needed to complete the catalytic
cycle, to form product 25a and regenerate the silver catalyst,
with this step being viable from any of the intermediates A−D
(or their conjugate bases). The exact role played by the silver
catalyst in facilitating the second cyclization step is not clear,
but its involvement in this step is clearly demonstrated by the
accelerated cyclization of intermediate 26a (with both π-acids
and Brønsted acids) summarized above in Scheme 6 and the
associated text.
In summary, an efficient method for the preparation of the

tetracyclic core of a diverse array of alkaloids has been
developed, relying on a Ag(I)-catalyzed dearomative cascade
sequence. The reactions are high yielding as well as broad in
scope and proceed with high diastereoselectivity and
enantioselectivity in most cases. The short and expedient
nature of the modular route used to prepare the requisite
starting materials should also increase the value of this method,
which we anticipate being of value in alkaloid target syntheses,
as well as in synthetic and medicinal chemistry projects focused
on efficient complexity generation.21
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Scheme 5. Inferior Reactivity of Propargyl Alcohol 28,
Demonstrating the Importance of the Ynone Moiety

Scheme 6. Conversion of 28a into 25a with Ag(I), Au(I),
and No Catalysta

aReactions were performed on 0.05 mmol scale in CDCl3 that had
been washed with K2CO3 before use. Ag-CPA-B was formed by
premixing CPA-B with AgBF4 for 30 min.

Scheme 7. Proposed Mechanism
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