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The heterogeneous effects of neonatal care: a model of endogenous demand for 
multiple treatment options based on geographical access to care 

Neonatal units in the UK are organised into three levels, from highest Neonatal Intensive Care Unit 

(NICU), to Local Neonatal Unit (LNU) to lowest Special Care Units (SCU). We model the endogenous 

treatment selection of neonatal care unit of birth to estimate the average and marginal treatment 

effects of different neonatal designations on infant mortality, length of stay and hospital costs. We 

use prognostic factors, survival and hospital care use data on all preterm births in England for 2014-

2015, supplemented by national reimbursement tariffs and instrumental variables of travel time 

from a geographic information system. The data were consistent with a model of demand for 

preterm birth care driven by physical access. In-hospital mortality of infants born before 32 weeks 

was 8.5% overall, and 1.2 (95% CI: -0.7, 3.2) percentage points lower for live births in hospitals with 

NICU or SCU compared to those with an LNU according to instrumental variable estimates. We find 

imprecise differences in average total hospital costs by unit designation, with positive unobserved 

selection of those with higher unexplained absolute and incremental costs into NICU. Our results 

suggest a limited scope for improvement in infant mortality by increasing in-utero transfers based on 

unit designation alone. 

 

Keywords: Endogeneity, Instrumental variables, control function, multiple treatments, geographical 

access, semi-parametric, average treatment effects, neonatal, seemingly unrelated regression 

equations; latent factor, policy evaluation 
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1 | INTRODUCTION 

Preterm birth is accompanied by high risks of morbidity and neonatal mortality, and need for 

specialised neonatal care services. Since 2003 neonatal services in England are organised into 

managed clinical networks (DH 2003; Marlow et al. 2007) in which specialist care is centralised and 

low-level care is distributed across the network. These services are provided in neonatal units of 

three designated levels of specialisation: level 1 or Special Care units (SCU) look after infants needing 

level 1 care involving continuous monitoring of their breathing or heart rate, oxygen supply, tube 

feeding and recovery from phototherapy; level 2 or local neonatal units (LNU) can provide level 1 

care as well as providing level 2 care such as short-term intensive care and support including 

continuous positive airway pressure (CPAP); level 3 or neonatal intensive care units (NICU) can 

provide level 1 and level 2 care and can additionally provide level 3 care for infants requiring 

ventilation, CPAP, and weighing <1kg. According to clinical guidelines, births of <28 weeks of 

gestational age (extremely preterm) should be cared for at a level 3 neonatal unit (NICE 2010). 

Nevertheless some extremely preterm infants are still born in hospitals with lower level units. Thus 

the relative effectiveness between neonatal unit designation levels is a key policy issue. 

Estimating the relative effects of different designations on infant mortality requires inferring 

causality from observational data. Infant assignment to hospital of birth may be non-random, 

thereby confounding the observed mortality differences for true causal effects. Mothers of high-risk 

preterm infants may seek giving birth at designated level 3 units even among babies of the same 

gestational age and birthweight (Marlow et al. 2014). Instrument variables (IV) estimation is a 

method commonly used in economics to infer causality in observational studies (Wooldridge 2010) 

and increasingly used to estimate causal treatment effects in health service research (Garabedian et 

al. 2014). 

Studies exploring the effects of neonatal unit designation at hospital of birth have shown that low-

designated units are associated with increased rates of in-hospital mortality (Lasswell et al. 2010, 

Phibbs et al. 2007), although a recent study of very low-birthweight infants in California found no 

such association (Jensen and Lorch 2016). However, differences in organisation structure between 

UK neonatal services and other nationally funded neonatal services (Kelly et al. 2017), and  the much 

larger neonatal units typical of the US, may limit the generalisability of results across countries. In 

the UK, Watson et al. estimated the causal effect of level 3 unit on infants born at ч32 weeks using 

an instrumental variable (IV) approach and found no evidence that birth in NICU affects in-hospital 

mortality compared to lower unit designations (Watson et al. 2014a). They also found that higher 

nurse-to-patient ratios and higher per diem costs reduced infant mortality in NICUs (Watson et al. 

2014b, Watson et al. 2017).  However, none of these studies sought to analyse unobserved 

heterogeneity in treatment effects (Cornelissen et al. 2016).  

The paper͛Ɛ ŵĞƚŚŽĚŽůŽŐŝĐĂů contribution is to develop an IV estimation framework with  the first 

stage endogenous treatment choice modelled as a demand system, thus  providing structural 

validation tests of identification  with continuous geographical access, travel time, IVs. We  test for 

unobserved heterogeneity in marginal treatment effects of NICU vs. other designations combined, 

and introduce a control function approach for estimating heterogeneous treatment effects with 

more than two treatment options. These methods are used to estimate the causal effects of preterm 

birth in a hospital with a SCU, LNU, or NICU, on in-hospital mortality, length of stay and hospital 

costs.  
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2 | Causal estimation approach 

In this study our IV identification strategy is based on variation in travel time as measure of physical 

access to treatment. A systematic review of 187 comparative health effectiveness studies using an IV 

approach between 1993-2011 found that 65 studies had estimated mortality effects and, of these, 

27 studies used travel distance (defined as straight line, Euclidean distance, or travel time) as 

instrumental variable, the second most common instrument after variation in regional treatment 

patterns (Garabedian et al. 2014). 

  

In our context, IV estimation assumes that study subjects are a mix of high or low risk mothers that 

by chance live close to a particular unit. The IV estimates based on travel time or distance apply to 

mothers whose hospital designation at delivery is determined by the relative closeness of different 

hospital designations,  ĂŶĚ ƚŚĞƐĞ ŵŽƚŚĞƌƐ ĂƌĞ ŬŶŽǁŶ ĂƐ ͚ĐŽŵƉůŝĞƌƐ͕͛ ďĞĐĂƵƐĞ ƚŚĞŝƌ ƌĂŶĚŽŵůǇ 
ĂůůŽĐĂƚĞĚ ͚ƚƌĞĂƚŵĞŶƚ͛ ;ŝ͘Ğ͘ closest unit level) determines their place of delivery. Travel distance or 

time is a natural predictor of place of birth, and therefore candidate for instrument, as women 

prefer to deliver in a local unit (Hollowell et al 2016) and birthing units recommend avoiding 

excessive distances to limit the risk of out-of-hospital birth (Blondel, 2011). Previous distance-based 

IV studies have used differenced and absolute measures of distance or travel time as instruments in 

almost equal measure (Garabedian et al. 2014). In this study we use absolute travel times as the 

more accurate and less restrictive option for a set of IVs and  validate them by comparing their 

actual and expected effects when interpreted as implicit access prices in a model of demand for 

treatment. 

 

In addition, the continuous scale of both travel time and distance permits us to analyse how 

treatment effects vary across individuals with different unobserved propensities to use treatments, 

by estimating marginal treatment effects (MTE, Carneriro, Heckman and Vytlacil 2010),   the 

ĐŽŶƚŝŶƵŽƵƐ ǀĞƌƐŝŽŶ ŽĨ ƚŚĞ ͚ůŽĐĂů ĂǀĞƌĂŐĞ ƚƌĞĂƚŵĞŶƚ ĞĨĨĞĐƚ͛ ;IŵďĞŶƐ ĂŶĚ AŶŐƌŝƐƚ ϭϵϵϰ͖ AŶŐƌŝƐƚ ĂŶĚ 
Pishcke 2001). Few studies in health economics have analysed treatment effect heterogeneity (Basu 

et al. 2007; Basu et al. 2014; Evans and Garthwaite 2012; Tyler-Brown et al. 2011) and this is an 

aspect we seek to address in this study. 

Finally, the IV estimator implies a testable relationship between distance or travel time instruments 

and demand for the different treatment options. For example, Cutler evaluated heart services using 

difference in access (distance to hospital of each type) to intervention and control treatments as 

instruments (Cutler 2007). Watson similarly relied on IV estimation but only used information on the 

closest hospital  and thus ignored instruments on alternative treatment options (i.e. when the 

closest unit was a non-NICU the characteristics of NICU were omitted and vice versa; Watson et al. 

2014). We add to the literature by introducing a control function approach to extend the 

endogenous heterogeneous treatment effects model ƚŽ шϯ treatments.  

 

3 | Methods 

3.1 |Data 

Data from the National Neonatal Research Database (NNRD) for years 2014 and 2015 were 

employed in the analysis. The NNRD contains selected information from the BadgerNet Neonatal 

Electronic Patient Record (https://www.clevermed.com/badgernet/badgernet-neonatal/) on all 

admissions to NHS neonatal units. Outcomes considered were any in-hospital mortality in the period 

from birth up to hospital discharge home or to a ward. Data available from the database include 

antenatal, delivery and neonatal treatments and outcomes. Neonatal unit level designation was 

taken from the 2015 National Neonatal Audit Programme report (RCPCH 2015). In our sample, 90% 
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of the 161 neonatal units in England gave permission to access NNRD data (100% of NICUs, 85% of 

LNUs, and 90% of SCUs). . 

 

Expected fastest road travel times were calculated from a Geographic Information System 

(Maptitude® 2016) with MPMileCharter® add-in based on coordinates of postcode closest to the 

population-weighted centroids of the 2011 LSOA (there is one LSOA for each postcode in England) of 

ƚŚĞ ƉĂƌĞŶƚƐ͛ residences and closest hospitals of each type and information on typical duration of 

journey on actual road grid. This created three IVs, i.e. three travel times for each individual, one per 

neonatal unit level. The 2015 Multiple Index of Deprivation (IMD) for each LSOA was obtained from 

the Office of National Statistics (ONS 2015). Ethical approval was obtained from the Neonatal Data 

Analysis Unit at Imperial College, London. 

  

3.2 | Main outcome equation 

Three types of infant outcomes are separately analysed: in-hospital mortality, length of hospital stay 

and associated reimbursement costs, and number of hospital days spent by the infant at three levels 

of critical care. The binary (mortality), continuous (costs) and discrete count (hospital days) scales of 

these outcomes required analysis using generalised linear models (Debb and Trivedi 2006) of 

individual infant outcomes as a function of place of birth (LNU and SCU) relative to a reference unit 

type (NICU), 

௜ܻ ൌ ݃ሺߚଵܵܥ ௜ܷ ൅ ܰܮଶߚ ௜ܷ ൅ ௜ܺᇱߜ ൅ ଵ݈ௌ஼௜ߣ ൅ ଶ݈௅ே௜ሻߣ ൅  ௜      (1)ݒ

 

where  Yi is an observed continuous or discrete outcome of infant i in the follow-up period up to 

hospital discharge, SCUi is a binary variable equal to 1 if the neonatal unit of birth of infant i is SCU 

and 0 otherwise, and LNUi is likewise defined for birth in LNU. The term Xi͛ɷ ƐƚĂŶĚƐ ĨŽƌ Ă ůŝŶĞĂƌ ǀĞĐƚŽƌ 
of adjusting covariates commonly used in this literature (Gale et al. 2013, Cole et al. 2010, 

Manktelow et al. 2013, Ge et al. 2013, Tucker et al.  2002, Lorch et al. 2012; Appendix 0) including 

birthweight, gestational age, index of multiple deprivation, and number of pregnancies (plus a 

ĐŽŶƐƚĂŶƚͿ͕ ǁŝƚŚ ƚŚĞŝƌ ƌĞƐƉĞĐƚŝǀĞ ĐŽĞĨĨŝĐŝĞŶƚƐ ɷ͘   

The terms lSCi and lLNi are unobserved latent utility factors (section 3.3) for SCU and LNU, respectively, 

that serve to control for the endogeneity of SCU and LNU in Eq. 1, which occurs when coefficients 

ʄ1тϬ ĂŶĚ ʄ2 тϬ.. They account for possible   unmeasured confounders, including prognostic factors 

e.g. congenital abnormalities that place infants at higher risks of neonatal adverse events including 

death. If, for example, women with high-risk pregnancies choose or are somehow determined by 

unmeasƵƌĞĚ ĨĂĐƚŽƌƐ ƚŽ ĚĞůŝǀĞƌ Ăƚ NICUƐ͕ Ă ;͚ŶĂŢǀĞ͛Ϳ ŵŽĚĞů ĞǆĐůƵĚŝŶŐ ůSCi and lLNi will incorrectly 

attribute some of the systematic variation in outcomes to the SCU and LNU variables and likely result 

ŝŶ ďŝĂƐĞĚ ĞƐƚŝŵĂƚĞƐ ŽĨ ɴ1i ĂŶĚ ɴ2i.  

Assuming a mean zero error, Evi =0,  ݃ିଵሺܧ ௜ܻሻ ൌ ܥଵܵߚ ௜ܷ ൅ ܰܮଶߚ ௜ܷ ൅ ௜ܺᇱߜ ൅ ଵ݈ௌ஼௜ߣ ൅  ଶ݈௅ே௜         (2)ߣ

 

with g-1(EY) denoting the link function (logit or probit for mortality, log for costs, and log for days in 

hospital) evaluated at the mean of outcome Y, i.e., mortality status, costs, or days in hospital. Eq. 1 is 

estimated by maximum simulated likelihood, given a suitably chosen parametric distribution for v 

(binomial for mortality, normal for costs and negative binomial for days in hospital). We estimated 
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Eq. 1 using IV and control function methods, which required estimating a treatment choice model of 

the endogenous SCU and LNU binary variables as explained next. 

 

 

3.3 | Instrumental variables 

 

We evaluate the causal effects on infant outcomes of birth at LNU and SCU vs. NICU hospitals using 

the three available instruments of travel time to the closest hospital of each neonatal unit type, zSC, 

zLN, zIC, for SCU, LNU and NICU respectively. At least two instruments were required for estimating 

treatment effects of the potentially endogenous SCU and LNU variables in Eq. (1) (rank condition; 

Wooldridge 2010). To be valid, the IVs have to determine the probability of delivering at a LNU and 

SCU (relevance condition), and be correlated with the outcome Y only through their association with 

LNU and SCU (conditional independence condition; Appendix 1 eq. 2).The individual may be born in 

one of three types of neonatal unit, a discrete treatment selection process which we analyse as a 

multinomial latent demand model where the neonatal unit level in the hospital of birth is the 

treatment option of maximum latent utility for the mother.  

3.4 Demand for hospital type for a very preterm birth 

In order to model the endogenous multinomial treatment selection, we define ICU*, LNU*, SCU* as 

the corresponding latent utilities of birth at the three neonatal unit levels: ܵܥ ௜ܷכ ൌ ௌ஼௜ݖଷߠ ൅ ௅ே௜ݖଶߠ ൅ ூ஼௜ݖଵߠ ൅ ௜ܺᇱߛௌ஼ ൅ ߳ௌ஼௜      (3) ܰܮ ௜ܷכ ൌ ௌ஼௜ݖଷߙ ൅ ௅ே௜ݖଶߙ ൅ ூ஼௜ݖଵߙ ൅ ௜ܺᇱߛ௅ே ൅ ߳௅ே௜   ܥܫ ௜ܷכ ൌ ௌ஼௜ݖଷߨ ൅ ௅ே௜ݖଶߨ ൅ ூ஼௜ݖଵߨ ൅ ௜ܺᇱߛூ஼ ൅ ߳ூ஼௜ 
where  

௝߳௜ ൌ ௜ܹᇱ ௝߱ ൅ ௝߭௜     ݆ ൌ ሼܵܥǡ ǡܥܮ  ሽܥܫ

are linear indices of unmeasured demand attributes (W) that are prognostic factors in outcome 

equation (2) plus an independently distributed rĂŶĚŽŵ ĞƌƌŽƌ ;ʐͿ͕ ǁhile other Greek symbols are 

coefficients to be estimated. Birth occurs in the unit type of maximum utility: ܵܥ ௜ܷ ൌ ͳ ݂݅ ܵܥ ௜ܷכ ൐ ܥܫ ௜ܷܥܵ ݀݊ܽ כ ௜ܷכ ൐ ܰܮ ௜ܷכǡ ܵܥ ௜ܷ ൌ Ͳ                                                ݁ݏ݅ݓݎ݄݁ݐ݋Ǣ  ܰܮ ௜ܷ ൌ ͳ ݂݅ ܰܮ ௜ܷכ ൐ ܥܫ ௜ܷܰܮ ݀݊ܽ כ ௜ܷכ ൐ ܥܵ ௜ܷכǡ ܰܮ ௜ܷ ൌ Ͳ                                                 ݁ݏ݅ݓݎ݄݁ݐ݋Ǣ 
birth in a NICU occurs when SCU=0 and LNU=0. 

WĞ ĞǆƉĞĐƚ ɽ3фϬ͕ ɲ2 фϬ͕ ĂŶĚ ʋ1 <0, whilst the coefficients of remaining instrumental variables are 

expected to be positive or zero. The coefficients of the multinomial choice model of Eq. 3 are not 

identifiable (Train 2003, p. 26-27). Subtracting the utility of a reference option, say, ICUi* from each  

equation in Eq. 3, results in an identifiable  system of two independent equations of differenced 

utility for SCU and LNU relative to the utility of NICU: 
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כ෫ܷ௜ܥܵ ൌ ௌ஼௜ݖ෨ଷߠ ൅ ௅ே௜ݖ෨ଶߠ ൅ ூ஼௜ݖ෨ଵߠ ൅ ௜ܺᇱߛ෤ௌ஼ ൅ ߳ǁௌ஼௜     (4a), ܰܮ෫ܷ௜כ ൌ ௌ஼௜ݖ෤ଷߙ ൅ ௅ே௜ݖ෤ଶߙ ൅ ூ஼௜ݖ෤ଵߙ ൅ ௜ܺᇱߛ෤௅ே ൅ ߳ǁ௅ே௜     (4b) 

 

where utility differences depend on the three instruments, one for travel time to the closest unit of 

each type, and the Greek symbols denote the estimable coefficients. The accents denote coefficients 

transformed by subtracting the corresponding coefficient in the NICU latent equation, and ߳ǁ௅ே௜  and  ߳ǁௌ஼௜ are the error terms in the propensity equations after subtracting the error in the NICU latent 

equation. We expect the own-͚access ƉƌŝĐĞ͛ effect to be negative (ߙ෤ଶ<0 and ߠ෨ଷ<0), and the cross-

price of access to NICU effect to be positive (ߙ෤ଵ ൐0 and ߠ෨ଵ ൐ Ͳ). In contrast, the expected signs of ߙ෤3 

and ߠ෨2 are ambiguous a priori (Appendix 1). Birth in NICU (ICU=1) occurs when ܵܥ෫ܷ௜0>כ in 4a and ܰܮ෫ܷ௜0>כ in 4b, otherwise, birth occurs in a lower level unit (ICU=0). The case of birth at LNU (LNU=1) 

and SCU (SCU=1) are defined analogously.  

Our control function approach for estimating Eq. 2 (Debb and Trivedi 2006), uses equations 4a & 4b  

and,   ߳ǁ௅ே௜ ؠ ߳௅ே௜ െ ߳ூ஼௜ ൌ ܹᇱሺ߱௅ே െ ߱ூ஼ሻ ൅ ߭௅ே௜ െ ߭ூ஼௜ ؠ ݈௅ே௜ ൅ ෤߭௅ே௜                                    

(5)  ߳ǁௌ஼௜ ؠ ߳ௌ஼௜ െ ߳ூ஼௜ ൌ ܹᇱሺ߱ௌ஼ െ ߱ூ஼ሻ ൅ ߭ௌ஼௜ െ ߭ூ஼௜ ؠ ݈ௌ஼௜ ൅ ෤߭ௌ஼௜  
where lLNi and lSCi  are the values of unobserved indirect utility factors affecting the neonatal outcome 

Y in Eq. 2. We assume that these terms are distributed standard normal across mothers, and 

integrate them out of the likelihood function using simulation methods. To derive the likelihood we 

assume that  ෤߭௅ே௜ and ෤߭ௌ஼௜ are independently identically extreme-value distributed error terms that 

are independent from lLNi and lSCi and whose joint distribution implies a multinomial logit treatment 

choice probability function of the linear indices of covariates and unobserved factors in 4a & 4b 

(Appendix 2).   

In addition, we estimate the multinomial probit treatment choice model (Roodman 2011) that 

relaxes the independence of irrelevant alternatives (IIA) assumption of the multinomial logit model 

by allowing the indirect utility equations 4a and 4b to be correlated (Train 2003). In sensitivity 

analysis we impose the exclusion restrictions on 4a and 4b that all instrument coefficients other than 

ɽ3͕ ɲ2͕ ĂŶĚ ʋ1 equal zero, i.e. ܵܥ෫ܷ௜כ ൌ ௌ஼௜ݖଷߠ െ ூ஼௜ݖଵߨ ൅ ௜ܺᇱߛ෤ௌ஼ ൅ ߳ǁௌ஼௜ǡ כ෫ܷ௜ܰܮ ൌ ௅ே௜ݖଶߙ െ ூ஼௜ݖଵߨ ൅௜ܺᇱߛ෤௅ே ൅ ߳ǁ௅ே௜, to address possible issues of identification with this model (Keane 1992; Appendix 1). 

3.5 |In-hospital mortality 

The endogenous treatment model was specified as a logit outcome with multinomial logit treatment 

control function (Debb and Trivedi 2006) and, alternatively, as a probit outcome with multinomial 

probit treatment (Roodman 2011; Appendix 2). We present results in terms of marginal effects. 

3.6 |Costs and length of stay 

Reimbursement cost and length of hospital stay were analysed as linear outcomes with endogenous 

multinomial logit (Debb and Trivedi 2006) or probit treatment (Roodman 2011). Reimbursement 

costs were calculated by multiplying the number of days at each level of care (section 3.7) by the 

corresponding English 2015 per diem (HRG) tariff. We also estimated heterogeneous treatment 

effects in correlated random coefficients models (Card 2001), by limited information maximum 

likelihood (Aakvik, Heckman and Vytalacil 2005; Appendix 2).  
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3.7 | Inpatient days by level of care 

We estimated the effect of neonatal unit designation on the number of days at British Association of 

Perinatal and Maternity (BAPM) levels of care 1, 2 and 3 separately, which together accounted for 

98% of total LOS ;ƚŚĞ ͚ƐƵƉĞƌ ƐƉĞůů͛ including any post-natal transfer) in our sample. This analysis used 

a negative binomial endogenous multinomial logit treatment model. We present treatment effect 

estimates in terms of incidence rate ratios and marginal effects (Appendix 2).  

 

We estimate the MTE of NICU vs. non-NICU birth (Carneiro, Heckman and Vitlacil 2011; Cornelissen 

et al. 2016) on mortality and the logarithm of hospital costs using a linear endogenous binary 

treatment model. These analyses use a Gaussian family with an identity link, i.e. a linear probability 

model for mortality and log linear model for costs. The treatment indicators SCU and LNU in (1) are 

replaced by a treatment indicator, ICU, equal to 1 when SCU=0 and LNU=0 and 0 otherwise. Also, the 

strong assumption that the latent factors enter linearly in (1) is relaxed by replacing them with a 

non-parametric function KY(p) of the ͚ƌĞƐŝƐƚĂŶĐĞ ƚŽ NICU͛ ƚƌĞĂƚŵĞŶƚ or propensity score (p): ܧ ௜ܻ ൌ ௜ܺᇱߜ௒଴ ൅ ௜ܺᇱሺߜ௒ଵ െ ௜݌௒଴ሻߜ ൅  ௜ሻ   (6)݌௒ሺܭ

The MTE is the derivative of (6) with respect to p, ܧܶܯ௜ ؠ ܧ߲ ௜ܻ߲݌ ൌ ௜ܺᇱሺߜ௒ଵ െ ௒଴ሻߜ ൅  ݌ሻȀ߲݌௒ሺܭ߲

MTEs are estimated semi-parametrically (Brave and Walstrum 2014) and plotted relative to p.  We 

estimate alternative MTEs under the parametric probit treatment choice model (Appendix 3). 

We tested for the existence of unobserved selection by prognosis ;HϬ͗ ʌ1 =0), where infants who 

have worse unobserved prognosis may be more likely to be born in NICU than infants with better 

prognosis, and selection by returns (HϬ͗ эKY;ƉͿͬэƉсϬ in (6) Žƌ ʍ1ʌ1-ʍ0ʌ0=0 in (7)), where infants with 

unobserved characteristics predisposing them to benefit more from treatment are more likely to be 

born in NICU (Appendix 3).  

Standard errors are calculated using the method by White (1980), to account for clustering of infants 

in hospitals, except for MTEs, which are estimated at the mean of covariates X, using the bootstrap 

percentile method. Stata code illustrating the implementation of main analyses is provided in 

Appendix 4.     

 

4 | RESULTS 

4.1 | Distribution of sample characteristics by geographical access  

Data on 14,727 live births at less than 32 weeks͛ gestation were available from the NNRD, 12,990 of 

which had complete data on infant and hospital characteristics for analysis, with 303 observations 

having invalid data values. Of the 12,687 remaining observations, 1650 (13%) individuals had no 

travel time to the closest SCU or LNU hospitals data and were excluded from the analysis. The 

remaining sample included 11,037 patients from 154 hospitals, of which 11 were hospitals that 

delivered at least 100 infants weighing <1500 g per year on average ĚƵƌŝŶŐ ƚŚĞ ƐƚƵĚǇ ƉĞƌŝŽĚ ; ͚ŚŝŐŚ-

ǀŽůƵŵĞ͛Ϳ͖ Ăůů ŽĨ ƚŚĞƐĞ ŚŽƐƉŝƚĂůƐ ǁĞƌĞ ICU ĂŶĚ ϰϮй ;2377) of the 5595 infants born in a NICU level 

were delivered in a high-volume hospital. Fifteen infants were born in a hospital without a neonatal 

unit and were transferred ex-utero to the closest neonatal unit in the network (14 to SCU, 1 to LNU); 
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they were analysed according to the level of these units. In-hospital mortality in the analysis sample 

was 8.52% (8.43% including missing travel time data cases). 

There are no systematic differences in most descriptive characteristics of the analysed sample across 

travel time to NICU tertiles (Table 1). In addition to the exposure variables (delivery at NICU, LNU 

and SCU), systematic differences arise only for deprivation of residence, unknown delivery mode and 

suggest the need to control for possible confounding by these variables in our analyses. Similar 

results were obtained for tables in terms of travel times to LNU and SCUs and in London (Appendix 

5). 

 

 

 

4.2 | Demand (choice) modelʹfirst stage 

Table 2 presents estimates obtained from multinomial probit and multinomial logit models for the 

probability of birth in LNU (second and fourth columns) and the probability of birth at SCU (third and 

fifth columns), adjusted for covariates. The signs of these coefficients are consistent with our a priori 

expectations. The two coefficients with ambiguous expectations a priori, the cross-price effects of 

access to SCU in the LNU equation and to LNU in the SCU equation are negative with p>0.10, 

suggesting that the effect of travel time to LNU on the utility of SCU, and vice versa, is equal to or 

smaller than its effect on the utility of NICU (eq. 4a, and $b). The probability of birth in a LNU level 

facility was positively related with longer travel times to the closest NICU, and with longer travel 

times to the closest SCU, whereas being negatively related with longer travel times to the closest 

LNU facility. The price elasticity of demand decreases with level of specialisation, with NICU care 

being the least responsive option to an increase in its own travel-time price of access. Birth at SCU is 

nine times as responsive to travel time to NICU as it is to travel time to LNU (0.61 vs. 0.07).           

 

 

 4.3 | Estimates of in-hospital mortality  

Table 3 summarises the  estimated marginal effects of birth at LNU vs NICU and birth at SCU vs. NICU 

in the naïve single equation probit model (second column) and corresponding average treatment 

effects of the IV model that adjusts for unobserved confounding  (third column). In the naïve probit 

model birth in a SCU is associated with a 1.7 percentage point higher risk of neonatal death than 

birth in NICU (p=0.09), while LNU with 0.4 percentage point excess risk over NICU (p=0.54). In the IV 

model, the respective estimates are 0.1 (p=0.96) and 1.2 (p=0.23) under a probit specification. 

According to the IV model diagnostic statistics, the hypothesis that birth at SCU is exogenous cannot 

be rejected at p=0.05. Results were similar for logit specifications. 

“ŝŵŝůĂƌ ƌĞƐƵůƚƐ ǁĞƌĞ ŽďƚĂŝŶĞĚ ŝŶ ƚŚĞ ƐƵďŐƌŽƵƉ ŽĨ ŝŶĨĂŶƚƐ ďŽƌŶ Ăƚ ůĞƐƐ ƚŚĂŶ Ϯϴ ǁĞĞŬƐ͛ ŐĞƐƚĂƚŝŽŶ 
(Appendix 5). 

 

Our main results (reproduced in Table 4 column a) were robust to excluding socio-economic and 

including mode of delivery covariates, and to variation in the specification of the endogenous 

treatment model. Moreover, tests on the estimated correlations between the random error terms of 
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the multinomial treatment equations and the mortality equation do not reject the null hypothesis 

that birth at LNU and birth at SCU are exogenous in the mortality equation at p=0.05 under both 

logit and probit specifications. 

The IV estimates will not apply to those mothers who deliver in NICUs regardless of the distance or 

time required to travel from home to their closest NICU. For example, high-risk mothers with history 

of preterm birth may be booked in for birth at a hospital with a NICU in spite of it not being their 

closest hospital; the so-called always takers of the intervention (birth at NICU) regardless of travel 

time. The IV estimates will also not apply to high-risk mothers who are not transferred to higher 

level units because of theŝƌ ŝŶĨĂŶƚƐ͛ poor life prospects; the so-called never takers of birth at NICU. 

The proportion of always takers in our dataset appears to be higher than the proportion of never 

takers: 732 (22%) of those mothers who would need more time to reach their closest NICU than to 

reach their closest LNU and their closest SCU would still deliver at a NICU; in contrast, only 56 (1.5%) 

and 388 (8.9%) mothers whose closest (minimum travel time) hospital was a NICU delivered in a SCU 

and LNU, respectively. The analysis of MTE of birth at hospitals with NICUs vs. hospitals with a 

lower-designation neonatal unit produced treatment effect estimates with 95% CI crossing 

zero throughout the unobserved resistance to NICU treatment (Appendix 6).     

4.4 | Estimates on length of stay and costs  

The estimated total duration of ƚŚĞ ŶĞŽŶĂƚĂů ŚŽƐƉŝƚĂů ƐƚĂǇ ŝŶĐůƵĚŝŶŐ ŚŽƐƉŝƚĂů ƚƌĂŶƐĨĞƌƐ ;ŝ͘Ğ͘ ƚŚĞ ͚ƐƵƉĞƌ 
ƐƉĞůů͛Ϳ ŽĨ ĂŶ ŝŶĨĂŶƚ ďŽƌŶ ŝŶ NICU, LNU and SCU was, respectively 66, 66, and 67 days (differences: SCU 

vs NICU 1.0, p=0.76; LNU vs. NICU 0.6, p=0.81; Appendix 7 Table A7.1). The reimbursement cost of 

birth was respectively £42,776, £44,854 and £43,220 per infant (NICU minus LNU, -£2078 [95% CI: -

5551,1396]; NICU minus SCU, -£444 [-4690,3802]). The results for reimbursement cost and LOS 

(Appendix 7 Table A7.1) are robust to varying the covariates (available from the authors).  

Different test results for homogeneous effects were obtained for LNU (p<0.05) and SCU (p>0.05) 

using a control function approach.  Unobserved characteristics that led mothers to prefer LNU over 

ICU were also associated with lower in-hospital costs; e.g. conditional on covariates, mothers in the 

top 16 percent LNU utility ranking cost under £4634 less than the average. Moreover, individuals 

with below-average unobserved LNU utility factors (i.e. ceteris paribus above-average NICU utility, 

eq. 4b) have above-average returns (cost savings vs. NICU) with LNU (Appendix 6).   

Parametric normal MTE for NICU vs non-NICU had 95% CI that crossed zero (H0: no positive 

selection into NICU by non-observably more  costly patients, p=0.001; more incrementally costly 

patients, p=0.17) (Appendix 7). Semi-parametric analysis reveals, however, that mothers who 

delivered in NICU despite having the 20 to 40 percentile lowest predicted probabilities of doing so 

(͚unobserved resistance͛ on the x-axes in Figure 1) have the highest incremental costs relative to a 

non-NICU birthplace.  

 

While birth at lower level units results in very preterm infants spending the same total number of 

days in hospital as they would if born at a NICU, birth at LNU results in more intensive care (BAPM 1) 

days (IRR 1.40, 95% CI: 1.26,1.55) and fewer specialised intensive care (BAPM 3) days (IRR 0.95, 95% 

CI:  0.90,1.01) relative to what would happen if the same infant were born in ICU (or SCU; Figure 2). 

Birth at SCU results in similar numbers of inpatient days of treatment at the three levels of care 

relative to birth at NICU (Appendix 9).     

 

5 | DISCUSSION 
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Our study found that the occurrence of very preterm births outside NICUs was consistent with a 

model of demand for preterm birth care driven by physical access. Using data on physical access as 

instrumental variables produced a 0.9-1.3 percentage points lower mortality  in NICU and SCU 

relative to LNU. In contrast, in the simple naïve model with common prognostic covariates, in-

hospital mortality was 1-2 percentage points lower in hospitals with NICU or LNU compared to those 

with an SCU. The 95% CI of all these estimated differences crosses zero, suggesting they are due to 

chance alone.  

We found that our data were compatible with a mortality model in which there is no unobserved 

confounding. In cases without such confounding, the IV method is inefficient relative to simple 

regression analysis and may lead to incorrect inferences (Wooldridge 2010). However, we have a 

priori reasons to suspect endogeneity is present e.g. from selective choice of NICU by pregnancies 

with risk factors not recorded in our data, and our instruments were found to be strong and valid. 

Therefore the likely treatment effect for designated units lies with the IV results. Moreover, there is 

no evidence of an increase in the total length of the infant stay in these neonatal units or cost to 

commissioners when these outcomes are analysed unadjusted for the competing death risk. Since 

there are few ͚ŶĞǀĞƌ NICU ƚĂŬĞƌƐ͕͛ ŽƵƌ IV ĞƐƚŝŵĂƚĞƐ ŵĂǇ ďĞ ŝŶƚĞƌƉƌĞƚĞĚ ĂƐ ƚŚĞ ƚƌĞĂƚŵĞŶƚ Ğffect on 

the NICU-untreated (Angrist and Pischke 2009). Thus our results suggest that increases of in-utero 

transfers from lower unit designations alone are unlikely to bring large improvements in in-hospital 

mortality (Gale et al. 2012a,b). 

 

Our study also exploited continuous instruments to analyse the heterogeneity in treatment effects 

on mortality and costs. Our results failed to reject the hypothesis that there is no residual 

unobservable self-selection of women into NICU according to neonate severity or expected mortality 

risk reduction at conventional significance levels; however, it is possible that a larger sample would 

have rejected it. In terms of costs, there is evidence of unobservable self-selection of complex (i.e. 

more costly) cases into NICU hospitals and of negative selection by returns as some infants with the 

highest additional costs relative to non-NICU care are prone to be born in NICU hospital for reasons 

unrelated to birthweight, gestational age, socio-economic status, number of pregnancies and sex.  

We found a significant causal reduction in the number of hospital days spent under the most 

intensive care level (BAPM 1) that was accompanied by an increase in the number of days under 

lower care intensity (BAPM 3) with NICU relative to LNU. While the associated net effect on overall 

reimbursement costs to the NHS is apparently zero, and we did not find the mortality benefits 

documented by Marlow and colleagues (Marlow et al. 2014), these results suggest nevertheless that 

birth at NICU would reduce neonatal morbidity among those currently born in LNU. Further research 

that investigates this question is warranted using measures of neonatal morbidity including 

ventilator days; bronchopulmonary dysplasia; intraventricular haemorrhage, particularly the severe 

grades 3-4; late-onset infection; necrotizing enterocolitis; and retinopathy of prematurity, 

particularly severe stages 3 and above. 

A limitation of our analysis is that the IV method requires the assumption that travel time to the 

closest neonatal unit did not affect infant mortality by means other than through its role in 

determining the level of the neonatal unit of the hospital of birth. It is possible that longer travel 

time to a NICU increased the chance of in-hospital mortality among those infants delivered in a NICU 

due to delays in receiving the required specialised care. However, we would expect these effects, if 

present, to be secondary to the effects of travel time on mortality that are due to exposure to the 

level of care of the neonatal unit of birth. 
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Our measure of mortality, in-hospital infant death, did not include stillbirths, which exceed neonatal 

deaths in England (2952 versus 1721 annually, ONS 2015). Another limitation of our dataset is its 

lacking information on antenatal steroid use (ANS), which may account for the poorer mortality 

results for the SCUs as these use less steroids (RCPCH 2017). Watson et al. using the same database 

reported that covariates, including ANS, were evenly distributed between NICU and non-NICU born 

very preterm infant groups, after controlling for the lowest decile of index of multiple deprivation 

(Watson et al. 2015). We thus expect any omitted variable bias from ANS in our analysis, after 

controlled for quintiles of socioeconomic deprivation, to be limited. Low socio-economic status is 

itself linked to an increased risk of preterm births through low maternal weight and smoking (Taylor-

Robinson et al. 2011). Therefore, any unmeasured differences in socio-economic status that are not 

captured by our multiple deprivation measure may have confounded our results also. 

 

Future work should investigate differences in mortality and costs between high and low-volume 

NICUs since a high volume of births may be more influential on neonatal mortality and outcomes 

than a high designation level of unit (Jensen and Lorch 2015). Our findings comprise 42% of NICU 

infants born in high-volume units in our sample.   
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Table 1 Sample characteristics by travel time to NICUs (% unless stated otherwise) 

 All available observations 

(N=12,687) 

Excluding cases with missing 

travel time to LNU or SCU data 

(N=11,037) 

Lower 

tertile 

N=4,191 

Medium 

tertile 

N=4,185 

High 

tertile 

N=4,311 

Lower tertile 

N=3,855 

Medium 

tertile 

N=3,500 

High 

tertile 

N=3,682 

Died 8.26 8.89 8.14 8.40 9.17 8.04 

Discharged home 87.30 84.49 81.52 87.16 85.77 86.77 

Discharged ward 1.29 1.53 2.07 1.37 1.66 2.01 

Last record: transferred 

to another hospital/unit  
2.94 4.56 7.66 2.88 3.20 3.02 

Unknown destination 0.21 0.55 0.60 0.18 0.20 0.16 

Gestational age at birth 

(weeks), mean (SD) 
28.41 

(2.37) 

28.43 

(2.33) 

28.47 

(2.30) 

28.38 

(2.38) 

28.46 

(2.33) 

28.53 

(2.29) 

Birthweight (kg), mean 

(SD) 
1.19 

(0.38) 

1.20 

(0.38) 

1.21 

(0.39) 

1.18 

(0.38) 

1.20 

(0.38) 

1.22 

(0.39) 

Foetus 2+ 25.84 27.60 27.70 26.04 27.49 27.59 

Female sex 46.36 45.16 46.69 46.46 44.80 45.95 

Residence: Most 

deprived quintile1 
47.67 29.49 21.76 49.55 30.36 22.44 

Residence: 2nd most 

deprived quintile1  
23.00 24.35 21.87 22.65 23.74 21.27 

Residence: 3-5 least 

deprived quintile3 

29.33 46.16 56.36 27.80 45.90 56.29 

Caesarean delivery 48.34 50.75 51.54 48.50 51.14 51.54 

Spontaneous vaginal 37.06 36.92 36.67 37.15 36.46 36.85 

Unknown delivery mode 4.84 3.70 0.00 4.77 3.74 0 

Delivery at NICU 81.53 42.39 26.70 83.24 43.00 23.93 

Delivery at LNU 13.36 47.22 58.76 11.47 46.11 60.81 

Delivery at SCU 5.11 10.39 14.54 5.29 10.89 15.26 

Delivery at high volume2 32.38 19.52 10.69 34.42 19.40 10.08 
1 Ranked by the index of multiple deprivation of residential postcode. 2 Defined as born in hospital 

delivering more than 100 infants with <1500 g birthweight per year during the study period. SD: 

Standard deviation. 
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Table 2 Linear index coefficients of instruments in IV multinomial treatment models 

 Multinomial probit Multinomial logit Elasticities (multinomial logit) 

Instrumental 

variable 

Birth at 

LNU†  

Birth at 

SCU†  

Birth at 

LNU†   

Birth at 

SCU†   

Birth at ICU Birth at LNU Birth at SCU 

N= 11,037 N= 11,037 N= 11,037 N= 11,037 

Minimum 

travel time 

(mins) to NICU  

0.063*** 

(0.006) 

0.075*** 

(0.024) 

0.087*** 

(0.009) 

0.076*** 

(0.013) 

-1.34 

(-1.72, -0.97) 

0.80 

(0.58, 1.02) 

0.61 

(0.06, 1.16) 

Minimum 

travel time 

(mins) to LNU  

-0.064*** 

(0.008) 

-0.034 

(0.021) 

-0.109*** 

(0.013) 

-0.026 

(0.016) 

0.69 

(0.47, 0.92) 

 

-1.55 

(-1.96, -1.14) 

0.07 

(-0.49, 0.63) 

Minimum 

travel time to 

SCU 

-0.014 

(0.009) 

-0.112 

(0.105) 

-0.003 

(0.012) 

-0.152*** 

(0.017) 

0.27 

(-0.07, 0.60) 

0.13 

(-0.24, 0.51) 

-4.14 

(-4.95, -3.33) 

Wald F test Ho: 

all instruments 

have no effect  

188*** 36*** 153*** 172*** N/A N/A N/A 

Correlation 

across 

ĞƋƵĂƚŝŽŶƐ  ;ʌ13) 

0.82** Not allowed N/A N/A N/A 

†1=yes; 0=no equation. Controlled covariates: Age and age squared at birth, birthweight, birthweight squared, sex, 

deprivation of residence, foetus no. N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01.N/A: Not applicable. *p< 0.10 ** 

p<0.05 ***p<0.01. Statistical inferences based on robust standard errors adjusting for clustering of observations by 

hospital. Figures in parentheses are standard errors except under elasticities, which are 95% CI.   
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Table 3 Causal effects on mortality of birth in LNU & SCU relative to ICU in infants born at <32 weeks 

 Naïve IV Naïve IV 

Probit 

regression 

Probit with 

endogenous 

multinomial probit 

treatment 

Probit with 

endogenous 

multinomial 

probit 

treatment ʹ 

with 

exclusion 

restrictions  

logit 

regression 

Logit with 

endogenous 

multinomial logit 

treatment 

Birth at LNU 

([0,1] range) 

0.004 

(0.007) 

0.012 

(0.010) 

0.013 

(0.009) 

0.006 

(0.008) 

0.012 

(0.010) 

Birth at SCU 

([0,1] range)  

0.017* 

(0.010) 

0.001 

(0.015) 

-0.001 

(0.015) 

0.020* 

(0.010) 

0.003 

(0.017) 

ʌ12, ʄ1  -0.04 -0.06  -0.202 

ʌ13, ʄ2  0.07 0.12  0.391 

ʌ23  0.82* 0.20   

Instrument 

strength:  

Wald F test 

statistic (3 

degrees of 

freedom) 

N/A LNU equation: 

191*** 

SCU equation: 

34*** 

LNU 

equation: 

200*** 

SCU 

equation: 

98*** 

N/A LNU equation: 

171*** 

SCU equation: 

151*** 

N 11,037 11,037 11,037 11,037 11,037 

Hausman test z 

statistic of H0: 

no endogeneity 

LNU treatment 

variable 

N/A -0.63 -1.23 N/A -1.0 

Hausman test z  

statistic of H0: 

no endogeneity 

SCU treatment 

variable 

N/A 0.77 1.32 N/A 1.1 

z statistic: no 

correlation 

between utility 

equations (IIA) 

N/A 1.82* 0.59 N/A H0 true by implicit  

assumption 

Test z statistic 

Ho: valid over-

identifying 

restriction of 

minimum travel 

time to NICU 

N/A -0.42 0.26 N/A 0.59 

Controlled covariates: Age and age squared at birth, birthweight, birthweight squared, sex, deprivation of residence, foetus 

no. N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01.N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01. Statistical 

inferences based on robust standard errors (in parentheses) adjusting for clustering of observations by hospital. 
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Table 4 Robustness check: marginal effects on mortality of birth in LNU & SCU relative to ICU 

 Multinomial probit treatment model Multinomial logit treatment model 

 (a) (b) (c) (d) (e) (f) 

Birth at LNU 

(difference [0,1] range)   

0.012 

(0.010) 

0.009 

(0.010) 

0.011 

(0.010) 

0.012 

(0.010) 

0.010 

(0.010) 

0.011 

(0.010) 

Birth at SCU 

 (difference [0,1] range) 

0.001 

(0.015) 

-0.003 

(0.015) 

0.000 

0.015) 

0.003 

(0.017) 

-0.000 

(0.017) 

0.003 

(0.017) 

Included Covariates? 

Gestational age (GA), GA 

squared 

Yes Yes Yes Yes Yes Yes 

birthweight,  

birthweight squared 

Yes Yes Yes Yes Yes Yes 

IŶĨĂŶƚ͛Ɛ ƐĞǆ Yes Yes Yes Yes Yes Yes 

Foetus number Yes Yes Yes Yes Yes Yes 

Quintiles of multiple 

deprivation index 

Yes No Yes Yes No Yes 

Mode of delivery and 

labour 

No No Yes No No Yes 

Instrument strength:  

Wald F test statistic (3 

degrees of freedom) 

LNU 

equation: 

191*** 

SCU 

equation: 

34*** 

LNU 

equation: 

190*** 

SCU 

equation: 

38*** 

LNU 

equation: 

188*** 

SCU 

equation: 

36*** 

LNU 

equation: 

171*** 

SCU 

equation: 

151*** 

LNU 

equation: 

167*** 

SCU 

equation: 

146*** 

LNU 

equation: 

172*** 

SCU 

equation: 

154*** 

N 11,037 11,037 11,037 11,037 11,037 11,037 

z statistic of H0: no 

endogeneity LNU 

treatment 

-0.63 -0.38 -0.57 -1.05 -0.82 -1.01 

z  statistic of H0: no 

endogeneity SCU 

treatment 

0.77 0.92 0.77 1.06 1.20 1.04 

N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01.N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01. Statistical 

inferences based on robust standard errors (in parentheses) adjusting for clustering of observations by hospital. 
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Figure 1. Marginal Treatment Effects on hospital reimbursement costs (in logarithms) of level 3 vs. lower 

designation hospital 

  

Notes: Parametric model was estimated as log linear model and a probit model for NICU vs.non-NICU birth under the 

Potential outcomes framework. The x-axis depicts the unobserved resistance to treatment, V in Appendix 3, which equals 

the predicted probability of treatment in the first stage choice model. Semiparametric model is the local IV estimator 

(Heckman and Vytlacil 1999) as implemented by Brave and Walstrum (Brave and Walstrum 2014).   
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Appendix 0 ʹ Covariates included in the analysis. 

The dataset includes common covariates in this literature (Gale et al. 2013, Cole et al. 2010, 

Manktelow et al. 2013, Ge et al. 2013, Tucker et al.  2002, Lorch et al. 2012):  gestational age in 

weeks, gestational age in weeks squared, birth weight (kg), birth weight squared, index of multiple 

deprivation (quintiles), number of foetuses (1 vs. 2+), female sex (yes vs. no), mode of delivery and 

labour (spontaneous vaginal, induced vaginal, emergency caesarean with labour, emergency 

caesarean without labour, elective caesarean, unknown). We also have information on the mode of 

delivery to use as control for potential confounding, e.g. since we did not have data available on 

fetal ĚĞĂƚŚƐ͕ ƚŽ ĂǀŽŝĚ ƵŶĚĞƌĞƐƚŝŵĂƚŝŶŐ ƚŚĞ ŚĞĂůƚŚ ďĞŶĞĨŝƚƐ ŽĨ ůĞǀĞů ϯ ƵŶŝƚƐ͛ ĂďŝůŝƚǇ ĨŽƌ ƌĂƉŝĚ ĚĞůŝǀĞƌŝŶŐ 
a preterm birth who may otherwise die in utero (Jensen and Lorch 2015). Nevertheless, we also 

conducted sensitivity analyses that exclude mode of delivery variables. We considered models using 

birthweight by gestational age z score instead of birthweight and its squared value but since the two 

specifications produced the same results we preferred the latter. 

 

Appendix 1 ʹ Identification of the instrumental variable estimator 

We Defining ICU*, LNU*, SCU* as the corresponding latent utilities of birth at the three levels of 

care: ܵܥ ௜ܷכ  ൌ ௌ஼௜ݖଷߠ ൅ ௅ே௜ݖଶߠ ൅ ூ஼௜ݖଵߠ  ൅ ௜ܺᇱߛௌ஼ ൅ ߳ௌ஼௜      (3) ܰܮ ௜ܷכ  ൌ ௌ஼௜ݖଷߙ ൅ ௅ே௜ݖଶߙ  ൅ ூ஼௜ݖଵߙ ൅  ௜ܺᇱߛ௅ே ൅  ߳௅ே௜   ܥܫ ௜ܷכ  ൌ ௌ஼௜ݖଷߨ  ൅ ௅ே௜ݖଶߨ ൅ ூ஼௜ݖଵߨ  ൅  ௜ܺᇱߛூ஼ ൅  ߳ூ஼௜ 
  

ǁĞ ĞǆƉĞĐƚ ɽ3фϬ͕ ɲ2 фϬ͕ ĂŶĚ ʋ1 <0, whilst the  coefficients of the remaining instrumental variables are 

expected to be positive or zero, e.g. longer travel times to the closest alternative care levels of  LNU 

and ICU are expected to increase the propensity of birth in SCU. The multinomial choice model is 

estimated by defining LNU* and SCU* as differences in utility relative to the utility of NICU: ܵܥ෫ܷ௜כ ؠ ܥܵ ௜ܷכ െ ܥܫ ௜ܷכ ൌ ሺߠଷ െ ௌ஼௜ݖଷሻߨ ൅ ሺߠଶ െ ௅ே௜ݖଶሻߨ ൅ ሺߠଵ െ ூ஼௜ݖଵሻߨ ൅ ௜ܺᇱሺߛௌ஼ െ ூ஼ሻߛ ൅ ߳ௌ஼௜ െ߳ூ஼௜ ؠ  ௌ஼௜ݖ෨ଷߠ  ൅ ௅ே௜ݖ෨ଶߠ ൅ ூ஼௜ݖ෨ଵߠ ൅ ௜ܺᇱߛ෤ௌ஼ ൅ ߳ǁௌ஼௜     (4a), ܰܮ෫ܷ௜כ ؠ ܰܮ ௜ܷכ െ ܥܫ ௜ܷכ ൌ ሺߙଷ െ ௌ஼௜ݖଷሻߨ ൅ ሺߙଶ െ ௅ே௜ݖଶሻߨ ൅ ሺߙଵ െ ூ஼௜ݖଵሻߨ ൅ ௜ܺᇱሺߛ௅ே െ ூ஼ሻߛ ൅߳௅ே௜ െ ߳ூ஼௜ ؠ ௌ஼௜ݖ෤ଷߙ  ൅ ௅ே௜ݖ෤ଶߙ ൅ ூ஼௜ݖ෤ଵߙ ൅ ௜ܺᇱߛ෤௅ே ൅ ߳ǁ௅ே௜     (4b) ܥܫ෪ܷ ௜כ ؠ ܥܫ ௜ܷכ െ ܥܫ ௜ܷכ ൌ Ͳ                                                                                                                            (4c)       

where the utility differences depend on the three instruments, one for travel time to the closest unit 

of each type, and the Greek symbols denote the coefficients of the ICU, LNU or SCU propensity 

equations, the accents denote coefficients transformed by subtracting the corresponding coefficient 

in the NICU latent equation, and ߳ǁ௅ே௜  and  ߳ǁௌ஼௜ are the error terms in the propensity equations after 

subtracting the error in the NICU latent equation. We expect the own-͚ĂĐĐĞƐƐ ƉƌŝĐĞ͛ ĞĨĨĞĐt to be 

negative (ߙ෤ଶ<0 and ߠ෨ଷ <0), and the cross-price of access to NICU effect to be positive (ߙ෤ଵ ൐0 and ߠ෨ଵ ൐ Ͳ). In contrast, the expected signs of ߙ෤3 and ߠ෨2 are ambiguous a priori; if ߙ෤3 >0 , then ߠଷ ൐  ଷߨ 

and the effect of access to SCU is larger on the utility of LNU than on the utility of ICU, and viceversa 

if  ߙ෤ଷ ൏0; the same situation applies to ߠ෨2 .  
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Turning to the neonatal treatment decision criteria in the multinomial model, birth in NICU (ICU=1) 

occurs when its latent utility is the highest of the three hospital levels, i.e., LNU*< ICU* and 

SCU*<ICU*, which in terms of 4a and 4b implies, respectively:  ߳ǁௌ஼௜ ൏ െ  ሺߠ෨ଷݖௌ஼௜ ൅ ௅ே௜ݖ෨ଶߠ ൅ ூ஼௜ݖ෨ଵߠ  ൅  ௜ܺᇱߛ෤ௌ஼ሻ  (A1.4a) 

& 

 ߳ǁ௅ே௜ ൏ െ  ሺߙ෤ଷݖௌ஼௜ ൅ ௅ே௜ݖ෤ଶߙ ൅ ூ஼௜ݖ෤ଵߙ  ൅  ௜ܺᇱߛ෤௅ேሻ  (A1.4b) 

 

otherwise, birth occurs in a lower level unit (ICU=0). Birth at LNU (LNU==1) would occur if 

LNU*>ICU* and LNU*>SCU* ߳ǁ௅ே௜ ൐ െ  ሺߙ෤ଷݖௌ஼௜ ൅ ௅ே௜ݖ෤ଶߙ  ൅ ூ஼௜ݖ෤ଵߙ ൅  ௜ܺᇱߛ෤௅ேሻ   (A1.4c) 

& ߳ǁ௅ே௜ െ ߳ǁௌ஼௜ ൐ െ  ሼ൫ߙ෤ଷ െ ௌ஼௜ݖ෨ଷ൯ߠ ൅ ൫ߙ෤ଶ െ ௅ே௜ݖ෨ଶ൯ߠ  ൅ ൫ߙ෤ଵ െ ூ஼௜ݖ෨ଵ൯ߠ ൅  ௜ܺᇱሺߛ෤௅ே െ    [ ෤ௌ஼ሻሽߛ 
 (A1.4d) 

 

otherwise birth occurs in a unit of a different level (LNU=0), whilst birth will take place at SCU 

(SCU=1) if SCU*>ICU* and LNU*<SCU*,  ߳ǁௌ஼௜ ൐ െ  ሺߠ෨ଷݖௌ஼௜ ൅ ௅ே௜ݖ෨ଶߠ ൅ ூ஼௜ݖ෨ଵߠ  ൅  ௜ܺᇱߛ෤ௌ஼ሻ    (A1.4e) Ƭ 

  ߳ǁ௅ே௜ െ ߳ǁௌ஼௜  ൏  െ ൛൫ߙ෤ଷ െ ௌ஼௜ݖ෨ଷ൯ߠ ൅ ൫ߙ෤ଶ െ ௅ே௜ݖ෨ଶ൯ߠ  ൅ ൫ߙ෤ଵ െ ூ஼௜ݖ෨ଵ൯ߠ ൅  ௜ܺᇱሺߛ෤௅ே െ   ෤ௌ஼ሻൟߛ 

 (A1.4f) 

otherwise it will occur in a higher level unit. 

 

A1.1 Parametric choice model specification 

By assigning a probability distribution to the error terms in 4a and 4b a parametric model of demand 

for levels of care may be estimated in terms of the right-hand side variables of these equations. In 

the multinomial logit case, a closed form solution for the choice probabilities, its derivatives and 

ĞůĂƐƚŝĐŝƚŝĞƐ͕ ĞǆŝƐƚ ;TƌĂŝŶ ϮϬϬϯ͕ Ɖ͘ ϲϭͿ͘ TŚĞ ͚ĂĐĐĞƐƐ ƉƌŝĐĞ͛ ĞůĂƐƚŝĐŝƚŝĞƐ ŽĨ ĚĞŵĂŶĚ ĨŽƌ ďŝƌƚŚ Ăƚ ICU ;EIC ), 

LNU (ELN ) and SCU (ESC ) are as follows:  ܧௌ஼௞ ൌ ሺߠ෨௞ሺͳ െ ௌܲ஼ሻ  െ ߙ෤௞ ௅ܲேሻݖ௞  ܧ௅ே௞ ൌ ሺߙ෤௞ሺͳ െ ௅ܲேሻ  െ ூ஼௞ܧ ௞ݖ෨௞ ௌܲ஼ሻߠ ൌ െሺߙ෤௞ ௅ܲே ൅ ෨௞ߠ  ௌܲ஼ሻݖ௞ 

for k= 1,2,3, with PSC , PLN as the multinomial logit choice probabilities of birth at levels 1 and 2, and 

the access prices (instrumental) variables defined as z1 ൙ ǌSC , z2 ൙ ǌLN , z3൙ ǌIC . These are evaluated at 

sample mean values of the independent variables. 
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The multinomial logit model has a conveniently simple analytical likelihood function but imposes the 

assumption that the ratio of choice probabilities between any pair of treatments (e.g. LNU over ICU) 

is independent from the indirect utility of the third (SCU), i.e. the independence of irrelevant 

alternatives (IIA) assumption. To relax this assumption, we estimate the parameters of the choice 

model using the alternative of a multinomial probit distribution that allows for the indirect utility 

equations 4a and 4b to be correlated. In order to formally identify this model and avoid practical 

problems of identification (Keane 1992) we impose the exclusion restrictions ߠଶ ൌ Ͳǡ ଵߠ ൌ Ͳǡ ଷߙ ൌͲ ǡ ଵߙ ൌ Ͳ ǡ ଷߨ ൌ Ͳ ǡ ଶߨ ൌ Ͳ  on eqs. 3, effectively excluding the travel time to LNU instrument from 

the indirect utility equation for SCU (ߠ෨ଶ ൌ Ͳ in 4a) and viceversa (ߙ෤ଷ ൌ Ͳ in 4b). Notice that the 

restrictions ߠଵ= 0 and ߙଵ=0  do not result in any further exclusion restrictions in our differenced 

demand system of eqs. 4a-4b, or in any change in our a priory expectations on the sign of the 

coefficients for the included instruments. Thus, in sensitivity analysis of the multinomial probit 

model, the latent utility system 3 and the indirect utility equations 4a-4c become, respectively: ܵܥ ௜ܷכ  ൌ ௌ஼௜ݖଷߠ                                      ൅ ௜ܺᇱߛௌ஼ ൅  ߳ௌ஼௜     

 ;Aϭ͘ϭ͘ϯ͛Ϳ ܰܮ ௜ܷכ  ൌ ௅ே௜ݖଶߙ                                    ൅ ௜ܺᇱߛ௅ே ൅  ߳௅ே௜   ܥܫ ௜ܷכ  ൌ ூ஼௜ݖଵߨ                                       ൅ ௜ܺᇱߛூ஼ ൅  ߳ூ஼௜ 
כ෫ܷ௜ܥܵ  ൌ ௌ஼௜ݖଷߠ െ ூ஼௜ݖଵߨ ൅ ௜ܺᇱሺߛௌ஼ െ ூ஼ሻߛ ൅ ߳ௌ஼௜ െ ߳ூ஼௜       ؠ ௌ஼௜ݖଷߠ ൅ ሺെߨଵሻݖூ஼௜ ൅ ௜ܺᇱߛ෤ௌ஼௜ ൅ ߳ǁௌ஼௜                                                                                        (A1.1.4a), ܰܮ෫ܷ௜כ ൌ ௅ே௜ݖଶߙ െ ூ஼௜ݖଵߨ ൅ ௜ܺᇱሺߛ௅ே െ ூ஼ሻߛ ൅ ߳௅ே௜ െ ߳ூ஼௜ ؠ ௅ே௜ݖଶߙ ൅ ሺെߨଵሻݖூ஼௜ ൅ ௜ܺᇱߛ෤௅ே ൅ ߳ǁ௅ே௜                                                                                        (A1.1.4b) ܥܫ෪ܷ ௜כ   ൌ Ͳ                                                                                                                                                (A1.1.4c) 

 

In estimating A1.1.4a-4b we impose the appropriate cross-equation restrictions on the coefficient of 

zICi .  
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Appendix 2 ʹ Endogenous treatment model for each outcome 

For all outcomes we estimated endogenous treatment choice models generated by a multinomial 

logit distribution, we describe this model in section A2.1 below. Alternative endogenous treatment 

models using the multinomial probit distribution were also estimated for all outcomes except the 

number of hospital days by level of care (see section A2.2.3 below) and are described in section 

A2.2.   

A2.1 Endogenous multinomial logit treatment choice model 

We use the control function approach for ĞƐƚŝŵĂƚŝŶŐ EƋ͘ ϭ͛ ƉƌŽƉŽƐĞĚ ďǇ DĞďď ĂŶĚ TƌŝǀĞĚŝ ;DĞďď ĂŶĚ 
Trivedi 2006),  

Following Deb and Trivedi (2006), under the control function approach Eq. 1 becomes  

௜ܻ ൌ ݃ ሺ ߚଵܵܥ ௜ܷ ൅ ܰܮଶߚ ௜ܷ  ൅  ௜ܺᇱߜ ൅ ଵ݈ௌ஼௜ߣ ൅ ଶ݈௅ே௜ሻߣ ൅ ܧ௜ , i.e.     ݃ିଵሺݒ  ௜ܻሻ ൌ ܥଵܵߚ  ௜ܷ ൅ ܰܮଶߚ ௜ܷ  ൅ ௜ܺᇱߜ ൅ ଵ݈ௌ஼௜ߣ ൅  ଶ݈௅ே௜         ;AϮ͘ϭ͛Ϳߣ

after allowing for a mean zero error, i.e. Evi =0, with g-1(EY) denoting the link function (logit or probit 

for mortality, log for costs, and log for days in hospital) evaluated at the mathematical expectation 

of Y. The terms lSCi and lLNi are unobserved latent utility factors for SCU and LNU (relative to ICU, see 

eq. 4a & 4b and eq.5), respectively, that affect outcome; the sign of their respective coefficients, e.g. 

ʄ1 >0 ĂŶĚ ʄ2 >0, would indicate that people whose unobserved characteristics make them to value 

SCU and LNU more than other people with the same observed characteristics X, tend to have a 

higher Y. Thus, in this model the two latent factors serve to control for the endogeneity of SCU and 

LNU in Eq. 1.. DĞƉĞŶĚŝŶŐ ŽŶ ƚŚĞ ƚǇƉĞ ŽĨ ŽƵƚĐŽŵĞ͕ EƋ͘ AϮ͘ϭ͛ ŝƐ ĞƐƚŝŵĂƚĞĚ ďǇ ŵĂǆŝŵŝƐŝŶŐ ƚŚĞ ůŝŬĞůŝŚŽŽĚ 
of observing the data, given a suitably chosen parametric distribution for v (in our case, binomial for 

mortality, normal for costs and Poisson for days in hospital). 

The model is complemented by the system of differenced latent equations 4a and 4b (4c becomes 

redundant), which represent the (normalised) indirect utilities of SCU, LNU and NICU, respectively, 

and the definitions   ߳ǁ௅ே௜ ؠ ݈௅ே௜ ൅ ݁௅ே௜         (5)  ߳ǁௌ஼௜ ؠ ݈ௌ஼௜ ൅ ௌ݁஼௜  

The terms lLNi and lSCi denote the values of unobserved factors affecting the indirect utility of the two 

ŽƉƚŝŽŶƐ ĂŶĚ ƚŚĞ ŝŶĨĂŶƚ͛Ɛ ŽƵƚĐŽŵĞ Y ŝŶ EƋ AϮ͘ϭ͛͘ TŚĞ ĞLNi and eSCi are independently identically 

distributed error terms that are independent from lLNi and lSCi and whose joint distribution implies a 

probability of treatment selection given by the function h(.) of linear indices of observed covariates 

and unobserved factors in 4a & 4b: ܲሺܰܮ ௜ܷ ǡ ܥܵ  ௜ܷȁݖௌ஼௜ǡ ௅ே௜ǡݖ ூ஼௜ǡݖ ௜ܺǡ ݈௅ே௜ǡ ݈ௌ஼௜ሻ ൌ  ݄ሺߙ෤ଷݖௌ஼௜ ൅ ௅ே௜ݖ෤ଶߙ ൅ ூ஼௜ݖ෤ଵߙ ൅ ௜ܺᇱߛ෤௅ே ൅ ݈௅ே௜ ǡ ௌ஼௜ݖ෨ଷߠ ൅ߠ෨ଶݖ௅ே௜ ൅ ூ஼௜ݖ෨ଵߠ ൅ ௜ܺᇱߛ෤ௌ஼ ൅ ݈ௌ஼௜ሻ  

Thus, the likelihood of observing the sample of data is ׬ ݂ሺ݃ ሺߚଵܵܥ ௜ܷ ൅ ܰܮଶߚ ௜ܷ  ൅  ௜ܺᇱߜ ൅ ଵ݈ௌ஼௜ߣ ൅ ௌ஼௜ݖ෤ଷߙଶ݈௅ே௜ሻሻ ݄൫ߣ ൅ ௅ே௜ݖ෤ଶߙ ൅ ூ஼௜ݖ෤ଵߙ ൅ ௜ܺᇱߛ෤௅ே ൅ே௜ୀଵ݈௅ே௜ǡ ௌ஼௜ݖ෨ଷߠ ൅ ௅ே௜ݖ෨ଶߠ ൅ ூ஼௜ݖ෨ଵߠ ൅ ௜ܺᇱߛ෤ௌ஼ ൅ ݈ௌ஼௜൯  ݇ሺ݈௅ே௜ǡ ݈ௌ஼௜ሻ݈݀ௌ஼௜ ݈݀௅ே௜           (A.2) 

where f(.) is the family statistical distribution function and g(.) is the inverse of the link defined in eq. 

ϭ͛ ͕ ďŽƚŚ ŽĨ ǁŚŝĐŚ ǀĂƌǇ ĚĞƉĞŶĚŝŶŐ ŽŶ ƚŚĞ ŽƵƚĐŽŵĞ ŵĞĂƐƵƌĞ ;ƐĞĞ A͘Ϯ͘ϭ͘ϭ-2.1.3), and k(.) is the 
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standard normal distribution function for the values of unobserved factors confounding the 

estimation of causal effects of neonatal care levels on outcomes. Estimation of model parameters 

may be accomplished by maximising the (simulated) likelihood of the sample of data with multiple 

values of ݈௅ே௜ǡ ݈ௌ஼௜ sampled from k using Halton sequences (Bhat 2001, Debb and Trivedi 2006). The 

control function approach facilitates estimation of complex non-linear outcome models using simple 

analytical expressions for the function h(.), which in our case is the multinomial logit. This is 

accomplished at the expense of imposing the strong assumption that the unobserved confounders ݈௅ே௜ǡ ݈ௌ஼௜  ĞŶƚĞƌ EƋ͘ ϭ͛ ůŝŶĞĂƌůǇ͘   

  

A2.1.1 Mortality 

We estimate the model as a logit link outcome with endogenous multinomial logit treatment (Debb 

ĂŶĚ TƌŝǀĞĚŝ ϮϬϬϲͿ͕ ǁŚĞƌĞ ĞƋ͘ AϮ͘ϭ͛ ŝƐ ƚŚĞ ŵĂŝŶ ĞƋƵĂƚŝŽŶ ŽĨ ŝŶƚĞƌĞƐƚ ǁŝƚŚ Y ďĞŝŶŐ ƚŚĞ ƵŶŽďƐĞƌǀĞĚ 
latent propensity to die, Death*: ݃ିଵሺ݄ݐܽ݁ܦܧ௜כȁܵܥ ௜ܷǡ ܰܮ ௜ܷ ǡ ௜ܺ ǡ ݈ௌ஼௜ǡ ݈௅ே௜ሻ ൌ ܥଵܵߚ  ௜ܷ ൅ ܰܮଶߚ ௜ܷ  ൅  ௜ܺᇱߜ ൅ ଵ݈ௌ஼௜ߣ ൅         ଶ݈௅ே௜ߣ
;A͘Ϯ͘ϭ͘ϭ͛Ϳ 

where g-1  is the logit link function and f in A.2 is the binomial distribution.  

We conducted sensitivity analysis to account for unobserved heterogeneity at the level of the 

hospital, using an unobserved random term h that varies across hospitals following a normal 

independent distribution but is fixed within infants born in the same hospital: ݃ିଵ൫݄ݐܽ݁ܦܧ௜௝כ ȁܵܥ ௜ܷ௝ ǡ ܰܮ ௜ܷ௝ ǡ ௜ܺ௝ ǡ ݈ௌ஼௜௝ ǡ ݈௅ே௜௝൯ ൌ ܥଵܵߚ ௜ܷ௝ ൅ ܰܮଶߚ ௜ܷ௝ ൅ ௜ܺ௝ᇱ ߜ ൅ ଵ݈ௌ஼௜௝ߣ ൅ ଶ݈௅ே௜௝ߣ ൅ ௝݄        

;A͘Ϯ͘ϭ͘Ϯ͛Ϳ 

and 4a and 4b now have ij instead of I subscripts and error terms   ߳ǁ௅ே௜௝ ؠ ݈௅ே௜௝ ൅ ߰௅ே݄௝ ൅  ݁௅ே௜௝            ߳ǁௌ஼௜௝ ؠ ݈ௌ஼௜௝ ൅ ߰ௌ஼ ௝݄൅ ௌ݁஼௜௝ 

with coefficients (loading factors) ߰௅ே ܽ݊݀ ߰ௌ஼  to be estimated.   

A2.1.2 Reimbursement costs and total length of stay 

The models for reimbursement costs was estimated using a log normal link function for g-1(.) and a 

GĂƵƐƐŝĂŶ ĨĂŵŝůǇ ĚŝƐƚƌŝďƵƚŝŽŶ ĨŽƌ Ĩ;͘Ϳ͕ ǁŚĞƌĞ ƚŚĞ ŽƵƚĐŽŵĞ Y ŝŶ ĞƋ͘ ϭ͛ ǁĂƐ ƚŚĞ ŽďƐĞƌǀĞĚ ƌeimbursement 

ĐŽƐƚƐ ŽĨ ƚŚĞ ŝŶĨĂŶƚ͛Ɛ ŝŶƉĂƚŝĞŶƚ ŚŽƐƉŝƚĂů ƐƚĂǇ͘ TŚĞ ƐĂŵĞ ƐƉĞĐŝĨŝĐĂƚŝŽŶƐ ĂƉƉůŝĞĚ ĨŽƌ ƚŚĞ ĂŶĂůǇƐŝƐ ŽĨ ƚŽƚĂů 
length of hospital stay. We also conduct a sensitivity analysis of these models to account for 

unobserved heterogeneity at the level of the hospital, analogously to the analysis for mortality 

described in section A2.2.1. 

We also estimated a heterogeneous treatment effects model to explore the patterns of self-

selection into SCU and LNU treatment according to total costs and costs savings relative to NICU. In 

brief terms, this consisted in interacting the latent factors lSCi and lLNi with the treatment dummies 

SCUi and LNUi as follows: ݈݊ܥܧ௜ ൌ ሺߚଵ ൅ ଵଵ݈ௌ஼௜ߣ ൅ ܥଵଶ݈௅ே௜ሻܵߣ ௜ܷ ൅ ሺߚଶ ൅ ଶଵ݈ௌ஼௜ߣ ൅ ܰܮଶଶ݈௅ே௜ሻߣ ௜ܷ ൅ ௜ܺᇱߜ ൅ ଵ݈ௌ஼௜ߣ ൅  ଶ݈௅ே௜ߣ
;A͘Ϯ͘ϭ͘Ϯ͛͛Ϳ 
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where ln EC is the natural logarithm of expected costs and, to simplify the expression, we have 

omitted the fact that the expectation is conditional on the X covariates, the treatment dummies and 

the latent factors. The equation for length of hospital stay is specified in the same manner. This 

analysis extends the approach of Card (Card 2001) to multiple treatments using a latent factor set-up 

as proposed by Aakvik, Heckman and Vytlacil (Aakvik et al. 2005). Further details are available from 

the authors upon request. 

 

TŚĞ ĞƋƵĂƚŝŽŶƐ A͘Ϯ͘ϭ͘Ϯ͕͛͛ ϰĂ͕ ϰď ĂŶĚ ϱ ĂƌĞ ĂŶ ĞǆĂŵƉůĞ ŽĨ Ă PŽƚĞŶƚŝĂů OƵƚĐŽŵĞƐ Model, where an 

individual is observed to have one of three potential outcomes, depending on which treatment 

option is used: 

Y= Y3 (1-SCU- LNU) + Y2 LNU + Y1 SCU        

Where the subscripts indicate the level of care (NICU=3, LNU=2 and SCU=1), and we omit the 

ŝŶĚŝǀŝĚƵĂů ƐƵďƐĐƌŝƉƚƐ ƚŽ ƐŝŵƉůŝĨǇ ŶŽƚĂƚŝŽŶ͘ IŶ ƚŚĞ ĐĂƐĞ ŽĨ ĞƋ͘ A͘Ϯ͘ϭ͘Ϯ͛͛ ƚŚĞ ŵŽĚĞů ƚĂŬĞƐ ƚŚĞ ĨŽƌŵ  

Y= Y3 + (Y2 ʹ Y3) LNU + ( Y1 ʹ Y3 )SCU =        E݈݊ݐݏ݋ܥ௜  ൌ ௜ܺԢߜଷ ൅ ܥܵ ௜ܷ ௜ܺԢሺߜଵ െ ଷሻߜ ൅ ܰܮ ௜ܷ ௜ܺԢሺߜଶ െ ൌͳሻܷܥܫଷ௜ȁߝሺܧଷሻ ൅ߜ ൅ ܰܮ ௜ܷሼܧሺߝଶ௜ȁܷܰܮൌͳሻ െ ൌͳሻሽܷܥܫଷ௜ȁߝሺܧ ൅ ܥܵ ௜ܷሼܧሺߝଵ௜ȁܷܵܥൌͳሻ െܧሺߝଷ௜ȁܷܥܫൌͳሻሽ          ;AϮ͘ϭ͘Ϯ͘Ϯ͛Ϳ 

with  ܧሺߝଷ௜ȁܷܥܫൌͳሻ ؠ ܰܮ  ଶ௅ே݈௅ே௜        (A2.1.2.3)ߣ ଵௌ஼݈ௌ஼௜൅ߣ  ௜ܷሼܧሺߝଶ௜ȁܷܰܮൌͳሻ െ ൌͳሻሽܷܥܫଷ௜ȁߝሺܧ ؠ  ܰܮ ௜ܷሺߣଶଵௌ஼݈ௌ஼௜ ൅ ܥܵ ଶଶ௅ே݈௅ே௜ሻ   (A2.1.2.4)ߣ ௜ܷሼܧሺߝଵ௜ȁܷܵܥൌͳሻ െ ൌͳሻሽܷܥܫଷ௜ȁߝሺܧ ؠ ܥܵ  ௜ܷ  ሺߣଵଵௌ஼݈ௌ஼௜ ൅  ଵଶௌ஼݈௅ே௜ሻ  (A2.1.2.5)ߣ 

Expression A2.1.2.3 is as in the model by Debb and Trivedi. Expressions A2.1.2.4 and A2.1.2.5 

represent the unobserved random coefficients for the effect of the two treatments, which may be 

ĐŽƌƌĞůĂƚĞĚ ǁŝƚŚ LNU ĂŶĚ “CU ;ĞŶĚŽŐĞŶŽƵƐͿ͘ TŚĞ Ɛŝǆ ĨĂĐƚŽƌ ůŽĂĚŝŶŐƐ ʄ ƚŽ ďĞ ĞƐƚŝŵĂƚĞĚ from the data 

are just identified from the covariation in the two (standard normal) independently distributed 

heterogeneity latent utility factors in eq. 5, ݈ ൌ ሺ݈௅ேǡ ݈ௌ஼)   ~NID(0,1) and the treatment vector ݀ ൌሺͳǡ ǡܷܥܵ  ሻ (i.e. 2 X 3=6). (We estimate the correlated coefficients model without the treatmentܷܰܮ

by covariate interactions ܵܥ ௜ܷ ௜ܺԢሺߜଵ െ ଷሻߜ ൅ ܰܮ ௜ܷ ௜ܺԢሺߜଶ െ  ଷሻ ŝŶ ĞƋ͘ A͘Ϯ͘ϭ͘Ϯ͘Ϯ͛ due to the highߜ

amount of computing time required for a model including these terms, so that differences in 

ƉŽƚĞŶƚŝĂů ŽƵƚĐŽŵĞƐ ĂƌĞ ŽŶůǇ ĚƵĞ ƚŽ ƵŶŽďƐĞƌǀĞĚ ŚĞƚĞƌŽŐĞŶĞŝƚǇ ƚĞƌŵƐ ŝŶ AϮ͘ϭ͘Ϯ͘Ϯ͛Ϳ͘ 

 

In order to validly estimate this model, the instruments must satisfy the condition ܧሺࢿȁܷܵܥǡ ǡܷܰܮ ௌ஼ݖ ǡ ௅ேǡݖ ூ஼ݖ  ሻ ൌ ௌ஼௜ǡݖȁࢿሺܧ ௅ே௜ǡݖ ூ஼௜ ሻݖ ൌ ૙ 

, which is stronger than condition 2 in the main text. The model is estimated by simulated maximum 

ůŝŬĞůŝŚŽŽĚ ;TƌĂŝŶ ϮϬϬϯͿ͘ A WĂůĚ ƚĞƐƚ ĨŽƌ HϬ͗ ʄ11сϬ͕ ʄ12сϬ͕ ʄ21 с Ϭ͕ ʄ22 =0 is a test of the null of 

exogeneity of treatment effects (i.e. no selection by retuƌŶƐͿ ĂŶĚ ʄ1LN сϬ͕ ʄ2SC =0 of no selection by 

severity. This model may be implemented in publicly and commercially available statistical software. 
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A2.1.3 Number of hospital days spent in each level of care 

We estimated the effect of neonatal unit designation on the number of days at British Association of 

Perinatal and Maternity (BAPM) levels of care 1, 2 and 3 separately, which together accounted for 

ϵϴй ŽĨ ƚŽƚĂů LO“ ;ƚŚĞ ͚ƐƵƉĞƌ ƐƉĞůů͛Ϳ ŝŶ ŽƵƌ ƐĂŵƉůĞ͘ TŚŝƐ ĂŶĂůǇƐŝƐ ǁĂƐ ŝŵƉůĞŵĞŶƚĞĚ ƵƐŝŶŐ Ă PŽŝƐƐŽŶ 
endogenous treatment effect model (Debb and Trivedi 2006). The estimated model was as follows:  ݈݊ ܧሺ͓݈݁ݒ݈݁ ܱܵܮ௜ȁ ௜ܺሻ  ൌ ܥଵ͓ܵߚ ௜ܷ ൅ ܰܮଶ͓ߚ ௜ܷ ൅  ௜ܺԢ͓ߜ ൅ ߣଵ͓݈ௌ஼௜ ൅   ଶ͓݈௅ே௜ߣ

 (A.2.1.4) 

where ln E(LOS level#i |X) is the natural logarithm of the expected number of hospital days at the 

BAPM level number # by infant i given his or her characteristics X, and other variables are as 

described before; one model is estimated for each of #=1,2, 3. We present the treatment effects in 

terms of inĐŝĚĞŶĐĞ ƌĂƚĞ ƌĂƚŝŽƐ ͕ Ğ͘Ő͘ ŝŶ ƚŚĞ ŵŽĚĞů ĨŽƌ ηсϭ͕ ɴ11 ĂŶĚ ɴ21 are the proportional increase in 

the number of days spent at BAPM1 when born at SCU and LNU, respectively, relative to NICU. 

Presenting results in these relative terms allows us to show the compositional effects of place of 

birth. To account for endogeneity we estimate this model using the control function approach as 

implemented by Debb and Trivedi (Debb and Trivedi 2006). 

 

A2.2 Endogenous multinomial probit treatment choice model 

 

A2.2.1 Mortality 

We estimated dichotomous regressions of individual infant mortality as a function of place of birth,  

LNU, SCU or NICU (the reference option) and adjusting covariates,  ݄ݐܽ݁ܦ௜כ ൌ ܥଵ௜ܵߚ ௜ܷ ൅ ܰܮଶ௜ߚ ௜ܷ  ൅  ௜ܺԢߜ ൅  ௜       (A.2.2.1)ߝ

where Death*i is a latent continuous variable measuring the death risk of infant i in the follow-up 

period up to hospital discharge and SCUi is a binary variable equal to 1 if the neonatal unit of birth of 

infant i is SCU and 0 otherwise, and LNU is likewise defined for birth in LNU. The term Xi͛ɷ ƐƚĂŶĚƐ ĨŽƌ 
a linear vector of adjusting covariates (plus a constant) as controls for measured confounding, with 

ƚŚĞŝƌ ƌĞƐƉĞĐƚŝǀĞ ĐŽĞĨĨŝĐŝĞŶƚƐ ɷ͘ TŚĞ ǀĞĐƚŽƌ X ŝŶĐůƵĚĞƐ ƚŚĞ ĐŽǀĂƌŝĂƚĞƐ ůŝƐƚĞĚ ĂďŽǀĞ ĨŽƌ ďŝƌƚŚǁĞŝŐŚƚ͕ 
gestational age, index of multiple deprivation, number of pregnancies, mode of delivery and labour.  

Since Death* is not observed, but the occurrence, say D=1, or absence, D=0, of death is, the model 

may be estimated by adopting an observational rule in terms of the value of the error tem ߝ௜:   ݄ݐܽ݁ܦ௜ ൌ  ͳሾ݄ݐܽ݁ܦ௜כ ൌ ܥଵ௜ܵߚ ௜ܷ ൅ ܰܮଶ௜ߚ ௜ܷ  ൅ ௜ܺᇱߜ ൅ ௜ߝ ൐ ߬ఌሿൌ ͳሾߝ௜ ൐ ߬ఌ െ ሺߚଵ௜ܵܥ ௜ܷ ൅ ܰܮଶ௜ߚ ௜ܷ  ൅  ௜ܺᇱߜሻሿ 

ǁŚŝĐŚ ŵĞĂŶƐ ƚŚĂƚ ĂŶ ŝŶĨĂŶƚ͛Ɛ ŝŶ-hospital death occurs when the latent death propensity is larger 

than  latent death risk threshold  ߬ఌ. The model may thus be estimated by assigning a cumulative 

distribution function to ߝ௜  , e.g. normal or logistic. Adopting the parametric function implicitly 

imposing location and scale restrictions on parameters, e.g. in the normal model ߬ఌ ൌ Ͳ  and 

variance of ߝ ൌ ͳ. 

The probit mortality outcome model with endogenous multinomial probit treatment is estimated by 

maximising the likelihood of all the permutations of choices among the three possible treatments  

and the two possible death outcomes (3 x 2 = 6 outcomes) (Roodman 2011). From equations A.2.2.1 
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and 4a-4b rearranged as Eqs. A1.4a and A1.4b, the likelihoods for mothers whose infants die and 

survive after giving birth in a NICU hospital are, respectively ߎ௜ʣ்௜൫െ ௜ܺᇱߜǡ െߙ෤ଷݖௌ஼௜ െ ௅ே௜ݖ෤ଶߙ െ ூ஼௜ݖ෤ଵߙ െ ௜ܺᇱߛ෤௅ேǡ െߠ෨ଷݖௌ஼௜ െ ௅ே௜ݖ෨ଶߠ െ ூ஼௜ݖ෨ଵߠ െ ௜ܺᇱߛ෤ௌ஼ Ǣ ଵଶǡߩ ௜ʣ்௜൫ߎ ଶଷ ൯, for i with Death=1 & LNU=0 & SCU=0ߩଵଷǡߩ ௜ܺᇱߜǡ െߙ෤ଷݖௌ஼௜ െ ௅ே௜ݖ෤ଶߙ െ ூ஼௜ݖ෤ଵߙ െ ௜ܺᇱߛ෤௅ேǡ െߠ෨ଷݖௌ஼௜ െ ௅ே௜ݖ෨ଶߠ െ ூ஼௜ݖ෨ଵߠ െ ௜ܺᇱߛ෤ௌ஼Ǣ െߩଵଶǡ െߩଵଷǡߩଶଷ൯, for i with Death=0 & LNU=0 & SCU=0 

ǁŚĞƌĞ ˇT is the tri-variate cumulative normal distribution function with parameters for the 

correlation between the unobserved error ߝ௜   in the outcome equation (eq. A.2.2.1) and the error 

term in each of the indirect utility equations 4a (߳ǁௌ஼௜) and 4b (߳ǁ௅ே௜) , ߩଵଶ and ߩଵଷ, respectively; ߩଶଷis 

the correlation between the error terms of these indirect utility equations. Notice that this likelihood 

is evaluated at SCU=0 and LNU=0 since it only relates to individuals born in NICU. The likelihood 

functions for mothers whose infants either die or survive after giving birth in LNU and in SCU units 

are similarly defined after transforming the model latent utility equations into deviations from the 

ĞƋƵĂƚŝŽŶ ĨŽƌ ƚŚŽƐĞ ŵŽƚŚĞƌƐ͛ ƉůĂĐĞ ŽĨ ĚĞůŝǀĞƌǇ͕ ŝ͘Ğ͘ LNU Žƌ “CU ;TƌĂŝŶ ϮϬϬϯͿ͘ A Wald test of the null 

ŚǇƉŽƚŚĞƐŝƐ HŽ͗ ʌ12 сϬ ĂŶĚ HŽ͗ ʌ13 =0 provides a test of exogeneity of LNU and SCU in equation 1. 

Furthermore, unlike the multinomial logit model specification of treatment choice, the multinomial 

probit model allows the relative choice probabilities between any two treatments, say LNU vs. ICU to 

depend on the characteristics of the third option, say SCU. We allow for a non-zero correlation 

between random error terms in the indirect utilities of SCU in 4a and LNU in 4b (ߩଶଷ ). 
Sensitivity analysis was conducted using the restricted demand system A1.1.4a and A1.1.4b.  

A2.2.2 Reimbursement costs and total length of stay 

Since in our dataset all individuals have positive number of inpatient days, the analysis of causal 

effects of level of care on length of stay and reimbursement cost of neonatal hospital used a log- 

normal endogenous treatment effects model estimated jointly with a multinomial probit equation 

for birth in a hospital with level 2 (LNU) or level one (SCU) unit, as a function of a set of exogenous 

covariates and the travel time instrumental variable. In this case, the estimated model becomes ln ௜ݐݏ݋ܥ  ൌ ܥଵ௜ܵߚ ௜ܷ ൅ ܰܮଶ௜ߚ ௜ܷ ൅  ௜ܺԢߜ ൅  ௜    (A2.2.2)ߝ

where lnCost is the natural logarithm of reimbursement costs, and the terms on the right hand side 

are as described for Eq.1 before. The observational rule in terms of the  latent equation for SCU and 

LNU are given by Eqs. A1.4a-A1.4f, and, alternatively, by the  equations corresponding to the 

restricted latent demand system A1.1.4a and A1.1.4b as in the main and sensitivity analyses of 

mortality. The conditional independence condition required for the validity of the IV now becomes: 

௜ߝ௜ᇱࢠ ൌ  σ ௜ݐݏ݋ܥ௜Ԣሺ݈݊ࢠ  െ ሺߚଵ௜ܵܥ ௜ܷ ൅ ܰܮଶ௜ߚ ௜ܷ ൅  ௜ܺᇱߜሻሻே௜ୀଵ ൌ ൭ͲͲͲ൱    ;AϮ͛Ϳ 

WĞ ĂĚŽƉƚĞĚ ƚŚĞ ĂƐƐƵŵƉƚŝŽŶ ƚŚĂƚ ɸ ĂŶĚ ੣={੣sc ੣ln ੣ic} are jointly normally distributed with mean zero, 

ǀĂƌŝĂŶĐĞƐ ʍ2 and {1 1 1}, respectively, and covariance matrix ʍʌ. This model may be estimated by 

finding the coefficient values that maximise the product of the likelihood functions of the individual 

cost and unit level of birth observations, following an approach analogous to that described before 

for the mortality model in section A2.2.1. After transformation, the likelihood function to be 

maximised is, for infants born in a NICU,  
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ς ߶ሺ௜ୀሼூ஼௎ୀଵሻ ln ௜ݐݏ݋ܥ െ ൬ ௜ܺᇱߜ െ ߪଵଶߩ  థ൫ఈ෥ᇱ௭೔ା௑೔ᇲఊಽಿ൯ଵିʣ൫ ఈᇱ௭೔ା௑೔ᇲఊಽಿ൯ െ ߪଵଷߩ థ൫ఏ෩ᇱ௭೔ା௑೔ᇲఊೞ೎൯ଵିʣ൫ఏ෩ᇱ௭೔ା௑೔ᇲఊೞ೎൯൰ሻ  

where ߶ is the normal density function and ʣ the cumulative normal distribution function, ߙ෤ ᇱݖ ௌ஼௜ݖ෤ଷߙؠ ൅ ௅ே௜ݖ෤ଶߙ  ൅ Ԣ෩ߠ ூ஼௜ andݖ෤ଵߙ ݖ ؠ ௌ஼௜ݖ෨ଷߠ  ൅ ௅ே௜ݖ෨ଶߠ ൅ ௜ߝ ூ஼௜ ͕ ʍ ŝƐ ƚŚĞ ǀĂƌŝĂŶĐĞ ŽĨݖ෨ଵߠ   in eq. A2.2.2, 

ĂŶĚ ʌ12 ĂŶĚ ʌ13 are the correlation between ߝ௜  and ߳ǁ௅ே௜ and ߳ǁௌ஼௜, respectively. As before, the 

likelihoods of birth at LNU and of birth at SCU are defined in terms of the conditional distribution of 

the random errors in the propensities of the alternative treatments, differenced relative to LNU* 

and SCU*, respectively (Train 2009). A WĂůĚ ƚĞƐƚ ŽĨ ƚŚĞ ŶƵůů ŚǇƉŽƚŚĞƐŝƐ HŽ͗ ʌ12 сϬ ĂŶĚ HŽ͗ ʌ13 =0 

provides a test of endogeneity of LNU and SCU in equation A2.2.2. 

Due to the normal distribution used to analyse log transformed dependent variables in these 

ĂŶĂůǇƐĞƐ ŽĨ LO“ ĂŶĚ ĐŽƐƚƐ͕ ǁĞ ĂĚĚĞĚ ƚŚĞ ĞƐƚŝŵĂƚĞĚ ƚĞƌŵ ʍ2/2 as a correction to the linear indices for 

obtaining marginal predictions in the original units (Duan 1994). We also estimated censored normal 

models (results available from authors) to account for censoring from discharge to ward; since 

results were practically unchanged we only present results of models without censoring adjustment. 

The model for the total length of stay simply replaced the dependent variable in Eq. A.2.2.2 with log 

of the total number of hospital days.  

 

 

A2.2.3 Number of hospital days spent in each level of care 

We did not estimate a multinomial probit specification for this outcome due to the complexity of 

optimising a likelihood function for an outcome count and a multinomial probit distribution for a 

multiple endogenous treatment. Thus we only analysed this type of outcomes using the multinomial 

logit specification described in A2.1. 
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Appendix 3 - Marginal Treatment Effect analysis 

From ŝŶƐƉĞĐƚŝŽŶ ŽĨ ƚŚĞ ƉƌĞĚŝĐƚĞĚ ƉƌŽďĂďŝůŝƚŝĞƐ ;ƉƌŽƉĞŶƐŝƚǇ ƐĐŽƌĞƐͿ ŽĨ ŝŶĚŝǀŝĚƵĂůƐ͛ ƵƐĞ ŽĨ ƚƌĞĂƚŵĞŶƚƐ͕ 
SCU births had low frequencies at the upper range of propensity scores to NICU and LNU. Since this 

restricted the feasible range for semiparametric analysis we therefore performed analysis of 

mortality and neonatal hospital costs by comparing NICU with the LNU and SCU groups combined  

into a non-NICU treatment group. 

In a heterogeneous treatment effects framework an individual is observed to have one of two 

possible treatments, depending on which treatment option is used: 

Y= Y0 (1- ICU) + Y1 ICU       (A3.1) 

where Yo indicates the potential outcome when born in a non-NICU hospitals and Y1 the outcome if 

the infant is born in a NICU, and ICU equals 1 if the infants is born in NICU and equals 0 if born in a 

non-NICU hospital (we omit the individual subscripts to simply notation). ICU follows the 

observational rule  ܷܥܫ ൌ ͳ ՜ ܥܫ ௜ܷכ െ ܥܫ݊݋݊ ௜ܷכ ൐ Ͳ  
where ICU* is the latent utility equation defined in Eq. 3, and nonICU is the latent utility of birth at a 

non-NICU correspondingly defined in terms of a linear index of instruments and exogenous 

variables: ݊ܥܫ݊݋ ௜ܷכ  ൌ ௌ஼௜ݖଷߢ ൅ ௅ே௜ݖଶߢ  ൅ ூ஼௜ݖଵߢ ൅ ௜ܺᇱߛ௡௢௡ூ஼ ൅  ߳௡௢௡ூ஼௜ 
Thus an infant is born in a NICU when  

 ሺߨଷ െ ௌ஼௜ݖଷሻߢ ൅ ሺ ߨଶ െ ௅ே௜ݖଶሻߢ ൅ ሺߨଵ െ ூ஼௜ݖଵሻߢ ൅  ௜ܺᇱሺߛூ஼ െ ௡௢௡ூ஼ሻߛ ൅ ሺ߳ூ஼௜ െ ߳௡௢௡ூ஼௜ሻ        ؠ ௌ஼௜ݖ෤ଷߨ  ൅ ௅ே௜ݖ෤ଶߨ ൅ ூ஼௜ݖ෤ଵߨ  ൅  ௜ܺᇱߛ෤ூ஼ ൅  ߳ǁூ஼௜ ؠ ௌ஼௜ݖ෤ଷߨ ൅ ௅ே௜ݖ෤ଶߨ ൅ ߨ෤ଵݖூ஼௜ ൅ ௜ܺᇱߛ෤ூ஼ െ  ௜ܸ ൐ Ͳ   (A3.2) 

To facilitate interpretation we define the unobserved error ߳ǁூ஼௜ ؠ െ ௜ܸ , i.e. as the negative of the 

ƵŶŽďƐĞƌǀĞĚ ͚ƌĞƐŝƐƚĂŶĐĞ ƚŽ ƵƐĞ ;NICUͿ ƚƌĞĂƚŵĞŶƚ͛ ;CĂƌŶĞŝƌŽ͕ HĞĐŬŵĂŶ ĂŶĚ VǇƚůĂĐŝů ϮϬϭϬͿ͘ MŽǀŝŶŐ Vi to 

the right hand side and evaluating both sides of the inequality by its cumulative distribution 

function, e.g. the standard normal after normalising the variance of V to 1, the inequality is recast as  ݌ ሺࢠ௜ǡ ௜ܺሻ ؠ ʣሺߨ෤ଷݖௌ஼௜ ൅ ௅ே௜ݖ෤ଶߨ ൅ ூ஼௜ݖ෤ଵߨ  ൅  ௜ܺᇱߛ෤ூ஼ሻ ൐  ʣሺ ௜ܸሻ   ;Aϯ͘Ϯ͛Ϳ 

in terms of the propensity score, p(z,X), and the percentile rank of the unobserved resistance to give 

ďŝƌƚŚ Ăƚ Ă NICU͕ ˇ;VͿ͘ The potential outcome framework of Equation A3.5 (Rubin 2005) allows a 

more general version of a parametric model of costs such as that of Eq. AϮ͘Ϯ͘Ϯ͛ by allowing two 

different cost equations, one for each treatment option; i.e. taking the expectation, denoted by E, 

ǁŝƚŚ ƌĞƐƉĞĐƚ ƚŽ ƚŚĞ ĐŽƵŶƚĞƌƉĂƌƚ ƚŽ A͘Ϯ͘Ϯ͘Ϯ͛ ŝŶ ƚĞƌŵƐ ŽĨ EƋ͘ Aϯ͘ϱ ŝƐ  

 E݈݊ݐݏ݋ܥ௜ ൌ Eሾሺͳ െ ICUሻሼ ௜ܺԢߜ଴ ൅ ଴௜ȁICUൌͲሻሽߝሺܧ ൅ ሼܷܥܫ ௜ܺԢߜଵ ൅ ௜ݐݏ݋ܥ݈݊ܧ ൌͳሻሽሿܷܥܫଵ௜ȁߝሺܧ  ൌ ௜ܺԢߜ଴ ൅ ݌ ௜ܺԢሺߜଵ െ ଴ሻߜ ൅ ൌͲሻܷܥܫ଴௜ȁߝሺܧ  ൅ ൌͳሻܷܥܫଵ௜ȁߝሺܧሼ݌ െ ൌͲሻሽܷܥܫ଴௜ȁߝሺܧ
 ;A͘ϭ͛͛Ϳ 
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with p being the probability of NICU birth, i.e. the propensity score on the left-hand side of the 

ŝŶĞƋƵĂůŝƚǇ ŝŶ Aϯ͘Ϯ͛͘ IŶ this model endogeneity may occur in two different forms, one is through the 

correlation of unobserved factors driving resistance to (NICU) treatment Vi with the underlying 

baseline severity, ܧሺߝ଴௜ȁܷܥܫൌͲሻ ; endogeneity may also occur due to unobserved factors in Vi being 

correlated with unpredictable systematic deviations from average differences in expected costs 

(negative returns), ሼܧሺߝଵ௜ȁܷܥܫൌͳሻ െ  ൌͲሻሽ. In the parametric log normal model withܷܥܫ଴௜ȁߝሺܧ

endogenous heterogeneous treatment effects, the estimating equation for Eq. A2.2.2 adopts the 

form ݈݊ݐݏ݋ܥ௜ ൌ ௜ܺԢߜ଴ ൅ పෝ݌ ௜ܺԢሺߜଵ െ ଴ሻߜ ൅ ଴ߪ଴ߩ థ൫గ෥ᇱ௭೔ା௑೔ᇲఊ෥಺಴൯ଵିʣ൫గ෥ᇱ௭೔ା௑೔ᇲఊ෥಺಴൯ െ పෝ݌ ሼߩଵߪଵ థ൫గ෥ᇱ௭೔ା௑೔ᇲఊ෥಺಴൯ʣ൫గ෥ᇱ௭೔ା௑೔ᇲఊ෥಺಴൯ ൅ߩ଴ߪ଴ థ൫గ෥ᇱ௭೔ା௑೔ᇲఊ෥಺಴൯ଵିʣ൫గ෥ᇱ௭೔ା௑೔ᇲఊ෥಺಴൯ሽ    
with ݌పෝ ൌ ʣሺߨ෤Ԣݖ௜ ൅ ௜ܺᇱߛ෤ூ஼ሻ. This equation simplifies to  ݈݊ݐݏ݋ܥ௜ ൌ ௜ܺԢߜ଴ ൅ పෝ݌ ௜ܺԢሺߜଵ െ ଴ሻߜ ൅ ሺߩ଴ߪ଴ െ ௜ݖ෤Ԣߨଵሻ߶ሺߪଵߩ ൅ ௜ܺᇱߛ෤ூ஼ሻ           (A3.3) 

The pattern of self-selection may thus be estimated by making use of the continuous instrument(s); 

note that a model that ignores the heterogeneity of treatment effects would fail to distinguish 

between the two types of self-selection, as it would only estimate a coefficient ሺ݌Ƹ௜ሺߩଵߪଵ െ  ,଴ሻሻߪ଴ߩ

averaged across individuals i. This problem is clearly illustrated by the popular two-step  estimator 

ƵƐŝŶŐ ƚŚĞ ŝŶǀĞƌƐĞ Mŝů͛Ɛ ƌĂƚŝŽ ;ŝ͘Ğ͘ ߶ሺߨ෤Ԣݖ௜ ൅ ܺԢߛ෤ூ஼ሻȀ݌Ƹ௜ ) as an adjusting covariate, which is biased and, 

although statistical inference on its coefficient may serve to test for self-selection on returns, it has 

lower power than the heterogeneous treatment effect estimator due to the confounder ݌Ƹ i.  
TŚĞ ŵĂƌŐŝŶĂů ƚƌĞĂƚŵĞŶƚ ĞĨĨĞĐƚ ;MTEͿ ŝƐ ŽďƚĂŝŶĞĚ ďǇ ƚĂŬŝŶŐ ƚŚĞ ĚĞƌŝǀĂƚŝǀĞ ŽĨ Aϯ͘ϯ͛ ǁŝƚŚ ƌĞƐƉĞĐƚ ƚŽ ƚŚĞ 
probability of selection into treatment, i.e. the propensity score ݌Ƹ i: డ௟௡஼௢௦௧డ௣ഢෞ ൌ ௜ܺԢሺߜଵ െ ଴ሻߜ ൅ ሺߩ଴ߪ଴ െ పෝ݌ଵሻ ߲߶൫ʣିଵሺߪଵߩ ሻ൯Ȁ߲݌పෝ                  ൌ ௜ܺԢሺߜଵ െ ଴ሻߜ ൅ ሺߩ଴ߪ଴ െ పෝ݌ଵሻ  ߶Ԣ൫ʣିଵሺߪଵߩ ሻ൯ ʣିଵԢሺ݌పෝ ሻ                ൌ ௜ܺԢሺߜଵ െ ଴ሻߜ ൅ ሺߩ଴ߪ଴ െ పෝ݌ଵሻ ʣିଵሺߪଵߩ ሻ߶൫ʣିଵሺ݌పෝ ሻ൯ʣିଵԢሺ݌పෝ ሻ               ൌ ௜ܺԢሺߜଵ െ ଴ሻߜ ൅ ሺߩ଴ߪ଴ െ పෝ݌ଵሻ ʣିଵሺߪଵߩ ሻ     

 (A3.4) 

where the first step makes use of the fact that the liner index ߨ෤ ᇱݖ௜ ൅ ௜ܺᇱߛ෤ூ஼ ൌ  ʣିଵሺ݌పෝ ሻ, the inverse 

of the cumulative normal distribution function,  the second step is obtained by the chain rule, the 

third step results from the exponential form of the density normal function, and the final equation 

from the chain rule and definition of the inverse function ʣିଵԢሺ݌పෝ ሻ ൌ ͳȀ߶൫ʣିଵሺ݌పෝ ሻ൯.  

Coefficient estimates may be interpreted in analogous form to those of a linear probability model of 

mortality, as the dependent variable, instead of costs. There will be unobservable positive, negative 

and no NICU self-ƐĞůĞĐƚŝŽŶ ŽŶ ƐĞǀĞƌŝƚǇ ŽĨ ĐŽŶĚŝƚŝŽŶ ;Žƌ ĐŽƐƚƐͿ ŝĨ ʌ0 хϬ͕ ʌфϬ͕ ʌсϬ͕ ƌĞƐƉĞĐƚŝǀĞůǇ͖ ĂŶĚ 
positive, negative or no self-selection on returns in terms of mortality risk reduction (or increased 

ŚĞĂůƚŚĐĂƌĞ ĐŽƐƚƐͿ ǁŚĞŶ ʌ1- ʌ0 is positive, negative or zero, respectively. For example, a positive self-

selection on severity means in this context that unobserved characteristics that make infants more 

likely to be born at a NICU hospital predispose them also to worse health outcomes (i.e. higher 

costs) than the average infant. A selection on returns means that unobserved characteristics that 

make infants more likely to be born in a NICU also characterise those NICU births with higher 
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expected additional costs to the NHS, relative to birth in a lower designation hospital. Notice that 

the second term on the right hand side of Eq A3.4 is the product of a coefficient and the unobserved 

individual-specific resistance to deliver at NICU at the margin (i.e. where V=p), Vi=ʣିଵሺ݌Ƹ௜ሻ so that 

the term - ;ʍ1 ʌ1- ʍ0 ʌ0)Vi represents additional costs among individuals with unobserved resistance 

to birth at NICU of Vi (Carneiro, Heckman and Vitlacyl 2010).  

 

We also estimate MTE in a linear probability model of mortality where the observed binary Death 

indicator replaced log costs as the dependent variable in Eq. A3.3 . Furthermore, we relax the 

parametric assumption for the estimation of MTE on the linear models for a) reimbursement costs 

and b) probability of mortality in the binary NICU vs non-NICU cases, by estimating a semi-

parametric model using the local IV estimator (Heckman and Vytlacil 1999), a two-step approach to 

local polynomial regression of degree 4 which allows for non-monotonic patterns of selection with 

the unobserved resistance to treatment V defined above (Brave and Walstrum 2014). This model still 

requires the assumption that the resistance to treatment term V enters linearly in the treatment 

equation so that its region of common support may be applied across all the possible subgroups 

defined by unique combinations of covariate values X.  

Briefly, the formula for the semiparametric estimator of the MTE is, in the example for 

reimbursement costs (the analysis of mortality is analogous to this example, using a linear 

probability of death specification)   

 డ௟௡஼௢௦௧డ௣ො ൌ ܺԢሺߜଵ െ ଴ሻߜ ൅  Ƹ       (A3.5)݌ƸሻȀ߲݌ሺܭ߲ 

where, the last term is a general function that is estimated using nonparametric techniques for local 

derivatives. We use the estimation approach known as local instrumental variables (LIV), which 

consists on first running local linear regressions of X, Xp, and lnCost on p at every observed value of ݌Ƹ to obtain estimated residuals Ƹ݁௑, Ƹ݁௑௣ and Ƹ݁௟௡஼௢௦௧; Ƹ݁௟௡஼௢௦௧is then regressed on Ƹ݁௑ and Ƹ݁௑௣ to obtain 

an estimate of  ߜ଴, ሺߜଵ െ  ଴); the rest of the parameters of the MTE are estimated from a localߜ

polynomial regression of  ݈݊ݐݏ݋ܥ෫ ؠ ݐݏ݋ܥ݈݊ െ ܺԢߜመ଴ െ ܺԢሺߜመଵ െ   ݌መ଴ሻߜ

on the common support of p to obtain ߲ܭሺ݌పෝ ሻȀ߲݌పෝ . In a separate analysis we also estimate a flexible 

parametric model by approximating the error correction term using a polynomial of degree 4. 

Standard errors and 95% confidence intervals for the MTE are obtained using bootstrapping with 50 

resamples, with this procedure repeated at each resample. The MTEs are estimated conditional on 

the mean values of X in the sample and the standard errors do not reflect sampling variation in X 

(see Brave and Walstrum 2014 for further details).   
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Appendix 4 ʹ Stata code to implement the main analyses 

The following code implements the main analyses in Stata 14 using cmp command (Roodman 2014) 

for the multinomial probit specification, the official Stata command gsem for the multinomial logit 

model and the margte (Brave ad Walstrum 2014). 

 

A4.1 In-hospital mortality 

A4.1.1 Endogenous multinomial probit treatment (with exclusion restrictions) 

ůŽĐĂů ĐŽǀĂƌƐ с ͞ŐĞƐƚĂƚŝŽŶͺǁĞĞŬƐ “ƋŐĞƐƚĂƚŝŽŶͺǁĞĞŬƐ KŐBŝƌƚŚǁĞŝŐŚƚ  “QKGBŝƌƚŚ ĨĞƚƵƐͺŶƵŵďĞƌ FĞŵĂůĞ 
quintileIMD* MDEmergCesarianNotLabour MDEmergCesarianLabour Vaginalnonspont 

EůĞĐƚŝǀĞ“ĞĐƚŝŽŶ UŶŬŶŽǁŶ͟ 

constraint 1 [_outcome_2_3]mindisttimescu=0 

constraint 2 [_outcome_2_4]mindistimehdu=0 

constraint 3 [_outcome_2_3]mindisttimeicu=[_outcome_2_4]mindisttimeicu=0 

ĐŵƉ ;ĚŝĞĚ с ŝ͘“CU ŝ͘LNU ǭĐŽǀĂƌƐ͛Ϳ ;ŵƚƌĞĂƚ с ŵŝŶĚŝƐƚƚŝŵĞŝĐƵ ŵŝŶĚŝƐƚŝŵĞŚĚƵ ŵŝŶĚŝƐƚƚŝŵĞƐĐƵ ǭĐŽǀĂƌƐ͛Ϳ ŝĨ 
lsoa_has_all_unit==1, ind($cmp_probit $cmp_mprobit) quietly vce(cluster place_of_birth) constr(1 2 

3) 

test [_outcome_2_3 ]:mindisttimeicu mindisttimescu mindistimehdu 

test [_outcome_2_4 ]:mindisttimeicu mindisttimescu mindistimehdu 

margins, dydx(SCU) predict(pr equation(died)) force at(LNU==0) 

margins, dydx(LNU) predict(pr equation(died)) force at(SCU==0) 

 

A4.1.2 Endogenous multinomial logit treatment 

gsem (died <- ϭ͘LNU ϭ͘“CU ǭĐŽǀĂƌƐ͛ LϮ L3, family(binomial) link(logit)) (2.mtreat <- mindisttimeicu 

ŵŝŶĚŝƐƚŝŵĞŚĚƵ ŵŝŶĚŝƐƚƚŝŵĞƐĐƵ ǭĐŽǀĂƌƐ͛ LϮΛϭ͕ ŵůŽŐŝƚͿ ;ϯ͘ŵƚƌĞĂƚ ф- mindisttimeicu mindistimehdu 

ŵŝŶĚŝƐƚƚŝŵĞƐĐƵ ǭĐŽǀĂƌƐ͛ LϯΛϭ͕ ŵůŽŐŝƚͿ ŝĨ ůƐŽĂͺŚĂƐͺĂůůͺƵŶŝƚͺƚǇƉĞƐͺĐůŽƐĞƐƚссϭ͕ ǀĂƌ;LϮΛϭ LϯΛϭͿ 
nocaps latent(L2 L3) vce(cluster place_of_birth) cov(L2*L3@0) startvalues(zero) 

margins, dydx(SCU) expression(predict(equation(died))) force at(LNU==0) 

margins, dydx(LNU) expression(predict(equation(died))) force at(SCU==0) 

margins SCU, expression(predict(equation(died))) force at(LNU==0) 

margins LNU, expression(predict(equation(died))) force at(SCU==0) 

test [2.mtreat]:mindisttimeicu mindisttimescu mindistimehdu 

test [3.mtreat]:mindisttimeicu mindisttimescu mindistimehdu 

 

A4.2 Reimbursement costs and length of hospital stay 
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Code is provided below for reimbursement costs only, length of hospital stay is implemented in the 

same way for the respective outcome variable. 

A4.2.1 Endogenous multinomial probit treatment (with exclusion restrictions)     

constraint 1 [_outcome_2_3]mindisttimescu=0 

constraint 2 [_outcome_2_4]mindistimehdu=0 

constraint 3 [_outcome_2_3]mindisttimeicu=[_outcome_2_4]mindisttimeicu=0 

 

ĐŵƉ ;ůTŽƚĂůH‘G с ŝ͘“CU ŝ͘LNU ǭĐŽǀĂƌƐ͛Ϳ ;ŵƚƌĞĂƚ с ŵŝŶĚŝƐƚƚŝŵĞŝĐƵ ŵŝŶĚŝƐƚŝŵĞŚĚƵ ŵŝŶĚŝƐƚƚŝŵĞƐĐƵ 
ǭĐŽǀĂƌƐ͛Ϳ ŝĨ ůƐoa_has_all_unit==1, ind($cmp_cont $cmp_mprobit) quietly vce(cluster place_of_birth) 

constr(1 2 3) 

test [_outcome_2_3 ]:mindisttimeicu mindisttimescu mindistimehdu 

test [_outcome_2_4 ]:mindisttimeicu mindisttimescu mindistimehdu 

margins SCU, expression(exp(predict(equation(lTotalHRG))+(exp([lnsig_1]_b[_cons])^2)/2)) force 

at(LNU=0) 

margins LNU, expression(exp(predict(equation(lTotalHRG))+(exp([lnsig_1]_b[_cons])^2)/2)) force 

at(SCU=0) 

margins, dydx(SCU) expression(exp(predict(equation(lTotalHRG))+(exp([lnsig_1]_b[_cons])^2)/2)) 

force at(LNU==0) 

margins, dydx(LNU) expression(exp(predict(equation(lTotalHRG))+(exp([lnsig_1]_b[_cons])^2)/2)) 

force at(SCU==0) 

 

A4.2.2 Endogenous multinomial logit treatment 

gsem (lTotalHRG <- ϭ͘LNU ϭ͘“CU ǭĐŽǀĂƌƐ͛ LϮ Lϯ͕ ĨĂŵŝůǇ;ŐĂƵƐƐian) link(identity)) (2.mtreat <- 

ŵŝŶĚŝƐƚƚŝŵĞŝĐƵ ŵŝŶĚŝƐƚŝŵĞŚĚƵ ŵŝŶĚŝƐƚƚŝŵĞƐĐƵ ǭĐŽǀĂƌƐ͛ LϮΛϭ͕ ŵůŽŐŝƚͿ ;ϯ͘ŵƚƌĞĂƚ ф- mindisttimeicu 

ŵŝŶĚŝƐƚŝŵĞŚĚƵ ŵŝŶĚŝƐƚƚŝŵĞƐĐƵ ǭĐŽǀĂƌƐ͛ LϯΛϭ͕ ŵůŽŐŝƚͿ ŝĨ ůƐŽĂͺŚĂƐͺĂůůͺƵŶŝƚͺƚǇƉĞƐͺĐůŽƐĞƐƚссϭ͕ 
var(L2@1 L3@1) nocaps latent(L2 L3) vce(cluster place_of_birth) cov(L2*L3@0) 

margins SCU, expression(exp(predict(equation(lTotalHRG))+_b[var(e.lTotalHRG):_cons]/2)) force 

at(LNU==0) 

margins LNU, expression(exp(predict(equation(lTotalHRG))+_b[var(e.lTotalHRG):_cons]/2)) force 

at(SCU==0) 

margins, dydx(SCU) expression(exp(predict(equation(lTotalHRG))+_b[var(e.lTotalHRG):_cons]/2)) 

force at(LNU==0) 

margins, dydx(LNU) expression(exp(predict(equation(lTotalHRG))+_b[var(e.lTotalHRG):_cons]/2)) 

force at(SCU==0) 

test [2.mtreat]:mindisttimeicu mindisttimescu mindistimehdu 

test [3.mtreat]:mindisttimeicu mindisttimescu mindistimehdu 
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A4.3 Marginal treatment effects for binary NICU vs. non-NICU treatment comparison 

A4.3.1 In-hospital mortality 

ŵĂƌŐƚĞ ĚŝĞĚ ǭĐŽǀĂƌƐ͛ ŝĨ ůƐŽĂͺŚĂƐͺĂůůͺƵŶŝƚссϭ͕ ƚƌĞĂƚŵĞŶƚ;ICU ŵŝŶdisttimeicu mindisttimescu  

ŵŝŶĚŝƐƚŝŵĞŚĚƵ ǭĐŽǀĂƌƐ͛Ϳ ƐĞŵŝƉĂƌĂŵĞƚƌŝĐ ƉŽůǇŶŽŵŝĂů;ϰͿ 

 

A4.3.2 Reimbursement costs 

ŵĂƌŐƚĞ ůTŽƚĂůH‘G ǭĐŽǀĂƌƐ͛ ŝĨ ůƐŽĂͺŚĂƐͺĂůůͺƵŶŝƚссϭ͕ ƚƌĞĂƚŵĞŶƚ;ICU ŵŝŶĚŝƐƚƚŝŵĞŝĐƵ ŵŝŶĚŝƐƚƚŝŵĞƐĐƵ  
ŵŝŶĚŝƐƚŝŵĞŚĚƵ ǭĐŽǀĂƌƐ͛Ϳ ƐĞŵŝƉĂƌĂŵĞƚƌŝĐ ƉŽůǇŶŽŵŝĂů;ϰ) 
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Appendix 5. Distribution of sample characteristics by travel time to SCU and LNU 

 

Table A5.1 Sample characteristics by travel time to LNUs and SCUs (% unless stated otherwise) 

 Travel time to LNU 

(N=11,037) 

Travel time to SCU  

(N=11,037) 

Lower 

tertile 

N=3,377 

Medium 

tertile 

N=3,696 

High 

tertile 

N=3,964 

Lower tertile 

N=3,672 

Medium 

tertile 

N=3,475 

High 

tertile 

N=3,890 

Died 8.59 8.63 8.37 8.36 8.66 8.56 

Discharged home 86.40 86.52 86.80 86.79 86.35 86.60 

Discharged ward 1.69 1.49 1.84 1.63 1.81 1.59 

Last record: transferred 

to another hospital/unit  
3.05 3.30 2.75 2.97 3.05 3.05 

Unknown destination 0.27 0.05 0.23 0.24 0.11 0.18 

Gestational age at birth 

(weeks), mean (SD) 
28.44 

(2.35) 

28.48 

(2.33) 

28.45 

(2.32) 

28.38 

(2.38) 

28.44 

(2.32) 

28.53 

(2.30) 

Birthweight (kg), mean 

(SD) 
1.19 

(0.38) 

1.20 

(0.39) 

1.21 

(0.39) 

1.19 

(0.38) 

1.20 

(0.38) 

1.22 

(0.39) 

Foetus 2+ 25.64 27.35 27.88 28.51 26.47 26.09 

Female sex 45.54 45.21 46.47 44.88 46.59 45.86 

Residence: Most 

deprived quintile1 
37.13 34.55 31.89 36.52 33.52 33.14 

Residence: 2nd most 

deprived quintile1  
23.08 22.48 20.41 23.53 24.11 20.18 

Residence: 3-5 least 

deprived quintile3 

37.78 42.96 47.70 39.95 42.36 46.68 

Caesarean delivery 52.80 50.05 48.59 50.27 51.71 49.25 

Spontaneous vaginal 36.19 36.15 38.02 35.21 37.35 37.89 

Unknown delivery mode 3.26 4.22 0.00 5.42 2.73 0.00 

Delivery at NICU 28.87 54.11 66.09 51.42 46.50 53.75 

Delivery at LNU 68.61 35.06 17.20 22.19 49.01 45.68 

Delivery at SCU 2.52 10.82 16.70 26.39 4.49 0.56 

Delivery at high volume2 20.22 29.22 15.49 23.53 19.51 21.46 
1 Ranked by the index of multiple deprivation of residential postcode. 2 Defined as born in hospital 

delivering more than 100 infants with <1500 g birthweight per year during the study period. SD: 

Standard deviation. 
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Table A5.2 Sample characteristics by travel time to closest NICU, LNU, SCU in infants born in a London hospital 

(% unless stated otherwise) 

 Travel time to ICU 

(N=1,829) 

Travel time to LNU  

(N=1,829) 

Travel time to SCU  

(N=1,829) 

Lower 

tertile 

N=653 

Medium 

tertile 

N=600 

High 

tertile 

N=576 

Lower 

tertile 

N=539 

Medium 

tertile 

N=623 

High 

tertile 

N=667 

Lower 

tertile 

N=689 

Medium 

tertile 

N=524 

High 

tertile 

N=616 

Died 7.96 6.00 7.29 5.57 6.42 8.99 7.26 7.63 6.49 

Discharged home 86.68 91.17 87.98 90.15 89.25 86.64 87.94 88.17 89.59 

Discharged ward 2.60 1.17 1.57 0.93 1.60 2.70 2.33 1.53 1.46 

Last record: 

transferred to 

another 

hospital/unit  

2.30 1.33 2.96 2.79 2.25 1.65 2.33 2.29 1.95 

Unknown 

destination 
0.46 0.33 0.17 0.56 0.48 0 0.14 0.38 0.49 

Gestational age at 

birth (weeks), 

mean (SD) 

28.31 

(2.40) 

28.60 

(2.29) 

28.14 

(2.34) 

28.39 

(2.36) 

28.31 

(2.37) 

28.36 

(2.33) 

28.31 

(2.32) 

28.42 

(2.34) 

28.34 

(2.41) 

Birthweight (kg), 

mean (SD) 
1.17 

(0.38) 

1.19 

(0.37) 

1.13 

(0.37) 

1.19 

(0.37) 

1.14 

(0.37) 

1.17 

(0.39) 

1.17 

(0.38) 

1.16 

(0.36) 

1.17 

(0.39) 

Foetus 2+ 29.55 31.50 26.91 28.94 28.41 30.58 30.48 28.82 28.57 

Female sex 44.26 44.50 47.05 47.68 43.82 44.53 43.83 47.52 44.80 

Residence: Most 

deprived quintile1 
44.26 23.00 22.22 29.87 31.62 29.53 33.67 29.20 27.60 

Residence: 2nd 

most deprived 

quintile1  

35.68 35.00 27.43 35.81 34.51 28.93 27.58 34.35 37.5 

Residence: 3-5 least 

deprived quintile3 

20.06 42.00 50.35 34.32 33.87 41.53 38.75 36.45 34.90 

Caesarean delivery 52.83 55.17 53.65 54.73 54.73 52.32 51.09 54.96 56.01 

Spontaneous 

vaginal 
35.22 35.17 35.24 35.62 35.15 34.93 36.43 33.78 35.06 

Unknown delivery 

mode 
1.99 1.17 0.00 1.67 2.09 0.00 1.45 1.91 0 

Delivery at NICU 70.60 31.67 36.28 38.77 44.30 56.22 52.54 49.05 39.12 

Delivery at LNU 24.96 49.67 46.87 57.70 46.71 19.34 22.21 40.08 59.74 

Delivery at SCU 4.44 18.67 16.84 3.52 8.99 24.44 25.25 10.88 1.14 

Delivery at high 

volume2 

58.50 26.17 30.73 33.77 37.24 45.28 45.28 34.35 36.36 

1 Ranked by the index of multiple deprivation of residential postcode. 2 Defined as born in hospital 

delivering more than 100 infants with <1500 g birthweight per year during the study period. SD: 

Standard deviation. 
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Appendix 6 ʹ Main results for extremely preterm births 

Table A6.1 Causal effect of birth in lower level hospitals (LNU & SCU relative to ICU) on mortality in infants born 

less at <28 weeks gestation 

 Naïve  IV 

 logit regression Logit with endogenous 

multinomial logit treatment 

Birth at LNU  0.027 

(0.021) 

0.030 

(0.041) 

Birth at SCU  0.064* 

(0.033) 

0.011 

(0.089) 

 Instrument strength:  

Wald F test statistic (3 degrees of freedom) 

N/A LNU equation: 79*** 

SCU equation: 90*** 

N 3,394 3,394 

Hausman test z statistic of H0: no endogeneity LNU 

treatment variable 

N/A -0.13 

Hausman test z  statistic of H0: no endogeneity SCU 

treatment variable 

N/A 0.56 

Test z statistic Ho: valid over-identifying restriction 

of minimum travel time to NICU 

N/A 0.28 

Controlled covariates: Age and age squared at birth, birthweight, birthweight squared, sex, deprivation of residence, mode 

of delivery, foetus no. N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01.N/A: Not applicable. *p< 0.10 ** p<0.05 

***p<0.01. Statistical inferences based on robust standard errors adjusting for clustering of observations by hospital. 
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Appendix 7 ʹ Results on Marginal Treatment Effects (MTEs) 

Allowing for heterogeneous treatment effects and exploiting the continuous instruments, we 

analyse the causal effect of birth at level 3 relative to a lower-designation hospital, by level of 

unobserved resistance to treatment (which for mothers in the margin, i.e. indifferent between 

delivering in NICU vs. non-NICU, is equal to the propensity score). This analysis adopts a linear 

probability model of mortality with a binary endogenous treatment instrumented by the same three 

instruments as before. Naturally, the area of common support of the resistance to treatment V, 

presented in Figure A7.1, shows that NICU-born infants are concentrated on the upper half of the 

propensity score (i.e. the probability of birth in a hospital with NICU) ranking, whereas non-NICU 

born infants are concentrated on the lower half. There is overlap in the distribution of intervention 

(NICU births) and control (non-NICU) subjects by level of the propensity score across the whole 

range of the probability ranking, which allows us to estimate marginal treatment effects (MTEs) 

semi-parametrically for individuals ranked in their unobserved resistance to NICU from a propensity 

score close to 1 (most resistant or least inclined) to near 0 (least resistance or most inclined to 

delivering in NICU). 

 

 

Figure A7.1. Frequency of propensity score by treatment status 

    

The parametric normal model produced average treatment effects (ATE) estimates for in-hospital 

mortality at the mean of the exogenous covariates of -0.005 (95% -0.020, 0.010). In terms of 

ƐĞůĞĐƚŝŽŶ ƉĂƚƚĞƌŶƐ͕ ƚŚĞ ĞƐƚŝŵĂƚĞƐ ǁĞƌĞ ʍ0ʌ0 с Ϭ͘Ϭϭϱ ;ƉсϬ͘ϬϵϳͿ͕ ĂŶĚ ʍ1ʌ1 ʹ ʍ0ʌ0 = -.023 (p=0.054). The 

ATE and MTEs for individuals with different resistances to be born at NICU are presented in Figure 

A7.2, under the normal and the alternative semi-parametric model specifications. Under the 

parametric normal model, while the average treatment effect is zero across all infants, those within 
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the top 20% unobserved resistance to birth at a NICU have positive expected mortality risk 

reductions. However, the MTEs under the flexible semi-parametric specification do not appear to 

vary with the level of unobserved composite factors that discourage birth at a NICU hospital. 

Figure A7.2. Marginal Treatment Effects on mortality of level 3 vs. lower designation hospital 

  

Under the parametric normal MTE model, NICU reduced neonatal hospital reimbursement costs 

relative to hospitals of lower designation by 2.9% (Average treatment effect; 95% CI: 0.088, 0.031). 

Further, non-observably severe or complex (i.e. more costly) patients appear to positively select into 

NICU͕ ʍ0ʌ1 = 0.071 (p=0.001) but there is no apparent selection by ĐŽƐƚ ƐĂǀŝŶŐƐ ʍ1ʌ1 ʹ ʍ0ʌ0 = -0.054 

(p=0.17). Semi-parametric analysis reveals, however, that some of the individuals with the highest 

propensity to deliver at NICU (i.e. in the 20 to 40 percentile range of the ranking) have the highest 

excess costs relative to a non-NICU birthplace; see Figure 1. For other individuals there is no 

evidence of NICU resulting in costs different to those of non-NICU care. 
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Appendix 8 ʹ Results on length of hospital stay and reimbursement costs for births at <32 weeks 

Based on the IV multinomial logit model, the estimated total duration of the ŝŶĨĂŶƚ͛Ɛ hospital stay 

ŝŶĐůƵĚŝŶŐ ŚŽƐƉŝƚĂů ƚƌĂŶƐĨĞƌƐ ;ŝ͘Ğ͘ ƚŚĞ ͚ƐƵƉĞƌ ƐƉĞůů͛Ϳ ŽĨ ĂŶ ŝŶĨĂŶƚ ďŽƌŶ ŝŶ NICU or LNU was 66 days, and 

67 days if birth were to take place in a SCU. These differences were not statistically significant, 

however (SCU vs NICU, p=0.72; LNU vs. NICU, p=0.76; Table A8.1). The reimbursement cost of birth in 

a NICU, was £42,776 per infant, and the difference from birth at a lower level unit was imprecisely 

estimated (NICU minus LNU, -£2078 [95% CI: -5551, 1396]; NICU minus SCU, -£444 [-4690, 3802]; Table 

A8.1). Hausman test statistics are consistent with the presence of treatment endogeneity.  

Despite no evidence of cost differences between neonatal unit designations overall, there is 

evidence of heterogeneous treatment effects of LNU relative to NICU according to the correlated 

coefficients model (Table A8.1). There is negative self-selection by severity in the sense that the 

more individuals value birth at LNU (relative to birth at NICU) the lower their level of costs  (i.e. in 

column 8, ʄ2LNU <0, p<0.01). Further, there is positive self-selection by losses, since the stronger the 

preference for LNU the higher the incremental cost of birth at LNU relative to birth at a NICU 

(ʄ22LNU>0).There is no apparent selection by severity or selection by returns for SCU (p>0.10 for all 

the respective coefficients).  Notice that since the latent utility of birth at LNU is defined relative to 

the utility at birth in ICU (eq. 4a, 4b), the previous statements about the value of birth at LNU may be 

equivalently phrased as positive self-selection by severity into NICU and positive self-selection by 

losses into NICU. Results for LOS mirror those described for costs (and may be compared as the 

estimated lambdas represent the covariance of the latent utility errors with the log costs and log LOS 

and are therefore scale-free), with the exception that patients with stronger preference for SCU 

have shorter inpatient hospital super spells (selection bǇ ƐĞǀĞƌŝƚǇ͖ ʄ1SCU= -0.28, p<0.05, Table A8.1, 

column 4). Sensitivity analyses show that the results for reimbursement cost and LOS results in Table 

A8.1 are robust to inclusion of mode of delivery covariates (available from the authors). 

In the above analyses it must be kept in mind that the LOS and cost differences between neonatal 

care designations is likely to reflect the effects of differences in mortality between these treatment 

options. In particular if the small increase in mortality observed with SCU designation relative to 

NICU in the naïve analysis were to be true, the differences in LOS between the two groups would 

underestimate the expected difference in LOS for infants with the same health outcomes (see Table 

3). A similar consideration would apply to the analysis of costs, although in this case the effect might 

have been partly offset by an increase in per diem costs due to more use of intensive care (BAPM 1) 

in SCU due to the excess deaths relative to NICU (Figure 2). Therefore, these analyses of costs and 

LOS, which happened to be consistent with no average treatment effect, ought to be interpreted in 

the light of the corresponding estimated effects on mortality.      
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Table A8.1 Marginal effects on LOS and reimbursement costs of birth in LNU & SCU relative to ICU 
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 LOS (log normal) Reimbursement costs (log normal) 

 Naïve IV  

endogenous 

multinomial treatment 

Correlated 

random 

coefficients 

Naïve IV 

endogenous 

multinomial 

treatment 

Correlate

d random 

coefficien

ts1 

 OLS 

 

 

 

(1) 

Multi-

nomial 

probit 

 

(2) 

Multi-

nomial 

logit 

 

(3) 

Multi-

nomial 

logit 

 

(4) 

OLS 

 

 

 

(5) 

Multi-

nomial 

probit 

 

(6) 

Multi-

nomial 

logit 

 

(7)  

Multi-

nomial 

logit 

 

(8) 

Birth at LNU  -2.03 

(1.97) 

-0.50 

(2.62) 

0.64 

(2.69) 

1.79 

(2.54) 

-709 

(1249) 

1293 

(1773) 

2078 

(1772) 

2044 

(1614) 

Birth at SCU  -3.67 

(2.30) 

3.22 

(3.45) 

1.00 

(3.24) 

4.02 

(3.05) 

-2073 

(1520) 

2102 

(2303) 

444 

(2166) 

2346 

(2041) 

ʄ2LNU   -0.07 

(0.06) 

-0.27** 

(0.11) 

  -0.11** 

(0.06) 

-0.31*** 

(0.12) 

ʄ22LNU    0.32** 

(0.12) 

   0.34** 

(0.13) 

ʄ12LNU    0.02 

(0.15) 

   0.05 

(0.17) 

ʄ1SCU   -0.11 

(0.07) 

-0.28** 

(0.11) 

  -0.09 

(0.08) 

-0.16 

(0.26) 

ʄ21SCU    0.20 

(0.12) 

   0.09 

(0.23) 

ʄ11SCU    0.11 

(0.12) 

   0.01 

(0.25) 

ʌ12  -0.03    -0.06   

ʌ13  -0.08**    -0.08**   

ʌ23  0.85**    0.85**   

 Instrument 

strength:  

Wald F test 

statistic (3 

degrees of 

freedom) 

N/A LNU 

equation: 

199*** 

SCU 

equation: 

40*** 

LNU 

equation: 

171*** 

SCU 

equation: 

150*** 

LNU 

equation: 

171*** 

SCU 

equation: 

150*** 

N/A LNU 

equation: 

198*** 

SCU 

equation: 

40*** 

LNU 

equation: 

171*** 

SCU 

equation: 

150*** 

LNU 

equation: 

170*** 

SCU 

equation: 

149*** 

N 11,037 11,037 11,037 11,037 11,037 11,037 11,037 11,037 

Hausman 

test z 

statistic of 

H0: no 

endogeneity 

Birth at LNU   

N/A -0.92 -1.09 -2.55**2 N/A -1.61 

 

-1.97** -2.62***2 

Hausman 

test z  

statistic of 

H0: no 

endogeneity 

Birth at SCU  

N/A -2.34** -1.53 -2.60**2 N/A -2.16** -1.16 0.62 2 

z statistic of  

H0: no 

correlation 

N/A 2.25** Implicit 

assumption 

H0 is true 

Implicit 

assumption 

H0 is true 

N/A 2.20** Implicit 

assumpti

Implicit 

assumpti



44 

 

Models were estimated with logarithm-transformed dependent variables; marginal effects were calculated by exponential 

back transformation adjusted for conditional variance of log dependent (Duan 2012). Controlled covariates: Age and age 

squared at birth, birthweight, birthweight squared, sex, deprivation of residence, foetus no. N/A: Not applicable. *p< 0.10 

** p<0.05 ***p<0.01.N/A: Not applicable. *p< 0.10 ** p<0.05 ***p<0.01. Statistical inferences based on robust standard 

errors adjusting for clustering of observations by hospital. 1. The model omitted the treatment indicators by covariate 

interactions due to time expense required to estimate the fully heterogeneous treatment model. 2. In order to keep 

comparability with other statistics in the same row, this statistic is not for testing endogeneity of treatment, but for 

whether there is selection by severity: under treatment heterogeneity as in the correlated coefficients model endogeneity is 

the combined results of selection on severity and selection on returns (see eq. A2.1.2.Ϯ͕͛ ĂŶĚ ĞƋ͘ AϮ͘ϭ͘Ϯ͘ϯ-5  in section 

A2.1.2).  

between 

utility 

equations (IIA) 

on H0 is 

true 

on H0 is 

true 

Test z 

statistic Ho: 

valid over-

identifying 

restriction of 

minimum 

travel time 

to NICU 

N/A -0.69 -0.99 N/A N/A -1.29 1.68 N/A 
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Appendix 9 ʹ Results on inpatient days by level of care for VPT births  

Table A9.1 Marginal effects on inpatient days by level of care in LNU & SCU relative to ICU 

Models were estimated with logarithm link function and mean dispersion. Controlled covariates: Age and age squared at 

birth, birthweight, birthweight squared, sex, deprivation of residence, foetus no. N/A: Not applicable. *p< 0.10 ** p<0.05 

***p<0.01. Statistical inferences based on robust standard errors adjusting for clustering of observations by hospital. For 

details see section A2.1.3. 

 

Despite no apparent differences in the length of inpatient stay across treatments, there was an 

increase of 5 days of intensive care (level 1) with LNU relative to NICU. No other differences were 

detected between treatments across levels of care.  

The negative binomial regression specification used in the analysis extends the Poisson model by an 

over-dispersion term. Statistical tests suggest that the data were inconsistent with the Poisson 

 Naïve Negative binomial regression IV Negative binomial regression with 

endogenous multinomial treatment1 

 Total 

length 

of stay 

BAPM 

Level 1 

BAPM 

Level 2 

BAPM 

Level 3 

Total 

length 

of stay 

BAPM 

Level 1 

BAPM 

Level 2 

BAPM 

Level 3 

Birth at LNU  -0.36 

(1.10) 

0.48 

(0.80) 

0.68 

(0.93) 

-1.30 

(0.84) 

-0.15 

(1.09) 

4.88*** 

(0.84) 

0.81 

(2.12) 

-1.35 

(0.82) 

Birth at SCU  -0.11 

(1.74) 

0.93 

(1.00) 

-0.12 

(1.74) 

-0.34 

(1.11) 

-0.07 

(1.74) 

0.75 

(2.23) 

1.67 

(1.19) 

0.32 

(1.12) 

ʄ1LNU     -0.01** 

(0.00) 

-0.45*** 

(0.05) 

-0.09 

(0.07) 

-0.00 

(0.00) 

ʄ2SCU     -0.00 

(0.00) 

0.06 

(0.24) 

-0.10 

(0.07) 

-0.00 

(0.00) 

Instrument 

strength:  

Wald F test 

statistic (3 

degrees of 

freedom) 

    LNU eq.: 

172*** 

SCU eq.: 

150*** 

LNU eq.: 

169*** 

SCU eq.: 

155*** 

LNU eq.: 

172*** 

SCU eq.: 

151*** 

LNU eq.: 

171*** 

SCU eq.: 

150*** 

N 11,037 11,037 11,037 11,037 11,037 11,037 11,037 11,037 

Hausman test z 

statistic of H0: no 

endogeneity LNU  

     -8.35*** -1.26 0.81 

Hausman test z  

statistic of H0: no 

endogeneity SCU 

     0.26 -1.42 -0.90 

z statistic: H0:  

ůŶʗсϬ  
(variance of over-

dispersion term) 

-

26.28**

* 

-3.53*** 4.23*** -6.92***  -9.65*** 3.85*** 6.92*** 
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ŵŽĚĞů ;ůŶʗсϬ ǁĂƐ ƌĞũĞĐƚĞĚ Ăƚ ĐŽŶǀĞŶƚŝŽŶĂů ůĞǀĞůƐ ŽĨ ƐƚĂƚŝƐƚŝĐĂů ƐŝŐŶŝĨŝĐĂŶĐĞͿ ƵŶĚĞƌ ďŽƚŚ ƚŚĞ ŶĂŢǀĞ ĂŶĚ 
multinomial endogenous models of inpatient hospital days for all levels of care.  

 

 


