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Abstract

This short paper provides a comprehensive set of new theoretical results on the impact of
mis-specifying the short run dynamics in fractionally integrated processes. We show that four
alternative parametric estimators – frequency domain maximum likelihood, Whittle, time do-
main maximum likelihood and conditional sum of squares – converge to the same pseudo-true
value under common mis-specification, and that they possess a common asymptotic distri-
bution. The results are derived assuming the true data generating mechanism is a fractional
linear process driven by a martingale difference innovation. A completely general paramet-
ric specification for the short run dynamics of the estimated (mis-specified) fractional model
is considered, and with long memory, short memory and antipersistence in both the model
and the data generating mechanism accommodated. The paper can be seen as extending an
existing line of research on mis-specification in fractional models, important contributions to
which have appeared in the Journal of Econometrics. It also complements a range of existing
asymptotic results on estimation in correctly specified fractional models. Open problems in
the area are the subject of the final discussion.
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estimators, mis-specified short memory dynamics.

MSC2010 subject classifications: Primary 62M10, 62M15; Secondary 62G09

JEL classifications: C18, C22, C52

1 Introduction

Let {yt}, t ∈ Z, be a (strictly) stationary process with mean µ0 and spectral density f0(λ),
λ ∈ [−π, π], that is such that

f0(λ) ∼ |λ|−2d0L0(λ) as λ → 0 ,

where 0 ≤ |d0| < 0.5 and L0(λ) is a positive function that is slowly varying at 0. Prototypical
examples of processes of this type are fractional noise, obtained as the increments of self-similar
processes, and fractional autoregressive moving average processes. The process {yt} is said to
exhibit long memory (or long-range dependence) when 0 < d0 < 0.5, short memory (or short-
range dependence) when d0 = 0, and antipersistence when −0.5 < d0 < 0, and in this paper we
undertake an extensive examination of the consequences for estimation of such processes of mis-
specifying the short run dynamics. In so doing we provide a significant extension of earlier work
on this particular form of mis-specification in Yajima (1992) and Chen and Deo (2006), as well as
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complementing work that focuses on other types of mis-specification in fractional settings, as in
Hassler (1994) and Crato and Taylor (1996). Our work also complements that of Robinson (2014),
where mis-specification of the local-to zero characterisation of long memory is examined, and that
in Cavaliere, Nielsen and Taylor (2017), where a comprehensive treatment of inference in fractional
models under very general forms of heteroscedasticity is provided. Whilst mis-specification per

se is not the focus of the latter paper, the proof of convergence to a pseudo-true parameter of the
conditional sum of squares (CSS) estimator under the imposition of incorrect linear restrictions
bears some relationship with our more general results on mis-specified estimators in the fractional
setting. Our results also generalise the existing literature on the properties of various parametric
estimators - including their asymptotic equivalence - in correctly specified long memory models;
see Fox and Taqqu (1986), Dahlhaus (1989), Giraitis and Surgailis (1990), Sowell (1992), Beran
(1995), Robinson (2006) and Hualde and Robinson (2011), among others.

We begin by showing that four alternative parametric techniques – frequency domain maxi-
mum likelihood (FML), Whittle, time domain maximum likelihood (TML) and CSS – converge
to a common pseudo-true parameter value when the short memory component is mis-specified.1

Convergence is established for all three forms of dependence in the true data generating process
(TDGP) - long memory, short memory and antipersistence. We establish convergence by demon-
strating that when the mis-specified model is evaluated at points in the parameter space where
the fractional index d exceeds d0 − 0.5 the FML criterion function has a deterministic limit, but
that the FML criterion function is divergent otherwise. The difference in the behaviour of the
FML criterion function on subsets of the parameter space implies that the objective function does
not behave uniformly. (See Robinson (1995), Hualde and Robinson (2011) and Cavaliere, Nielsen
and Taylor (2017) for related discussion.) This lack of uniformity makes proofs of convergence
across the whole parameter space more complex than usual, but solutions presented in the previ-
ously cited references can be tailored to the current situation. We then show that under common
mis-specification the criterion functions that define all three alternative estimators behave in a
manner similar to that of the FML criterion. All four estimators are, accordingly, shown to con-
verge to the same pseudo-true parameter value – by definition the common value that optimizes
all four limiting objective functions.

Secondly, we derive closed-form representations for the first-order conditions that define the
pseudo-true parameters for completely general autoregressive fractionally integrated moving av-
erage (ARFIMA) model structures – both true and mis-specified. This represents a substantial
extension of the analysis in Chen and Deo (2006), in which the FML estimator under mis-
specification was first investigated, but with expressions for the relevant first-order conditions
provided for certain special specifications only, and with convergence established solely for long

memory Gaussian processes.
Thirdly, we extend the asymptotic theory established by Chen and Deo (2006) for the FML

estimator in the long memory Gaussian process case to the other three estimators, under long
memory, short memory and antipersistence for both the TDGP and the estimated model, and
without the imposition of Gaussianity. As noted above, Chen and Deo (2006) derived their results
by assuming that {yt} is a Gaussian process, thereby implying that finite sample Fourier sine and
cosine transformations are normally distributed, and hence that various properties established in
Moulines and Soulier (1999) could be employed. Here we use the same properties established in
Moulines and Soulier (1999) by appealing to results of Lahiri (2003) showing that the Fourier
transformations are asymptotically normal. We establish that all four estimation methods are
asymptotically equivalent in that they converge in distribution under common mis-specification.
The convergence rate and nature of the asymptotic distribution is determined by the deviation of
the pseudo-true value of the fractional index, d1 say, from the true value, d0, with three critical
ranges for d∗ = d0 − d1 < 0.5 given by d∗ > 0.25, d∗ = 0.25 and d∗ < 0.25. This nonstan-
dard distributional behaviour for all four parametric estimators introduces a further degree of

1Given that each of these estimators can be derived from a Gaussian likelihood, but we do not presuppose
Gaussianity, each could be designated as a ‘quasi’ maximum likelihood estimator in the usual way; however for the
sake of notational simplicity we avoid this qualifying term.
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complexity into the analysis, and contrasts sharply with earlier results established in correctly
specified models, where separate modeling of the short-run and fractional dynamics results in
the asymptotic distribution of the parameter estimates being normal and free of the fractional
indices.

The paper is organized as follows. In Section 2 we define the estimation problem, namely
producing an estimate of the parameters of a fractionally integrated model when the component
of the model that characterizes the short term dynamics is mis-specified. The criterion functions
that define the Whittle, TML and CSS estimators, as well as the FML estimator, are specified,
and we demonstrate that all four estimators possess a common probability limit under mis-
specification. The limiting form of the criterion function for a mis-specified ARFIMA model is
presented in Section 3, under complete generality for the short memory dynamics in the true
process and estimated model, and closed-form expressions for the first-order conditions that
define the pseudo-true values of the parameters are then given. The asymptotic equivalence of
all four estimation methods is proved in Section 4. The paper concludes in Section 5 with a brief
summary and some discussion of several issues that arise from the work. In order to streamline
the presentation, four lemmas used in the proof of Theorem 1 are placed in an appendix to the
paper. The proofs of these lemmas and all other results presented in the paper are, in turn,
assembled in a Supplementary Appendix, available on the journal website. The Supplementary
Appendix also contains certain technical derivations referenced in the text. Results of an extensive
set of simulation experiments, documenting the relative finite sample performance of all four mis-
specified estimators, under varying degrees of mis-specification, are available from the authors on
request.

2 Estimation Under Mis-specification of the Short Run Dynam-

ics

Assume that {yt} is generated from a TDGP that is a purely-nondeterministic stationary and
ergodic process with spectral density given by

σ2
0

2π
f0(λ) =

σ2
0

2π
g0 (λ) (2 sin(λ/2))

−2d0 , (1)

where σ2
0 is the innovation variance, g0 (λ) is a real valued symmetric function of λ defined on

[−π, π] that is bounded above and bounded away from zero, and −0.5 < d0 < 0.5. Then there
exists a zero mean process {εt} of uncorrelated random variables with variance σ2

0 such that {yt}
has the moving average representation

yt = µ0 +

∞∑

j=0

b0jεt−j , t ∈ Z = 0,±1, . . ., (2)

where {b0j} is a sequence of constants satisfying b00 = 1 and
∑∞

j=0 b
2
0j < ∞, and f0(λ) =

|b0(exp(ıλ))|2, λ ∈ [−π, π], with (1− z)d0b0(z) = c0(z) =
∑∞

j=0 c0jz
j and 0 < |c0(z)|, |z| ≤ 1. We

will suppose that c(exp(ıλ)) is differentiable in λ for all λ 6= 0 with a derivative that is of order
O(|λ|−1) as λ → 0, and that

(A.1) For all t ∈ Z we have E0[εt|Ft−1] = 0 and E0[ε
2
t |Ft−1] = σ2

0, a.s. where Ft−1 in the
conditional expectations is the sigma-field of events generated by εs, s ≤ t − 1. Here, and
in what follows, the zero subscript denotes that the moments are defined with respect to
the TDGP.

The conditions imposed on c0(z) imply that g0(λ) corresponds to the spectrum of an invert-
ible short-memory process that is bounded and bounded away from zero for all λ ∈ [−π, π] and
the TDGP satisfies Conditions A of Hannan (1973, page 131). Assumption A.1 was introduced
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into time series analysis by Hannan (1973) and has been employed by several authors in inves-
tigations of both short memory and fractional linear processes since. The assumption that {εt}
is a conditionally homoscedastic martingale difference process circumvents the need to assume
independence or identical distributions for the innovations, but rules out heteroscedasticity (see
Cavaliere, Nielsen and Taylor, 2017, pages 5-6).2

The model to be estimated is a parametric specification for the spectral density of {yt} of the
form

σ2

2π
f1(η, λ) =

σ2

2π
g1 (β, λ) (2 sin(λ/2))

−2d , (3)

where g1 (β, λ) is a real valued symmetric function of λ defined on [−π, π]. The parameter of
interest will be taken as η = (d,β⊤)⊤, where d ∈ (−0.5, 0.5) and β ∈ B, where B is an l-
dimensional compact convex set in R

l. The variance σ2 will be viewed as a supplementary or
nuisance parameter. The model is to be estimated from a realization yt, t = 1, . . . , n, of {yt} and,
in order that the structure of the model should parallel the assumed properties of the TDGP, it
will be assumed that the model is specified in such a way that:

(A.2) For all β ∈ B,
π∫

−π

log g1(β, λ)dλ = 0, and β 6= β′ implies that g1(β, λ) 6= g1(β
′, λ) on a set

of positive Lebesgue measure.

(A.3) The function g1(β, λ) is differentiable with respect to λ, with derivative ∂g1(β, λ)/∂λ con-
tinuous at all (β, λ), λ 6= 0, and |∂g1(β, λ)/∂λ| = O(|λ|−1) as λ → 0. Furthermore,
inf
β

inf
λ

g1(β, λ) > 0 and sup
β

sup
λ

g1(β, λ) < ∞.

If there exists a subset of [−π, π] with non-zero Lebesgue measure in which g1 (β, λ) 6= g0 (λ)
for all β ∈ B then the model will be referred to as a mis-specified model (MisM).

The above TDGP and modelling assumptions encompass the standard parametric models,
such as fractional noise, and fractional exponential and ARFIMA processes. (A detailed outline
of the properties of such processes is provided in Beran, 1994) We will return to a discussion of
these regularity conditions later, where a strengthening of these conditions – detailed below – will
be required in order to derive our asymptotic distribution theory. Meanwhile we note (for future
reference) that an ARFIMA model for a time series {yt} may be defined as follows,

φ(L)(1− L)d{yt − µ} = θ(L)εt, (4)

where µ = E (yt) , L is the lag operator such that Lkyt = yt−k, and φ(z) = 1 + φ1z + ... + φpz
p

and θ(z) = 1 + θ1z + ...+ θqz
q are the autoregressive and moving average operators respectively,

where it is assumed that φ(z) and θ(z) have no common roots and that the roots lie outside the
unit circle. The errors {εt} are assumed to be a white noise sequence with finite variance σ2

ε > 0.
For |d| < 0.5, {yt} can be represented as an infinite-order moving average of {εt} with square-
summable coefficients and, hence, on the assumption that the specification in (4) is correct, {yt}
is defined as the limit in mean square of a covariance-stationary process. When 0 < d < 0.5
neither the moving average coefficients nor the autocovariances of the process are absolutely
summable, declining at a hyperbolic rate rather than the exponential rate typical of an ARMA
process, with the term ‘long memory’ invoked accordingly. Thus, for an ARFIMA model we have
g1 (β, λ) = |θ(eiλ)|2/|φ(eiλ)|2 where β = (φ1, φ2, ..., φp, θ1, θ2, ..., θq)

T and an ARFIMA(p, d, q)

2Note, however, that the assumption of long memory has become a standard one to adopt in the modelling
of the variance, or volatility of financial returns. In particular, the ARFIMA models that underpin our results
have been used in the direct modelling of long memory in observable measures of volatility like, for instance, the
logarithm of realized variance (e.g. Andersen, Bollerslev, Diebold and Labys, 2003; Pong, Shackleton, Taylor and
Wu, 2004; Koopman, Jungbacker and Hol, 2005; Martin, Reidy and Wright, 2009). The theoretical results in the
paper would apply to such cases. The applicability of the results to settings in which volatility is modelled as a
latent long memory process (e.g. Baillie, Bollerslev and Mikkelsen, 1996; Breidt, Crato and de Lima, 1998; Comte
and Renault, 1998; Deo and Hurvich, 2001; Hurvich and Ray, 2003; Hurvich, Moulines and Soulier, 2005) would
need further work to confirm.
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model will be mis-specified if the realizations are generated from a true ARFIMA(p0, d0, q0)
process and any of {p 6= p0 ∪ q 6= q0} \ {p0 ≤ p ∩ q0 ≤ q} obtain.

We consider estimators of the parameter of interest, η = (d,βT )T , that are obtained by
minimizing a criterion function Qn(η) over a user-assigned compact subset of the parameter
space (−0.5, 0.5)× B,

Eδ = Dδ × B where Dδ = {d : |d| ≤ 0.5− δ} , for some 0 < δ ≪ 0.5 . (5)

The bound on |d| must be set by the practitioner via some criterion that reflects numerical
precision. Under mis-specification the generic estimator, denoted by η̂1 for the time being, is
obtained by minimizing Qn(η) assuming that {yt} follows the MisM.3 In Section 2.1 we specify the
form of Qn(η) associated with the FML estimator considered in Chen and Deo (2006) and outline
its relationship with the criterion functions underlying two alternative versions of the frequency
domain estimator introduced by Whittle, making it clear which form of Whittle estimator is the
focus of our theoretical investigations. In Section 2.2 we define the two time domain estimators
that we consider here, TML and CSS, and their associated criterion functions.

Anticipating the convergence results that follow later in this section, for any given Qn(η) a law
of large numbers can be combined with standard arguments to establish that on compact subsets
of {Dδ ∩{d : (d0− d) < 0.5}}×B, i.e. subsets of Eδ where Dδ intersects with {d : (d0− d) < 0.5},
the criterion Qn(η) will converge uniformly to the non-stochastic limiting objective function

Q(η) = lim
n→∞

E0 [Qn(η)] =
σ2
0

2π

π∫

0

f0(λ)

f1(η, λ)
dλ . (6)

If, on the other hand, Qn(η) is evaluated on a subset of Eδ where Dδ intersects with {d : (d0−d) ≥
0.5}, then the criterion function is divergent. The latter corresponds to the integral on the right
hand side in (6) being assigned the value ∞ if (d0 − d) ≥ 0.5 (see the comment by Hannan on
his Lemma 2 in Hannan, 1973, page 134). This difference in behaviour of the criterion function
about the point d0 − d = 0.5 implies that Qn(η) does not converge uniformly on subsets of the
parameter space that include this point. Nevertheless, as will be demonstrated below, provided
that η1 ∈ Eδ, where η1 is the minimizer of Q(η), Qn(η̂1) will converge to Q(η1) and η̂1 will
converge to η1 as a consequence.

In Section 2.3 we derive our asymptotic results pertaining to the convergence of Qn(η) and
demonstrate the relationships between the limiting criterion functions of the Whittle, TML and
CSS estimators and the limiting criterion function of the FML estimator. The value that mini-
mizes the limiting criterion function of all four estimators is shown to be identical, and the asymp-
totic convergence of all four estimators to the common pseudo-true parameter, η1, is thereby
established.

We highlight the fact that the FML and Whittle estimators are mean invariant by virtue of
being defined on the non-zero fundamental Fourier frequencies. The same is not true, however,
for either of the two time domain based methods. Hence, in Section 2.1 the parameter µ, which
characterizes the assumed model in (4), does not feature in either criterion function, whilst in
Section 2.2 it does. In all theoretical derivations we adopt the assumption of a known mean for
both the true and estimated model, with a zero value specified without loss of generality. As a
consequence of their invariance to the mean, all theoretical results as they pertain to the FML
and Whittle estimators also hold for a process that has an arbitrary (non-zero) mean, which may
be unknown. Such is not the case for the TML and CSS estimators, and we revisit this point in
the Discussion.

3We follow the usual convention by denoting the estimator obtained under mis-specification as η̂
1
rather than

simply by η̂, say. This is to make it explicit that the estimator is obtained under mis-specification and does not
correspond to the estimator produced under the correct specification of the model, which will be denoted by η̂

0
.
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2.1 Frequency domain estimators

In their paper Chen and Deo (2006) focus on the estimator of η = (d,βT )T defined as the value
of η that minimizes the objective function

Q(1)
n (η) =

2π

n

⌊n/2⌋∑

j=1

I(λj)

f1(η, λj)
, (7)

where I(λj) is the periodogram, defined as I(λ) = 1
2πn |

∑n
t=1 yt exp(−iλt)|2 evaluated at the

Fourier frequencies λj = 2πj/n; (j = 1, ..., ⌊n/2⌋), ⌊x⌋ is the largest integer not greater than x.
We have labeled this the FML estimator. The objective function in (7) is an approximation to
the frequency domain Gaussian (negative) log-likelihood introduced initially by Whittle (1953)
for short-range dependent processes, namely

Wn(σ
2,η) =

∫ π

−π

{
log

σ2

2π
f1(η, λ) +

2πI(λ)

σ2f1(η, λ)

}
dλ , (8)

and it coincides with the frequency domain objective function considered in Hannan (1973).
Concentrating out σ2 in (8) and minimizing the associated profile function with respect to η

produces what we refer to as the exact Whittle estimator.
An alternative approximation to the Whittle criterion function in (8), considered for example

in Beran (1994), is

Q(2)
n (σ2,η) =

2π

n

⌊n/2⌋∑

j=1

log

[
σ2

2π
f1(η,λj)

]
+

(2π)2

σ2n

⌊n/2⌋∑

j=1

I(λj)

f1(η, λj)
. (9)

Taking η as the parameter of interest and concentrating Q
(2)
n (σ2,η) with respect to σ2 indicates

that the value of σ2 that minimises (9) is given by σ̂2(η) = 2Q
(1)
n (η). Substituting back in to (9)

yields the (negative) profile likelihood,

Q(2)
n (η) =

2π

2
log

(
σ̂2(η)

2π

)
+

2π

n

⌊n/2⌋∑

j=1

log f1(η, λj) + π.

Minimization of Q
(2)
n (η) with respect to η yields what we call (simply) the Whittle estimator,

and which is the form of Whittle procedure that features in our theoretical derivations. Since

limn→∞
2π
n

⌊n/2⌋∑
j=1

log f1(η, λj) = 0 (see Supplementary Appendix A) it follows that this estimator

is equivalent to the FML estimator for large n. In common with the FML approach, this form of
Whittle estimator is invariant to the mean of the process, as noted above.

2.2 Time domain estimators

The criterion functions of the two alternative time domain estimators are defined as follows:

• Let YT = (y1, y2, ..., yn) and denote the variance covariance matrix of Y derived from the
mis-specified model by σ2Ση = [γ1 (i− j)], i, j = 1, 2, ..., n, where

γ1(τ) = γ1(−τ) =
σ2

2π

∫ π

−π
f1(η, λ)e

iλτdλ .

The Gaussian log-likelihood function for the TML estimator is

−1

2

(
n log(2πσ2) + log |Ση|+

1

σ2
(Y − µl)T Σ−1

η (Y − µl)

)
, (10)

where lT = (1, 1, ..., 1), and maximizing (10) is equivalent to minimizing the criterion func-
tion

Q(3)
n (σ2,η) = log σ2 +

1

n
log |Ση|+

1

nσ2
(Y − µl)T Σ−1

η (Y − µl) . (11)
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• To construct the CSS estimator note that we can expand (1− z)d in a binomial expansion
as

(1− z)d =
∞∑

j=0

Γ(j − d)

Γ(j + 1)Γ(−d)
zj , (12)

where Γ(·) is the gamma function. Furthermore, since g1 (β, λ) is bounded, by Assumption
(A.3), we can employ the method of Whittle (Whittle, 1984, §2.8) to construct an autore-
gressive operator α(β, z) =

∑∞
i=0 αi(β)z

i such that g1 (β, λ) = |α(β, eiλ)|−2. The objective
function of the CSS estimation method then becomes

Q(4)
n (η) =

1

n

n∑

t=1

et(η)
2 , (13)

where

et(η) =

t−1∑

i=0

τi(η) (yt−i − µ) , t = 1, . . . , n , (14)

and the coefficients τj(η), j = 0, 1, 2, . . ., are given by τ0(η) = 1 and

τj(η) =

j∑

s=0

αj−s(β)Γ(j − d)

Γ(j + 1)Γ(−d)
, j = 1, 2, . . . . (15)

As with the FML estimator, the CSS estimate of σ2 is given implicitly by the minimum
value of the criterion function.

We can think of the CSS estimator as providing an approximation to the TML estimator
that parallels the approximation of the FML and (sums-based) Whittle estimators to the exact
Whittle estimator.

2.3 Convergence Properties

In Chen and Deo (2006) it is shown that if {yt} is a long-range dependent Gaussian process, then
on subsets of the parameter space of the form (δ, 0.5 − δ) × Φ, where 0 < δ < 0.25 and Φ is a

compact convex set, we have (for Q
(1)
n (η) defined in (7)) plimn→∞|Q(1)

n (η) − Q(η)| = 0 (Chen
and Deo, 2006, Lemma 2). The minimum of the limiting objective function Q(η) then defines a
pseudo-true parameter value to which the FML estimator will converge, since with the addition of
the assumption that there exists a unique vector η1 = (d1,β

T
1 )

T ∈ (δ, 0.5− δ)×Φ that minimizes
Q(η), it follows that the FML estimator will converge to η1.

Because Chen and Deo assumed that the TDGP was a long memory process and that in
the MisM the fractional index was similarly confined to the long memory region, they did not
explicitly consider the case where (d0 − d) ≥ 0.5. In contrast, as noted with reference to the
TDGP in (1), our work allows for 0 ≤ |d0| < 0.5, and involves the specification of the appropriate
user-assigned compact subset for η = (d,βT )T in (5). This implies a wider range of values for

(d0 − d) and, hence, the need for our analysis to deal with the differing behaviour of Q
(1)
n (η)

about the point d0 − d = 0.5 alluded to above. To achieve this, we divide the parameter space
Eδ into three disjoint sub-sets:

1. E
0
δ = D

0
δ × B where D

0
δ = Dδ ∩ {d : −(1− 2δ) ≤ (d0 − d) ≤ 0.5− δ},

2. E
0
δ1 = D

0
δ1 × B where D

0
δ1 = Dδ ∩ {d : 0.5− δ < (d0 − d) < 0.5} and

3. E
0
δ2 = D

0
δ2 × B where D

0
δ2 = Dδ ∩ {d : 0.5 ≤ (d0 − d) ≤ 1− 2δ} .
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Figure 1: Graphical illustration of the division of the parameter space of (d0−d)

The superscript ‘0’ is used to indicate that the relevant subspaces relate to the deviation
(d0 − d) assuming that d0 ∈ Dδ. The notation in 2. and 3. is used to denote the breakdown of

the complement of the set in 1, E0
δ , into two disjoint subsets, E

0
δ1 and E

0
δ2. This division of the

parameter space of (d0 − d) is depicted graphically in Figure 1.

We establish that on the subset E
0
δ we have limn→∞Q

(1)
n (η) = Q(η) almost surely and uni-

formly in η, where Q(η) is defined as in (6), whereas Q
(1)
n (η) is of order O(δ−1) on E

0
δ1 and is

divergent as n → ∞ on E
0
δ2. This is the content of Lemmas 1, 2, 3 and 4, which are given in

the appendix to the paper. The following proposition, which establishes the convergence of the
FML estimator to η1 under the same generality for both the TDGP and MisM as highlighted
above (cf. Chen and Deo, 2006, Corollary 1) now follows as an almost immediate corollary if we
suppose that the following additional assumption holds:

(A.4) There exists a unique pseudo-true parameter vector η1 = (d1,β
T
1 )

T belonging to the subset
E
0
δ that satisfies η1 = argminη Q(η).

Proposition 1 Suppose that the TDGP of {yt} is as prescribed in equations (1) and (2) and

that the MisM is specified as in (3). Assume also that Assumptions A.1− A.4 are satisfied. Let

η̂
(1)
1 denote the FML estimator obtained by minimising the criterion function Q

(1)
n (η) over Eδ.

Then limn→∞Q
(1)
n (η̂

(1)
1 ) = Q(η1) and η̂

(1)
1 → η1 almost surely.

Index now by i = 2, 3 and 4 the estimators associated with the Whittle, TML and CSS

criterion functions respectively; that is η̂
(i)
1 minimises Q

(i)
n (·), i = 2, 3, 4, with each viewed as

a function of η. Given the relationships between Q
(1)
n (·) and Q

(i)
n (·), i = 2, 3, 4, as outlined in

Supplementary Appendix A, it follows that η̂
(i)
1 , i = 1, 2, 3, 4, must share the same convergence

properties. Thus we can state the following theorem:

Theorem 1 Suppose that the TDGP of {yt} is as prescribed in equations (1) and (2) and that

the MisM is specified as in (3). Assume also that Assumptions A.1− A.4 are satisfied. Let η̂
(i)
1 ,

i = 1, 2, 3, 4, denote, respectively, the FML, Whittle, TML and CSS estimators of the parameter

vector η = (d,βT )T of the MisM. Then limn→∞‖η̂(i)
1 − η̂

(j)
1 ‖ = 0 almost surely for all i, j =

1, 2, 3, 4, where the common limiting value of η̂
(i)
1 , i = 1, 2, 3, 4, is η1 = argminη Q(η) .

Before proceeding, we note that Cavaliere, Nielsen and Taylor (2017) have shown that if g0(λ)
has a parametric form that is known, but the parameter values that characterise it are not, then
the CSS parameter estimates will converge to a pseudo-true value if incorrect linear parameter
constraints are imposed (Cavaliere, Nielsen and Taylor, 2017, Theorem 5(ii)). Theorem 1 provides
a generalisation of this result: Firstly, by extending it to the FML, Whittle and TML estimators;
Secondly, and perhaps more importantly, by allowing for the possibility that the parametric form
of the model may itself be mis-specified and the characterisation of the short run dynamics by
the function g1(λ) incorrect.

Having established that the four parametric estimators converge towards a common η1, we can
as a consequence now broaden the applicability of the asymptotic distributional results derived
by Chen and Deo (2006) for the FML estimator. This we do in Section 4 by establishing that
all four alternative parametric estimators converge in distribution for all three forms of memory
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- long memory, short memory and antipersistence. Prior to doing this, however, we indicate the
precise form of the limiting objective function Q(η), and the associated first-order conditions that
define the pseudo-true value η1 of the four estimation procedures, in the ARFIMA case, once
again under complete generality.

3 Pseudo-True Parameters Under ARFIMA Mis-Specification

Under Assumptions A.1 − A.4, the value of η1 = argminη Q(η) can be determined as the so-
lution of the first-order condition ∂Q(η)/∂η = 0, and Chen and Deo (2006) illustrate the re-
lationship between ∂ logQ(η)/∂d and the deviation d∗ = d0 − d1 for the simple special case
in which the TDGP is an ARFIMA(0, d0, 1) and the MisM is an ARFIMA(0, d, 0). They
then cite (without providing detailed derivations) certain results that obtain when the MisM is
an ARFIMA(1, d, 0). Here we provide a significant generalization, by deriving expressions for
both Q(η) and the first-order conditions that define the pseudo-true parameters, under the full
ARFIMA(p0, d0, q0)/ARFIMA(p, d, q) dichotomy for the true process and the estimated model.
Representations of the associated expressions via polynomial and power series expansions suitable
for the analytical investigation of Q(η) are presented. It is normally not possible to solve the
first-order conditions ∂Q(η)/∂η = 0 exactly as they are both nonlinear and (in general) defined
as infinite sums. Instead one would determine the estimate numerically, via a Newton iteration
for example, with the series expansions replaced by finite sums. An evaluation of the magnitude
of the approximation error produced by any power series truncation that might arise from such
a numerical implementation is given. The results are then illustrated in the special case where
p0 = q = 0, in which case true MA short memory dynamics of an arbitrary order are mis-specified
as AR dynamics of an arbitrary order. In this particular case, as will be seen, no truncation error
arises in the computations.

To begin, denote the spectral density of the TDGP, a general ARFIMA(p0, d0, q0) process,
by

σ2
0

2π
f0(λ) =

σ2
0

2π

∣∣1 + θ10e
iλ + ...+ θq00e

iq0λ
∣∣2

|1 + φ10eiλ + ...+ φp00e
ip0λ|2

|2 sin(λ/2)|−2d0 ,

and that of the MisM, an ARFIMA(p, d, q) model, by

σ2

2π
f1(η, λ) =

σ2

2π

∣∣1 + θ1e
iλ + ...+ θqe

iqλ
∣∣2

|1 + φ1eiλ + ...+ φpeipλ|2
|2 sin(λ/2)|−2d.

Substituting f0(λ) and f1(η, λ) into the limiting objective function in (6), we obtain the repre-
sentation

Q (η) =
σ2
0

2π

π∫

0

f0(λ)

f1(η, λ)
dλ =

σ2
0

2π

π∫

0

|Aβ(e
iλ)|2

|Bβ(eiλ)|2
|2 sin(λ/2)|−2(d0−d)dλ , (16)

where

Aβ(z) =

q∑

j=0

ajz
j = θ0(z)φ(z) = (1 + θ10z + ...+ θq00z

q0) (1 + φ1z + ...+ φpz
p), (17)

with q = q0 + p and

Bβ(z) =

p∑

j=0

bjz
j = φ0(z)θ(z) = (1 + φ10z + ...+ φp00z

p0) (1 + θ1z + ...+ θqz
q) , (18)

with p = p0 + q. The expression for Q(η) in (16) takes the form of the variance of an ARFIMA
process with MA operator Aβ(z), AR operator Bβ(z) and fractional index d0 − d. It follows that
Q(η) could be evaluated using the procedures presented in Sowell (1992). Sowell’s algorithms
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are based upon series expansions in gamma and hypergeometric functions however, and although
they are suitable for numerical calculations, they do not readily lend themselves to the analytical
investigation of Q(η). We therefore seek an alternative formulation.

Let C(z) =
∑∞

j=0 cjz
j = Aβ(z)/Bβ(z) where Aβ(z) and Bβ(z) are as defined in (17) and (18)

respectively. Then (16) can be expanded to give

Q (η) = 21−2(d0−d) σ
2
0

2π




∞∑

j=0

∞∑

k=0

cjck

∫ π/2

0
cos (2 (j − k)λ) sin(λ)−2(d0−d)dλ


 ,

and using standard results for the integral
π∫
0

(sinx)υ−1 cos(ax)dx from Gradshteyn and Ryzhik

(2007, p 397) we find, after some algebraic manipulation, that

Q (η) = {σ
2
0Γ(1− 2(d0 − d))

2Γ2(1− (d0 − d))
}K(η) , (19)

where K(η) =
∑∞

j=0 c
2
j +2

∑∞
k=0

∑∞
j=k+1 cjckρ(j−k) and ρ(h) =

∏h
i=1

(
(d0−d)+i−1
i−(d0−d)

)
, h = 1, 2, ...

Using (19) we now derive the form of the first-order conditions that define η1, namely
∂Q(η)/∂η = 0. Differentiating Q (η) first with respect to βr, r = 1, . . . , l, and then d gives:

∂Q (η)

∂βr
= {σ

2
0Γ(1− 2(d0 − d))

2Γ2(1− (d0 − d))
}∂K (η)

∂βr
, r = 1, 2, ..., l,

where
∂K (η)

∂βr
=

∞∑

j=1

2cj
∂cj
∂βr

+ 2
∞∑

k=0

∞∑

j=k+1

(ck
∂cj
∂βr

+
∂ck
∂βr

cj)ρ(j − k) ,

and

∂Q (η)

∂d
= {σ

2
0Γ(1− 2(d0 − d))

2Γ2(1− (d0 − d))
}
{
2 (Ψ[1− 2(d0 − d)]−Ψ[1− (d0 − d)])K(η) +

∂K (η)

∂d

}
,

where Ψ(·) denotes the digamma function and

∂K (η)

∂d
=2

∞∑

k=0

∞∑

j=k+1

cjckρ(j − k) {2Ψ[1− (d0 − d)]

−Ψ[1− (d0 − d) + (j − k)]−Ψ[1− (d0 − d)− (j − k)]} .

Eliminating the common (non-zero) factor {σ2
0

Γ(1−2(d0−d))
2Γ2(1−(d0−d))

} from both ∂Q (η) /∂β and ∂Q (η) /∂d,

it follows that the pseudo-true parameter values of the ARFIMA(p, d, q) MisM can be obtained
by solving

∂K (η)

∂βr
= 0 , r = 1, 2, ..., l, (20)

and

2(Ψ[1− 2(d0 − d)]−Ψ[1− (d0 − d)])K(η) +
∂K (η)

∂d
= 0 (21)

for βr1, r = 1, . . . , l, and d1 using appropriate algebraic and numerical procedures. A corollary of
the following theorem is that η1 can be calculated to any desired degree of numerical accuracy by
truncating the series expansions in the expressions for K (η) , ∂K (η) /∂β and ∂K (η) /∂d after
a suitable number of N terms before substituting into (20) and (21) and solving (numerically)
for φi1, i = 1, 2, ..., p, θj1, j = 1, 2, ..., q, and d1.
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Theorem 2 Set CN (z) =
∑N

j=0 cjz
j and let QN (η) = σ2

0IN where

IN =
∫ π
0 |CN (exp (−iλ))|2|2 sin(λ/2)|−2(d0−d)dλ. Then

Q (η) = QN (η) +RN =

{
σ2
0Γ(1− 2(d0 − d))

2Γ2(1− (d0 − d))

}
KN (η) +RN

where

KN (η) =

N∑

j=0

c2j + 2
N−1∑

k=0

N∑

j=k+1

cjckρ(j − k)

and there exists a ζ, 0 < ζ < 1, such that RN = O(ζ(N+1)) = o(N−1). Furthermore, ∂QN (η)/∂η =
∂Q(η)/∂η + o(N−1).

By way of illustration, consider the case of mis-specifying a true ARFIMA(0, d0, q0) process
by an ARFIMA(p, d, 0) model. When p0 = q = 0 we have Bβ(z) ≡ 1 and C(z) is polynomial,

C(z) = 1+
∑q

j=1 cjz
j where cj =

∑min{j,p}
r=max{0,j−p} θ(j−r)0φr. Abbreviating the latter to

∑
r θ(j−r)0φr,

this then gives us:

K(d, φ1, . . . , φp) =

q∑

j=0

(
∑

r

θ(j−r)0φr)
2+

2

q−1∑

k=0

q∑

j=k+1

(
∑

r

θ(j−r)0φr)(
∑

r

θ(k−r)0φr)ρ(j − k) ;

and setting θs0 ≡ 0 for when s does not belong to the set {0, 1, . . . , q0},

∂K (d, φ1, . . . , φp)

∂φr
=

q∑

j=1

2(
∑

r

θ(j−r)0φr)θ(j−r)0+

2

q−1∑

k=0

q∑

j=k+1

{
(
∑

r

θ(j−r)0φr)θ(k−r)0 + θ(j−r)0(
∑

r

θ(k−r)0φr)

}
ρ(j − k) ,

r = 1, . . . , p, and

∂K (d, φ1, . . . , φp)

∂d
= 2

q−1∑

k=0

q∑

j=k+1

(
∑

r

θ(j−r)0φr)(
∑

r

θ(k−r)0φr)ρ(j − k)×

(2Ψ[1− (d0 − d)]−Ψ[1− (d0 − d) + (j − k)]−Ψ[1− (d0 − d)− (j − k)])

for the required derivatives. The pseudo-true values φr1, r = 1, . . . , p, and d1 can now be ob-
tained by solving (20) and (21) having inserted these exact expressions for K (d, φ1, . . . , φp),
∂K (d, φ1, . . . , φp) /∂φr, r = 1, . . . , p, and ∂K (d, φ1, . . . , φp) /∂d into the equations.

Let us further highlight some features of this special case by focussing on the example where
the TDGP is an ARFIMA(0, d0, 1) and the MisM an ARFIMA(1, d, 0). In this example q = 2
and C(z) = 1 + c1z + c2z

2 where, neglecting the first order MA and AR coefficient subscripts,
c1 = (θ0 + φ) and c2 = θ0φ. The second factor of the criterion function in (19) is now

K(d, φ) =1 + (θ0 + φ)2 + (θ0φ)
2

+
2 [θ0φ(d0 − d+ 1)− (1 + θ0φ)(θ0 + φ)(d0 − d− 2)] (d0 − d)

(d0 − d− 1)(d0 − d− 2)
. (22)

The derivatives ∂K(d, φ)/∂φ and ∂K(d, φ)/∂d can be readily determined from (22) and hence
the pseudo-true values d1 and φ1 evaluated.
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(c) θ0 = −0.3.

Figure 2: Contour plot of Q(d, φ) against d̃ = d0 − d and φ for the mis-specification of an
ARFIMA(0, d0, 1) TDGP by an ARFIMA(1, d, 0) MM; d̃ ∈ (−0.5, 0.5), φ ∈ (−1, 1). Pseudo-true
coordinates (d0 − d1, φ1) are (a) (0.2915, 0.3473), (b) (0.25, 0.33) and (c) (0.0148, 0.2721).

It is clear from (22) that for given values of |θ0| < 1 we can treat K(d, φ) as a function of
d̃ = (d0 − d) and φ, and hence treat Q (d, φ) = Q (η) similarly. Figure 2 depicts the contours of
Q (d, φ) graphed as a function of d̃ and φ for the values of θ0 = {−0.7,−0.637014,−0.3}. Pre-
empting the discussion to come in the following section, the values of θ0 are deliberately chosen to
coincide with d∗ = d0−d1 being respectively greater than, equal to and less than 0.25. The three
graphs in Figure 2 clearly demonstrate the divergence in the asymptotic criterion function that
occurs as d̃ = (d0 − d) approaches 0.5 and they illustrate that although the location of (d1, φ1)
may be unambiguous, the sensitivity of Q (d, φ) to perturbations in (d, φ) can be very different
depending on the value of d∗ = d0 − d1.

4 In Figure 2a the contours indicate that when d∗ > 0.25
the limiting criterion function has hyperbolic profiles in a small neighbourhood of the pseudo-true
parameter point (d1, φ1), with similar but more locally quadratic behaviour exhibited in Figure
2b when d∗ = 0.25. The contours of Q(d, φ) in Figure 2c, corresponding to d∗ < 0.25, are more
elliptical and suggest that in this case the limiting criterion function is far closer to being globally
quadratic around (d1, φ1). It turns out that these three different forms of Q (d, φ) , reflecting the
most, intermediate, and the least mis-specified cases, correspond to the three different forms of
asymptotic distribution presented in the following section.

4 Asymptotic Distributions

In this section we show that the asymptotic distribution of the FML estimator derived in Chen
and Deo (2006) in the context of long-range dependence is also applicable to the Whittle, TML
and CSS estimators, and that all four estimators are, hence, asymptotically equivalent under mis-
specification. As was highlighted by Chen and Deo, the rate of convergence and the nature of the
asymptotic distribution of the FML estimator is determined by the deviation of the pseudo-true

4These graphs have been produced using MATLAB 2011b, version 7.13.0.564 (R2011b).
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value d1 from the true value d0.
5. Theorem 3 shows that in the event that any one of the FML,

Whittle, TML or CSS estimators possesses one of the asymptotic distributions as described in the
theorem, then all four estimators will share the same asymptotic distribution, and this will hold
for all three forms of memory in the TDGP and the mis-specified model. We comment further
on this matter below.

For each of the estimators the asymptotic distributions are obtained via the usual Taylor
series expansion of the score function, having first established convergence, and consequently
stronger smoothness conditions are required to establish the asymptotic distribution theory and
to ensure that the asymptotic variance-covariance matrix of the estimators is well defined. We
will therefore suppose:

(A.5) The function g1(β, λ) of the MisM is thrice differentiable with continuous third derivatives.
Furthermore, the derivatives satisfy;

A.5.1 sup
λ

sup
β

∣∣∣∂g1(β,λ)
∂βi

∣∣∣ < ∞, 1 6 i 6 l,

A.5.2 sup
λ

sup
β

∣∣∣∂
2g1(β,λ)
∂βi∂βj

∣∣∣ < ∞, sup
λ

sup
β

∣∣∣∂
2g1(β,λ)
∂βi∂λ

∣∣∣ < ∞, 1 6 i, j 6 l, and

A.5.3 sup
λ

sup
β

∣∣∣ ∂
3g1(β,λ)

∂βi∂βj∂βk

∣∣∣ < ∞, 1 6 i, j, k 6 l.

Assumptions A.2-A.5 are similar to the assumptions adopted by Fox and Taqqu (1986) and
Dahlhaus (1989) in the context of correct specification, and they are in essence equivalent to the
conditions used in the work of Chen and Deo (2006) on the mis-specified case. In order to derive
the asymptotic distribution we will assume that {εt} is a strictly stationary, regular process that
satisfies the following weak dependence and moment conditions.

(A.1′) The innovation {εt} satisfies Assumption (A.1). Moreover, E0[|εt|4+p] < ∞ for some
p ∈ (0,∞) and there exist finite constants µ3 and µ4 such that E0[ε

3
t |Ft−1] = µ3 and

E0[ε
4
t |Ft−1] = µ4 a.s. for all t ∈ Z.

Assumption (A.1′) implies that {εt} is completely regular, and that {εpt } is a uniformly inte-
grable sequence for any p ≤ 4. This assumption is closely related to Assumption (A.1) of Lahiri
(2003), which specifies a set of weak dependence and moment conditions on {εt} based on α-
mixing. When deriving asymptotic distributions it is typical to assume finite bounds on the first
four moments of the innovation process (see Cavaliere, Nielsen and Taylor, 2017, for a detailed
explanation of the importance of such bounds).

Theorem 3 Suppose that the TDGP of {yt} is as prescribed in equations (1) and (2), and that

the MisM is specified as in (3), and assume that Assumptions A.1′ and A.2−A.5 hold. Let

B = −σ2
0

π

π∫

−π

f0(λ)

f3
1 (η1,λ)

∂f1(η1,λ)

∂η

∂f1(η1,λ)

∂ηT
dλ+

σ2
0

2π

π∫

−π

f0(λ)

f2
1 (η1,λ)

∂2f1(η1,λ)

∂η∂ηT
dλ , (23)

and set µn = B−1E0

(
∂Qn(η1

)
∂η

)
where Qn(·) denotes the objective function that defines η̂1.

6 Let

η̂1 denote the estimator obtained by minimising Qn(η) over the compact set Eδ where η1 ∈ Eδ,

5As already noted, the results in Chen and Deo presupposed that the parameter space of the estimated model
coincided with the long memory region assumed for the TDGP. Since d1 is only defined for (d0−d1) < 0.5 it follows
that the distributional results they presented for the FML estimator were only valid for this region, something that
was not explicitly mentioned in their original derivation.

6Heuristically, µn measures the bias associated with the estimator η̂
1
. That is, µn ≈ E0 (η̂1

) − η
1
. Note that

the expression for µn given in Chen and Deo (2006, p 263) contains a typographical error; the proofs in that paper
use the correct expression.
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and assume that η1 does not belong to ∂Eδ, the boundary of the set Eδ. Then the FML, Whittle,

TML or CSS estimators are asymptotically equivalent with a common limiting distribution as

delineated in Cases 1, 2 and 3:

Case 1: When d∗ = d0 − d1 > 0.25,

n1−2d∗

log n
(η̂1 − η1 − µn)

D→ B−1




∞∑

j=1

Wj , 0, ...0




T

, (24)

where
∞∑
j=1

Wj is defined as the mean-square limit of the random sequence
∑s

j=1Wj as s →

∞, wherein

Wj =
(2π)1−2d∗ g0(0)

j2d∗g1(β, 0)

[
U2
j + V 2

j − E0(U
2
j + V 2

j )
]
,

and {Uj} and {Vk} denote sequences of Gaussian random variables with zero mean and

covariances Cov0 (Uj , Uk) = Cov0 (Uj , Vk) = Cov0 (Vj , Vk) with

Cov0 (Uj , Vk) =

∫∫

[0,1]2

{sin(2πjx) cos(2πky) + sin(2πkx) cos(2πjy)} |x− y|2d0−1 dxdy .

Case 2: When d∗ = d0 − d1 = 0.25,

n1/2
[
Λdd

]−1/2
(η̂1 − η1)

D→ B−1 (Z, 0, ..., 0)T , (25)

where

Λdd =
1

n

n/2∑

j=1

(
σ2
0f0(λj)

2πf1(η1, λj)

∂ log f1(η1,λj)

∂d

)2

,

and Z is a standard normal random variable.

Case 3: When d∗ = d0 − d1 < 0.25, √
n (η̂1 − η1)

D→ N(0,Ξ), (26)

where Ξ = B−1ΛB−1’

Λ =
σ4
0

2π

∫ π

0

(
f0(λ)

f1(η1,λ)

)2(∂ log f1(η1,λ)

∂η

)(
∂ log f1(η1,λ)

∂η

)T

dλ .

A key point to note from the three cases delineated in Theorem 3 is that when the deviation
between the true and pseudo-true values of d is sufficiently large (d∗ ≥ 0.25) – something that is
related directly to the degree of mis-specification of g0(λ) by g1(β, λ) – the

√
n rate of convergence

is lost, with the rate being arbitrarily close to zero depending on the value of d∗. For d∗ strictly
greater than 0.25, asymptotic Gaussianity is also lost, with the limiting distribution being a func-
tion of an infinite sum of non-Gaussian variables. For the d∗ ≥ 0.25 case, the limiting distribution
– whether Gaussian or otherwise – is degenerate in the sense that the limiting distribution for
each element of η̂1 is a different multiple of the same random variable (

∑∞
j=1Wj in the case of

d∗ > 0.25 and Z in the case of d∗ = 0.25).7

For the form of limiting distribution that obtains in Cases 1, 2 and 3 we refer to Chen and Deo
(2006, Theorems 1, 3 and 2), wherein these distributions were produced specifically for the FML

7As part of a companion set of simulation experiments documenting the relative finite sample performance of the
four estimators under varying degrees of mis-specification (available on request) we develop a method for obtaining
the non-standard limiting distribution applicable when d

∗
> 0.25. For all four estimation methods, the derivation

of the bias-adjustment term µn which is relevant in this case is provided in Supplementary Appendix B.
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estimator in the context of long range dependence. Their proofs depend on the Fourier sine and
cosine transformations of the observed series being normally distributed with a given covariance
structure. In Chen and Deo (2006) the latter properties are derived by assuming that {x(t)}
is a Gaussian process. Here we achieve the same outcome by employing Assumption A.1′ and
appealing to results of Lahiri (2003) which imply that the Fourier sine and cosine transformations
are asymptotically normal and hence that lemmas of Moulines and Soulier (1999) used by Chen
and Deo can be applied in a more general setting.

To prove that these same limiting distributions hold for the Whittle, TML and CSS estimators

we establish that Rn(η̂
(i)
1 − η̂

(1)
1 ) →D 0 for i = 2, 3 and 4, where Rn denotes the convergence

rate applicable in the three different cases outlined in the theorem. We use a first-order Taylor

expansion of ∂Q
(·)
n (η1)/∂η about ∂Q

(·)
n (η̂

(·)
1 )/∂η = 0. This gives

∂Q
(·)
n (η1)

∂η
=

∂2Q
(·)
n (ὴ

(·)
1 )

∂η∂η′

(
η1 − η̂

(·)
1

)

and

Rn(η̂
(i)
1 − η̂

(j)
1 ) =

[
∂2Q

(j)
n (ὴ

(j)
1 )

∂η∂η′

]−1

Rn
∂Q

(j)
n (η1)

∂η
−
[
∂2Q

(i)
n (ὴ

(i)
1 )

∂η∂η′

]−1

Rn
∂Q

(i)
n (η1)

∂η
,

where ‖η1 − ὴ
(·)
1 ‖ ≤ ‖η1 − η̂

(·)
1 ‖. Since plim η̂

(·)
1 = η1 it is therefore sufficient to show that there

exists a scalar, possibly constant, function Cn(η) such that

∥∥∥∥∥
∂2{Cn(η1) ·Q

(i)
n (η1)−Q

(j)
n (η1)}

∂η∂η′

∥∥∥∥∥ = op(1) (27)

and

plimn→∞ Rn

∥∥∥∥∥Cn(η1) ·
∂Q

(i)
n (η1)

∂η
− ∂Q

(j)
n (η1)

∂η

∥∥∥∥∥ = 0 . (28)

The condition in (27) is established by showing that ∂2{Q(1)
n (η1)}/∂η∂η′ converges in probability

to B, as defined in (23), and that for each i = 2, 3 and 4 the corresponding Hessian is proportional

to ∂2{Q(1)
n (η1)}/∂η∂η′ with probability approaching one. The proof of (27) is fairly conventional,

whereas the proof of (28) – which implicitly invokes the Cramér-Wold device since the moments
(cumulants) of the asymptotically normal gradient vector are convergence determining for the
limiting distributions in Theorem 3 – is more involved because of the presence of the scaling
factor Rn. In Supplementary Appendix A we present the steps necessary to prove (27) and (28)
for each estimator, and for TDGPs with fractional indices in the range −0.5 < d0 < 0.5.

5 Discussion

This paper presents theoretical results relating to the estimation of mis-specified models for frac-
tionally integrated processes. We show that under mis-specification four classical parametric
estimation methods, frequency domain maximum likelihood (FML), Whittle, time domain max-
imum likelihood (TML) and conditional sum of squares (CSS) converge to the same pseudo-true
parameter value. Consistency of the four estimators for the pseudo-true value is proved for frac-
tional exponents of both the true and estimated models in the long memory, short memory and
antipersistent ranges. A general closed-form solution for the limiting criterion function for the
four alternative estimators is derived in the case of ARFIMA models. This enables us to link
the form of mis-specification of the short memory dynamics to the difference between the true
and pseudo-true values of the fractional index, d, and, hence, to the resulting (asymptotic) dis-
tributional properties of the estimators, having proved that the estimators are asymptotically
equivalent.
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There are several interesting issues that arise from the results that we have established, in-
cluding the following:

First, as already noted, although the known (zero) mean assumption is inconsequential for
the FML and Whittle estimators, this is not the case for the time domain estimators. Estimation
of µ will impact on the limiting distribution of the time domain estimators; if the sample mean is
used, for example, then the limiting behaviour of the estimators may be influenced by the slower
than usual n(0.5−d0) convergence rate of the sample mean, given that the rate of convergence of
the estimators (for all ranges of values of d∗ = d0 − d1) differs from this rate when the true mean
is known. This is a matter that we have not pursued for the current paper, but is the subject of
other ongoing research.

Second, the extension of our results to non-stationary cases will facilitate the consideration of
a broader range of circumstances. To some extent non-stationary values of d might be covered by
means of appropriate pre-filtering, for example, the use of first-differencing when d0 ∈ [1/2, 3/2),
but this would require prior knowledge of the structure of the process and opens up the possibility
of a different type of mis-specification from the one we have considered here. Explicit consideration
of the interval d ∈ [0, 3/2), say, allowing for both stationary and non-stationary cases perhaps
offers a better approach as prior knowledge of the characteristics of the process would then be
unnecessary. The latter also seems particularly relevant given that estimates near the boundaries
d = 0.5 and d = 1 are not uncommon in practice. Previous developments in the analysis of
non-stationary fractional processes (see, inter alios, Beran, 1995; Tanaka, 1999; Velasco, 1999;
Velasco and Robinson, 2000) might offer a sensible starting point for such an investigation.

Third, in the spirit of Chen and Deo (2006), on which this work builds, the focus of the
asymptotic results derived here (and the simulation results documented on the first author’s
website) is on estimation of the pseudo-true value, d1 (see also Yajima, 1992). This focus has
derived from the very nature of the exercise, namely to characterize the impact of mis-specification
of the short memory dynamics on estimation of the long memory parameter by documenting the
link between the degree of mis-specification and the extent of the deviation of d1 from d0. The
extent of this deviation determines, in turn, the convergence, or otherwise, of the four estimators
to d1, the rate of that convergence and the nature of the asymptotic distribution centred on
d1, including the (finite sample) bias adjustment term, µn, that obtains in the case of the most
extreme mis-specification (i.e. d∗ > 0.25). In other words, by the very nature of the analysis,
d1, and the estimation thereof, is the focal point, with the results providing guidance about
the extent, and type, of sampling variation one can observe when estimating the long memory
parameter in a mis-specified model.

As a first step, this is a critical piece of knowledge with which an empirical researcher should
be armed. The second step however, is to understand the sampling properties of the different
estimators - across the mis-specification spectrum - as estimators of d0. Some insight into the
potential difference between this behaviour and the accuracy of the methods as estimators of d1 is
gained as follows. The relationships between the bias and MSE of the parametric estimators (d̂1,
generically) of d1 (denoted respectively below by Bias d1 and MSE d1), and the bias and MSE
as estimators of the true value d0, (Bias d0 and MSE d0 respectively) can be expressed simply as
follows:

Bias d0 = E0(d̂1)− d0 =
[
E0(d̂1)− d1

]
+ (d1 − d0) = Bias d1 − d∗

and

MSE d0 = E0

(
d̂1 − d0

)2

= E0

(
d̂1 − E0(d̂1)

)2
+
[
E0(d̂1)− d0

]2

= E0

(
d̂1 − E0(d̂1)

)2
+
[
[E0(d̂1)− d1]− d∗

]2

= E0

(
d̂1 − E0(d̂1)

)2
+
[
E0(d̂1)− d1

]2
+ d∗2 − 2d∗

[
E0(d̂1)− d1

]

= MSE d1 + d∗2 − 2d∗Bias d1.
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Hence, if Bias d1 is the same sign as d∗ at any particular point in the parameter space, then the
bias of a mis-specified parametric estimator as an estimator of d0, may be less (in absolute value)
than its bias as an estimator of d1, depending on the magnitude of the two quantities. Similarly,
MSE d0 may be less than MSE d1 if Bias d1 and d∗ have the same sign, with the final result again
depending on the magnitude of the two quantities. These results imply that it is possible for any
ranking of mis-specified parametric estimators to be altered, once the reference point changes from
d1 to d0. This raises the following questions: 1) Does the ranking of the mis-specified estimators
change if the true value of d is the reference value and does the finite sample bias adjustment
µn, relevant for the case where d∗ > 0.25, play a role in that switch? 2) Are there circumstances
where a mis-specified parametric estimator out-performs semi-parametric alternatives in finite
samples, the lack of consistency (for d0) of the former notwithstanding? 3) Can knowledge of
the asymptotic distribution of the mis-specified parametric estimators, as estimators of d1, be
used to undertake inference (e.g. produce confidence intervals) for the true parameter, d0, that
is, in some sense robust to certain forms of mis-specification? One possible approach to 3) might
be to make a worst-case Bias d0 correction to d̂1 in order to form a confidence region for d0,
perhaps using the analysis in Section 3 to gauge the extent of d1 − d0 under any particular form
of misspecification of the short-run dynamics that the practitioner has in mind. This idea, plus
that of using the distributional results in Section 4 to develop appropriate inferential tools and
diagnostic devices are beyond the scope of this short paper, but are the focus of current and
ongoing research.
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Appendix: Lemmas 1-4

Lemma 1 Suppose that the TDGP of {yt} is as prescribed in equations (1) and (2) and that the

MisM is specified as in (3). Assume also that Assumptions A.1−A.3 are satisfied. Then for any

constant νf > 0 ∣∣∣∣∣∣
2π

n

⌊n/2⌋∑

j=1

I(λj)

f1(η, λj) + νf
− σ2

0

2π

∫ π

0

f0(λ)

f1(η, λ) + νf
dλ

∣∣∣∣∣∣

converges to zero almost surely and uniformly in η on E
0
δ.

Since, obviously, f1(η, λ) < f1(η, λ) + νf it follows from Lemma 1 that,

lim inf
n→∞

Q(1)
n (η) ≥ lim

n→∞

2π

n

⌊n/2⌋∑

j=1

I(λj)

f1(η, λj) + νf

=
σ2
0

2π

∫ π

0

f0(λ)

f1(η, λ) + νf
a.s.

uniformly in η on E
0
δ . Letting δf → 0 and applying Lebegue’s monotone convergence theorem

gives

lim inf
n→∞

Q(1)
n (η) ≥ Q(η) =

σ2
0

2π

∫ π

0

f0(λ)

f1(η, λ)
dλ a.s.

To establish that Q(η) also provides a limit superior for Q
(1)
n (η) when η ∈ E

0
δ we use the following

lemma.

Lemma 2 Suppose that the conditions of Lemma 1 hold. Set

h1(η, λ) =

{
f1(η, λ), f1(η, λ) ≥ νf
νf , f1(η, λ) < νf ,

where νf > 0. Then for all νf > 0,
∣∣∣∣∣∣
2π

n

⌊n/2⌋∑

j=1

I(λj)

h1(η, λj)
− σ2

0

2π

∫ π

0

f0(λ)

h1(η, λ)
dλ

∣∣∣∣∣∣

converges to zero almost surely uniformly in η on E
0
δ.

The following lemma shows that the limiting form of the FML criterion function presented by
Chen and Deo (2006), for Gaussian processes (specifically) and only in the case where both d and
d0 lie in the interval (0, 0.5), holds more generally, and can incorporate all three forms of memory
- long memory, short memory and antipersistence - in both the true and estimated models.

Lemma 3 Suppose that the conditions of Lemmas 1 and 2 hold. Then

lim
n→∞

sup
η∈E0

δ

|Q(1)
n (η)−Q(η)| = 0 .

Lemma 4 then indicates that for points in Eδ where (d0 − d) > 0.5− δ, 0 < δ < 0.5, uniform

convergence of the criterion function Q
(1)
n (η) fails.

Lemma 4 Suppose that the TDGP of {yt} is as prescribed in equations (1) and (2) and that the

MisM is specified as in (3). Assume also that Assumptions A.1− A.3 are satisfied. Then for all

η ∈ E
0
δ1 we have lim infn→∞Q

(1)
n (η) = O(δ−1) and for η ∈ E

0
δ2

lim inf
n→∞

Q(1)
n (η) ≥ C > 0

almost surely for all C, no matter how large.

Note that Lemma 4 implies that as n increases, and for all δ sufficiently small, η̂
(1)
1 =

argminη Q
(1)
n (η) cannot lie in E

0
δ1 ∪ E

0
δ2.
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