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Abstract

The occurrence of code-switching in online communication, when a writer switches among
multiple languages, presents a challenge for natural language processing (NLP) tools,
since they are designed for texts written in a single language. To answer the challenge,
this paper presents detailed research on ways to detect code-switching in Arabic text
automatically. We compare the Prediction by Partial Matching (PPM) compression based
classifier, implemented in Tawa, and a traditional machine learning classifier Sequential
Minimal Optimization (SMO), implemented in Weka, working specifically on Arabic text
taken from Facebook. Three experiments were conducted in order to: (1) detect code-
switching among the Egyptian dialect and English; (2) detect code-switching among the
Egyptian dialect, the Saudi dialect and English; and (3) detect code-switching among the
Egyptian dialect, the Saudi dialect, Modern Standard Arabic (MSA) and English. Our
experiments showed that PPM achieved a higher accuracy rate than SMO with 99.8% v
97.5% in the first experiment and 97.8% v 80.7% in the second. In the third experiment,
PPM achieved a lower accuracy rate than SMO with 53.2% v 60.2%. Code-switching
between Egyptian Arabic and English text is easiest to detect because Arabic and English
are generally written in different character-sets. It is more difficult to distinguish between
Arabic dialects and MSA as these use the same character-set, and most users of Arabic,
especially Saudis and Egyptians, frequently mix MSA with their dialects. We also note
that the MSA corpus used for training the MSA model may not represent MSA Facebook
text well, being built from news websites. This paper also describes in detail the new
Arabic corpora created for this research and our experiments.



1 Introduction

Code-switching in written natural language text occurs when the author chooses
to switch from one language to at least one other. During the last two decades,
linguists, sociolinguists and psycholinguists have put forward several definitions
for code-switching. Swann and Sinka (2007) believed that the scholar’s discipline
informed the choice of definitions. Most individuals understand code-switching
to occur when mixing between two (or among several) languages. According to
Milroy and Muysken (1995), this term is “the alternative use by bilinguals of
two or more languages in the same conversation”. Myers-Scotton (2006) defined
code-switching similarly as “the use of two or more languages in the same dialog”.
When a bilingual person switches between two languages, this might be due to
several reasons or motivations. Some of these are pointed out by Grosjean (1982).
For example, code-switching might occur when some bilinguals cannot find an
appropriate translation for what they want to say or there is no suitable expression
or word in the language being used. Also, some situations, attitudes, emotions and
messages generate code-switching.

Code-switching in online communication is prevalent. Hale (2014) reported
that more than 10% of Twitter users wrote in multiple languages; this has also
been spotted on other social media platforms (Johnson, 2013; Androutsopoulos,
2013; Jurgens, Dimitrov and Ruths, 2014; Nguyen et al., 2016). Gupta et al.
(2014) stated that users in social media tend to switch from one script, for
example Arabic, to another, such as Roman. The occurrence of code-switching in
online communication presents a challenge for natural language processing (NLP)
tools, since many of them have been prepared for texts written in only one language.

This phenomenon is of particular interest when processing the Arabic lan-
guage because of its frequent occurrence and because of the many dialects of
Arabic in use. When processing Arabic text, it is important to identify where
and when code-switching occurs, because more appropriate language resources
can be applied to the task and thus make a significant improvement in processing
performance.

However, relatively few studies of code-switching for Arabic texts exist, not
only on its frequency but also on the development of software to identify occur-
rences automatically. A contributory factor is that dialect identification for Arabic
has been found to be more difficult than for other languages. This paper will seek
to address this gap in the research.

The automatic detection of code-switching has been achieved using various
approaches such as n-grams (e.g., Oco et al., 2013; Bacatan et al., 2014),
dictionary-based methods. Today, detection rates of up to 99% can be reached,
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even for small input. The work in this paper uses the Tawa toolkit (Teahan, 2018),
which uses the Prediction by Partial Matching (PPM) compression scheme; it
also uses the Waikato Environment for Knowledge Analysis (Weka) data analytic
tool as a second method for the automatic detection of code-switching in Arabic
text. It provides a comparison between the traditional machine learning classifier
algorithm which is the Sequential Minimal Optimization (SMO) and the PPM
compression-based approach. This paper explains in more detail about creating
two types of Arabic corpora, code-switching and non-code-switching, for use
in training and testing. Next, it outlines the experiments performed on Arabic
Facebook text to evaluate the PPM classifier produced by the Tawa toolkit and
the SMO classifier provided by Weka. Finally, it provides a conclusion for this
study.

2 Related Work

Since the mid-1900s, linguists have studied the code-switching phenomenon. In
contrast, the NLP community has started to address it only recently. Solorio et al.
(2014) pointed out that code-switching has posed new research questions, and they
expected an increase in NLP research addressing code-switching in the coming
years.

Oco and Roxas (2012) developed pattern-matching refinements (PMRs) to
the automatic detection of code-switching by using a dictionary-based approach.
They achieved a high accuracy of 94.51%, a marked improvement in accuracy
rates over the other dictionary-based approaches, which were in the range of
75.22%-76.26%. The disadvantages of a dictionary-based approach are that
dictionaries for some languages may not be available and that some words are not
in the dictionaries (Oco et al., 2013).

Lignos and Marcus (2013) produced a system that outlined the problems of
both social media and code-switching in language and detection status. They
collected two corpora from Twitter, containing about 6.8 million Spanish tweets
and 2.8 million English tweets, to model the two languages. They then annotated
by using crowdsourcing for tens of thousands of Spanish tweets, around 11%
of which included code-switching. This system achieved a 0.936 F-measure in
detecting code-switching tweets and 96.9% word-level accuracy.

Dialect detection in Arabic is crucial for almost all NLP tasks and has re-
cently gained strong interest among Arabic NLP researchers. One of the earliest
works in this area was by Elfardy and Diab (2012) and addressed the automatic
detection of code-switching in Arabic online text by identifying token-level dialectal
words. They mentioned that identifying code-switching in written text is a very
challenging task, since an accompanying speech signal does not exist. They
produced a system called AIDA (Automatic Identification of Dialectal Arabic) that
comprised an MSA morphological analyser, dictionaries, sound-change rules and a
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set of language models to perform token-level dialect identification. It achieved a
token-level F score of 84.9%.

Elfardy et al. (2014) used a Naive-Bayes classifier provided by the Weka
toolkit (Hall et al., 2009) to detect code-switching between the Egyptian Arabic
Dialect (EAD) and MSA. They used the code-switching portion from the Arabic
Ounline Commentary Dataset built by Zaidan and Callison-Burch (2011). It
obtained an accuracy of 51.9%.

Several studies, such as Malmasi et al. (2015) and Malmasi and Zampieri
(2016, 2017), have addressed Arabic dialect identification. Ali (2018) used a
character-level Convolutional Neural Network (CNN) approach to classify Arabic
dialects; this achieved an Fl-score of 57.6%. This result was obtained by using
a recurrent layer before the convolution layer. Alshutayri et al. (2016) examined
several classifiers provided by Weka to classify Arabic dialects. They pointed out
that the SMO algorithm achieved the best accuracy (SMO has also been used in
this paper as a traditional machine learning classifier for comparison).

Alkhazi and Teahan (2017) used a PPM character-based compression scheme to
segment Classical and Modern Standard Arabic. It achieved an accuracy of 95.5%
and an average F-measure of 0.954 (recall 0.955 and precision 0.958).

3 New Arabic Corpora

Most NLP research for the Arabic language focuses on Modern Standard Arabic;
research in Arabic dialects is sparse. To evaluate a compression-based approach
and traditional machine learning classifiers for the automatic detection of code-
switching, it was necessary to build a code-switching corpus containing samples of
Arabic code-switching and non-code-switching corpora. We therefore created the
Bangor Arabic-English Code-switching (BAEC) corpus for use as a testing set. The
following non-code-switching corpora have also been created for this research to use
as training sets:

e Saudi Dialect Corpus (SDC);
e Egyptian Dialect Corpus (EDC).

Table 1 lists the number of words, number of characters and overall size in kilobytes
for each of these corpora.
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Table 1. Summary of our corpora produced for this research.

Corpus name Number of Words Number of Characters Corpus size in KB

BAEC 45,251 446,081 436
SDC 210,396 2,065,867 2,018
EDC 218,149 2,072,165 2,024

3.1 Methodology

Different methods were used to create our new corpora. The Facebook Scraper! (FS)
system helped us to extract data from Arabic Facebook pages. For SDC, we could
not collect enough text from Facebook alone, since most Saudi Facebook users tend
to use non-colloquial Arabic. Hence, we moved to Twitter, the third most popular
social network platform in Saudi Arabia (Global Media Insight website, 2019) (see
Figure 1). Manual cut-and-paste techniques were used to extract data from Twitter
and websites. For non-code-switching corpora, extensive cleaning removed emojis,
punctuation marks, URLs and non-Arabic words. For the Saudi and Egyptian di-
alect corpora, we also removed Quranic Arabic and Hadith (Prophet Mohammad’s
speech, words and actions), since they are classified as Classical Arabic.

3.1.1 Sampling method

A Judgemental, non-probability type sampling method was chosen to collect our
data. The procedure for collecting a sample is based on personal judgement, so the
researcher uses his or her own experience and knowledge to select a sample (Doyle,
2011). When we built our corpora, therefore, we looked at the user’s location (if
available) as well as reading each post and tweet to verify its class (whether written
in a Saudi dialect or an Egyptian dialect). This required substantial time and effort,
taking approximately three months’ work.

3.1.2 Verifying the quality of the tagging

Annotated Arabic dialects are more challenging than MSA because they do not have
clear spelling standards and conventions. They were not commonly written until
recently, whereas MSA has official orthographic standards and conventions. Today,
Arabic dialects are often used in social media. Two Saudi university researchers
with extensive knowledge in Egyptian dialect verified the quality of tagging. If they
disagreed on a particular word, whether in MSA or an Arabic dialect, they looked
at the Arabic online dictionary (www.almaany.com) and came to an agreement.
This dictionary contains all MSA words with their meanings.

! The Facebook Scraper (FS) system was developed for this research to extract Facebook
data automatically (Tarmom, 2018).



TOP ACTIVE SOCIAL NETWORK PLATFORMS IN SAUDI
ARABIA 2018

Google+, 10.64m

Facebook, 23.61
m

Instagram, 17.96 m

Twitter, 17.29m

Fig. 1. Most popular social network platforms in Saudi Arabia 2018 (in
millions)(Global Media Insight website, 2019).

3.2 Code-Switching Corpus

The term “code-switching corpus” refers to a body of text consisting of two or
more languages under study (Yu et al., 2013). Because Arabic and English are
the primary languages in this research, we built an Arabic—English code-switching
corpus. To our knowledge, there are no available Arabic code-switching corpora
derived from Facebook, so it was necessary to build a new corpus for our research.

The main objective of this research is to detect code-switching in Arabic
text from Facebook. We therefore collected our corpus from different Arabic
Facebook pages containing code-switching and used it to build the BAEC corpus,
which focuses on switching between Arabic and English. It consists of 45,251 words
and is 436 KB in size (see Table 1). It was collected from different Facebook pages
by using the FS system. It includes code-switching between: MSA and English;
the Saudi dialect and English; and the Egyptian dialect and English. Manually
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annotated, it has been produced in XML. A sample taken from the BAEC corpus
is shown in Figure 2.

We used the following rules when we annotated the BAEC corpus: (1) if
the sentence was written in Arabic letters and had no Saudi or Egyptian dialect
word, we annotated it as <MSA>; (2) if a phrase was written in Arabic letters
and contained any Egyptian dialect word, we annotated it as <Egypt> (this rule
was also applied to the Saudi dialect); (3) if the word or the phrase was written
in English letters, we tagged it as <English>. We found that tagging the BAEC
corpus was much more complex than we first thought, as it has a lot of emojis,
URLs, English numbers, Arabic numbers, English hashtags, Arabic hashtags and
non-Arabic words.

In annotating the BAEC corpus, we found some unforeseen issues. For ex-
ample, some Arabic Facebook users write some English words using Arabic letters,
such as ;,2i» ‘mention’, ;™\ ‘online’, (»,§ ‘course’, y& ‘share’ and so on. These
words have been annotated as translated English <TEng>. Also, some users mix
Arabic with English words to produce one mixed word, based on a normal word
such as ‘class’, where they add Arabic letters J\ and then write >\ ‘Alclass’
Another habit is to use Arabic grammar in an English word, for example making
‘class’ plural by using Arabic grammar rules for pluralisation and then writing it
as &\ ‘claassaat’. We annotated these kinds of words as <MAE>, which means
a Mixed Arabic and English word.

In fact, the detection of TEng and MAE words provided one of the biggest
challenges for NLP tools, since the issue was unforeseen and we had insufficient
training data to provide an effective means to identify these phenomena.

<example id="137">
<text>

SMSA> e puiadl Lol W1 Laddl b JaY 1 saiwall gy g &L wyadi </MSA>
<English>iCareer</English><Egypt>eiustl oles any 4l gauwis Le.</Egypt>
<MSA> g Lxisl i aiaw</MSA><English>online</English><MSA> 5Lx.</MSA>
<English>For more listening:</English>
<URL>www.rong-chang.com/easyspeak
www.esl-lab.com</URL>
<E.hashtag>#iCareer_English</E.hashtag>
</text>

</example>

Fig. 2. A sample from the BAEC Corpus.



3.3 Non-Code-Switching Corpora

The term “non-code-switching corpora” refers to bodies of text consisting of one
language (Yu et al., 2013). Because Arabic is the primary language in this research,
we built two Arabic corpora, the Saudi Dialect Corpus (SDC) and the Egyptian
Dialect Corpus (EDC) (see Table 1), to be used as non-code-switching corpora for
training language models.

3.3.1 Saudi Dialect Corpus (SDC)

There are many dialectal varieties in Saudi Arabia, such as the Najdi dialect
(Arabic: el 2gll) spoken in the central region of Saudi Arabia by approximately
4 million speakers, the Hejazi dialect (Arabic: 4 3\&!| %xgll) spoken throughout the
Hejaz region (the west region) of the country by around 14 million speakers and
the Gulf dialect (Arabic: fieed:| dxgll) spoken in the east region of Saudi Arabia,
near the Gulf region, by around 7 million speakers (Simons, Gary and Charles,
2017). The Gulf dialect spreads to Bahrain, Qatar, UAE and Iraq (Simons, Gary
and Charles, 2017). In fact, MSA is used throughout all Saudi regions, mixed with
each dialect. A map of the dialect usage in Saudi Arabia is shown in Figure 3.

A 210,396-word corpus called the Saudi Dialect Corpus (SDC) was built for
training the Saudi model, containing the mixed dialects of Saudi Arabia. It was
collected from social media platforms, such as Facebook and Twitter, and is 2,018
KB in size (see Table 1).

3.3.2 Egyptian Dialect Corpus (EDC)

The Egyptian dialect is one of the most widely spoken Arabic dialects. It is
used by around 64 million speakers (Simons, Gary and Charles, 2017). In fact,
Egyptian TV and cinema spread their dialect to all Arab countries. It is considered
the most widely understood dialect in the Arab world. For historical reasons,
some frequently-used words are shared between the Egyptian dialect and the
Hejazi dialect (one of the Saudi dialects used in the west of Saudi), which makes
distinguishing between these two dialects a challenging task.

The Egyptian Dialect Corpus (EDC) that we constructed consists of 218,149 words
and is 2,024 KB in size (see Table 1). It was also collected from the social media
platform Facebook.

3.4 Analysing the non-code-switching corpus

To analyse the new corpora described above, we investigated the top 10 most
frequent words from each corpus. This information allowed us to identify how often
words are used in different corpora and the similarities and differences between
them.
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Fig. 3. A map of Saudi Arabia showing the locations of the dialects (based on
Al-Moghrabi, 2015).

Table 2 illustrates the top 10 most frequent words from the EDC and the
SDC. There are some similarities between the Saudi dialect and the Egyptian
dialect. For example, the word » ‘of’ is the second most frequent word in both
dialects. The word (3 ‘in’ is the most frequent word in the Saudi dialect; in contrast,
it is the third most -frequent word in the Egyptian dialect.

4 Tawa

Tawa is a compression-based toolkit based on the API designed by Cleary and
Teahan (1997); it is an updated version of the text mining toolkit (TMT) (Mahoui
et al., 2008). Tawa adopts the Prediction by Partial Matching (PPM) text
compression algorithm developed by Cleary and Witten in 1984. It is a character-
based model that predicts an upcoming symbol by using the previous symbols
with a fixed context. Every possible upcoming symbol is assigned a probability
based on the frequency of previous occurrences. If a symbol has not been seen
before in a particular context, the method will “escape” to another lower-order
context in order to predict the symbol. This is called the escape method and is
used to combine the predictions of all character contexts (Cleary and Witten, 1984).

The main aim of the Tawa toolkit is to facilitate the design and implementation of
applications that need textual models, such as word/language segmentation, text
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Table 2. The top 10 most frequent words from the EDC and from the SDC.

EDC SDC
Rank| Word Frequency| Word Frequency
1 B 4508 S 4014
2 % 3443 o 3862
3 S 3122 Lo 3045
4 Ui 2872 Lo 2197
5 M 2590 o 2101
6 Lo 1639 4] 1863
7 o 1553 J! 1650
8 K 1456 o 1345
9 o 1346 v 1270
10 | ole 1238 il 1192

classification and a wide range of text mining applications, by protecting users
from modelling details and estimating process details. It consists of nine main
applications, such as classify, codelength, train, markup, segment and so on
(Teahan, 2018). This study concentrates on two applications provided by the Tawa
toolkit: building models and language segmentation.

For language segmentation using Tawa, we use multiple models trained on
representative text, using the toolkit’s train tool, from each of the languages
under research. We then use the markup tool, which utilizes the Viterbi algorithm
to find the segmentation with the best compression with all possible segmenta-
tion search paths extended at the same time, discarding the poorly performing
alternatives (Teahan, 2018).

5 Weka

Weka is a data mining tool that contains different machine learning algorithms for
classification, regression, clustering and so on. It has a graphical user interface that
makes it easy to use (Hall et al., 2009). Weka implements several classifiers such as
Naive-Bayes, J48, ZeroR, SMO and so on. As mentioned earlier, Alshutayri et al.
(2016) pointed out that the SMO algorithm achieved the best accuracy rate when
they classified Arabic dialects, so we used the SMO classifier in our experiments.

The Support Vector Machine (SVM) is a supervised machine learning algo-
rithm used for regression analysis and classification. It has been applied to different
NLP problems such as part-of-speech tagging, information extraction and so on.
On unseen data, the SVM classifier has a better generalisation capability than
other classifiers (Li, Bontcheva and Cunningham, 2009). One disadvantage of SVM
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is that it is slow, especially when applied to a very large classification problem.
The enhanced algorithm for SVM, SMO, solves SVM problems by dividing a big
quadratic programming (QP) problem into a chain of smaller QP problems; this
leads to improved results and computation time (Platt, 1998).

6 Experiments and Results

Three experiments were performed as part of the evaluation of the compression-
based approach (provided by Tawa) and of traditional machine learning classifiers
such as the SMO classifier (provided by Weka) to detect code-switching in Arabic
Facebook text. These were to: (1) detect code-switching among the Egyptian
dialect and English; (2) detect code-switching among the Egyptian dialect, the
Saudi dialect and English; and (3) detect code-switching among the Egyptian
dialect, the Saudi dialect, MSA and English.

Choosing suitable training corpora is the first step in building language models.
As indicated in Section 3.3, the SDC and EDC were created for this purpose. The
corpus selected for training MSA was built by Alkahtani, a PhD student at Bangor
University (Alkahtani, 2015). The Brown corpus was selected for training English.

The BAEC corpus (described in Section 3.2) was used in these experiments
as a testing corpus. First, a cleaning process removed all MAE and TEng words
(described in Section 3.2) because we did not have enough training data. Numbers,
emojis and punctuation marks were also removed, leaving only pure Arabic and
English to process, as we thought this would reduce the errors and enhance the
accuracy.

A confusion matrix has been used to evaluate the performance of the auto-
matic detection of code-switching. A confusion matrix is a table that summarizes
the classification and segmentation performance. The often-used case is a two-class
confusion matrix, used to present the positive and negative classes for some binary
classification problems. In this case, the four cells of the matrix are true positives
(TP), false positives (FP), true negatives (T'N) and false negatives (FN), as shown
in Table 3 (Sammut and Webb, 2017). TP is the number of correct predictions

Table 3. Confusion matriz for two classes.

Predicted Positive Predicted Negative

Actual Positive TP FN
Actual Negative FP TN

that are positive, FN is the number of incorrect predictions that are negative, FP
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is the number of incorrect of predictions that are positive and TN is the number
of correct predictions that are negative.

From these four outcomes, four measures of classification performance can
be defined as

4 B TP +TN )
Y = TP TN + FP+ FN
TP
— Bl 2
Recall TPLFN (2)
. TP

Precision = TP+ FP (3)
Fomeasure — 2x Precisionx Recall (@)

Precision + Recall

6.1 First experiment

The first experiment was conducted to evaluate the PPM compression algorithm
and focused on the detection of code-switching between the Egyptian dialect and
English. The testing text was manually extracted from the BAEC corpus for cases
that contained only the Egyptian dialect and English, around 17,761 words and
79,975 characters.

Automatic detection of code-switching between the Egyptian dialect and
English, using the PPM compression algorithm, obtained an accuracy of 99.8%,
an average recall of 0.996, an average precision of 0.999 and an average F-measure
of 0.998. Table 4 shows the result of this experiment. Some sample output from
the PPM classifier is shown in Figure 4.

Table 4. The results of the first experiment.

Accuracy Precision Recall F-Measure

PPM 0.998 0.999 0.996 0.998
SMO (WordTokenizer) 0.550 0.671 0.550 0.440
SMO (UniGram) 0.975 0.975 0.975 0.975
SMO (BiGram) 0.827 0.851 0.827 0.822
SMO (TriGram) 0.645 0.687 0.645 0.607
SMO (FourGram) 0.558 0.603 0.558 0.475

However, we have noticed that most occurrences of English text that were
incorrectly predicted as an Egyptian dialect were abbreviations, such as CV,
PDF and BBC. This is because the Brown corpus, built from American English
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written texts, does not include abbreviations . The use of a new English corpus for
abbreviations should therefore further reduce the number of errors.

<English>The story of Window <\English><Egypt>

Joaxa 431 Oy 3 Lad  ddw gl (o Cpi..l.__: daad ]l duwdia
b Jaida 50y Tuol jole aiSy  bagds> 53S9 Jael
g _}S.Ji QiJ._LJ dasdl gls eley 3 L zxaa gls ]I
<\Egypt><English>Marketing <\English>

Fig. 4. Sample output from the first experiment’s output using PPM.

We repeated this experiment using Weka so we could discover the best re-
sult. We used the SMO algorithm with the StringToWordVector filter and
the WordTokenizer filter to detect code-switching between the Egyptian di-
alect and English. The WordTokenizer filter divides the text into words. We
achieved an accuracy of 55%, an average recall of 0.55, an average precision of
0.671 and an average F-measure of 0.44. Table 4 shows the result of this experiment.

After that, we examined the SMO classifier with the CharacterNGramTokenize
filter which divides text into n-grams. We tried four different types of n-grams,
UniGram, BiGram, TriGram and FourGram. Table 4 shows that UniGram achieved
an accuracy of 97.5% which is a higher accuracy rate than the other n-grams
models.

6.2 Second experiment

The second experiment was conducted to evaluate the automatic detection of
code-switching among the Egyptian dialect, the Saudi dialect and English. As in
the first experiment, the testing text was extracted from the BAEC corpus for
cases that contained only the Egyptian dialect, the Saudi dialect and English,
around 18,957 words and 85,099 characters.

Using PPM in this experiment produced an accuracy of 97.8%, an average
recall of 0.899, an average precision of 0.977 and an average F-measure of 0.932.
Table 5 shows the result of this experiment.

Figure 5 illustrates some Saudi dialect predicted as Egyptian dialect, such
as 4o p Joaxl g355 5 # ¢lr J) Cdll (highlighted in yellow in Figure 5), and some
Saudi dialect correctly predicted as Saudi dialect, such as L el ;81 J) )
Jeal (highlighted in green in Figure 5) . Also, the word ‘opt’, an abbreviation in
architecture, was predicted as a Saudi dialect word. In this testing text, several
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Table 5. The results of the second experiment.

Accuracy Precision Recall F-Measure

PPM 0.978 0.977 0.899 0.931
SMO (WordTokenizer) 0.482 0.571 0.482 0.378
SMO (UniGram) 0.807 0.862 0.807 0.825
SMO (BiGram) 0.718 0.771 0.718 0.724
SMO (TriGram) 0.567 0.628 0.569 0.535
SMO (FourGram) 0.481 0.546 0.481 0.406

English abbreviations were predicted as Saudi dialect or Egyptian dialect words,
such as HR, IBDL, PMP, CTRL C and so on. The results of the first and second
experiments show a clear need to build a new English training corpus that contains
possible abbreviations.

<EQYPt>gpasesn tuad H¥y0  dslan goys dsle Baad o)
4 d pSdue Lo ol 4 by ) LuiSw!

Ao Ly ol dwoyd Juarl 555 il gle o daall

<\Egypt><English>opt architecture <\English>

<Saudi> paial! oLS il Juasl o5y gsesall e 4ail

Joamdd L8 pa 8l ya Bl 1 281 gl o 13 ¢ gbsaldl
opt

Boalay !l 4>y

graxdd pug Jdgw )5

Lodio joyeSdio paSioduwg

<\Saudi>

<English>resume <\English>

Fig. 5. An example of confusion between the Saudi and Egyptian dialects from the
second experiment’s output using PPM.

Repeating the second experiment, using the SMO classifier with the
StringToWordVector filter and the WordTokenizer filter, produced an accu-
racy of 48.2%, an average recall of 0.482, an average precision of 0.571 and an
average F-measure of 0.378. Table 5 shows the result of this experiment. We also
examined the SMO classifier with the CharacterNGramTokenize filter and tried
different types of n-grams, as shown in Table 5. Table 5 shows that UniGram
achieved an accuracy of 80.7% which is a higher accuracy rate than the other
n-grams models.
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6.3 Third experiment

The third experiment was considered a more complex task for the PPM classifer
since it had four different classes: the Egyptian dialect, the Saudi dialect, MSA
and English. The testing file, of around 5,002 words and 23,668 characters, was
also manually extracted from the BAEC corpus containing the Egyptian dialect,
the Saudi dialect, MSA and English.

Using PPM for the third experiment obtained an accuracy of 53.261%, an
average recall of 0.539, an average precision of 0.562 and an average F-measure of
0.551.Table 6 shows the result of this experiment.

Table 6. The results of the third experiment.

Accuracy Precision Recall F-Measure

PPM 0.532 0.562 0.539 0.551
SMO (WordTokenizer) 0.263 0.351 0.263 0.239
SMO (UniGram) 0.602 0.680 0.602 0.597
SMO (BiGram) 0.511 0.611 0511 0421
SMO (TriGram) 0.371 0.553 0.371 0.352
SMO (FourGram) 0.295 0.446 0.294 0.263

Figure 6 shows a sample of the confusion between the Egyptian dialect and
MSA in the third experiment. All these sentences are in the Egyptian dialect but
were predicted as MSA. We speculate that the reason for this disappointing result
was that the MSA corpus used to train the MSA model did not represent the
MSA found in Facebook, since it was built from news websites. To prove this, we
examined the overall compression code lengths of the sample marked-up text for
the different model configurations, as shown in Table 7.

Table 7. Minimum code lengths for different models.

Different models used to segment the text ~ Min. code length(bits)

Egyptian, Saudi, MSA and English models 262977.688
Egyptian, Saudi and English models 258722.891
Egyptian and English models 261998.099

The Egyptian, Saudi and English models have the lowest minimum code
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<MSA>pisgay 5 Lgsmy L3I dzl> 5 Saasrd g +)2 i
Lgrnn dzl> das! 49! dey

I glls JeY! oo aagd die plSaiy plidl JS A
@idSe dodsS aldsy Llgamxy dxle> Jael 4l =y gl Lala
Lgaxn @idsSae g 3olgdsS Lgius 5 Lygad alas ol ol> dx
ol jle L1 oddl 53 gus

5o Jrddl b guo adaidl g o Jlaxs B Jxd e Oy g0
g 42!l Jaxa L3I gl 5 dods> (5 i.L__H 5 odr> e agh

ayl Jaiaas<\MSA>

Fig. 6. Sample of some Egyptian dialect sentences predicted as MSA from the third
experiment’s output using PPM.

lengths with 258722.891 bits, so these are the more appropriate models for this
testing file. Adding a fourth model, MSA, to these models resulted in an increase
of the minimum code length.

Repeating the third experiment wusing the SMO classifier with the
StringToWordVector filter and the WordTokenizer filter obtained an accu-
racy of 26.3%, an average recall of 0.263, an average precision of 0.351 and an
average F-measure of 0.239. Table 6 shows the result of this experiment. We then
examined the SMO classifier with the CharacterNGramTokenize filter and tried
different types of n-grams as shown in Table 6. Table 6 shows that UniGram
achieved an accuracy of 60.2% which is a higher accuracy rate than the other
n-grams models.

7 Conclusion

This paper discussed our creation of several new Arabic corpora, the production
of a code-switching corpus, BAEC, that contains samples of Arabic code-switching
and the production of two non-code-switching corpora, SDC and EDC.

We compared the traditional machine learning classifier SMO and the PPM
compression-based approach to the automatic detection of code-switching in
Arabic text. Our experiments showed, first, that PPM achieves a higher accuracy
rate than SMO when the training corpus correctly represents the language or
dialect under study. When this condition is satisfied, therefore, the compression-
based approach will be more effective for automatically detecting code-switching
in written Arabic text. Second, when Arabic and English are classified using
SMO, the CharacterNGramTokenize filter is a more appropriate filter to use than
the WordTokenizer filter because the difference between these two languages is
best modelled using characters. Third, the CharacterNGramTokenize filter is
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also more appropriate for comparison between SMO and PPM, since PPM is a
character-based model.

The first experiment focused on the detection of code-switching among the
Egyptian dialect and English. PPM obtained an accuracy of 99.8% on testing
data from the BAEC corpus, 2.3% higher than the SMO classifier’s accuracy. The
second experiment investigated the automatic detection of code-switching among
the Egyptian dialect, the Saudi dialect and English. PPM achieved an accuracy
of 97.8%, 17.1% higher than the SMO classifier. Finally, the third experiment
detected code-switching among the Egyptian dialect, the Saudi dialect, MSA and
English. The SMO classifier obtained an accuracy of 60.2%, 6.9% higher than PPM.

Clearly, the MSA corpus used to train the MSA PPM model in the third
experiment did not represent MSA text in Facebook, since it was built from news
websites. As part of future work, a possible solution to overcome this issue is to
build a new MSA Facebook corpus, trained on MSA text specially taken from
Facebook. In addition, to distinguish between MSA and Arabic dialects is very
difficult because most Arabic users, especially Saudis and Egyptians, mix MSA
with their dialects. Finally, the use of a new English corpus containing all the
possible abbreviations should improve the results further.
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