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Rapid deposition of WS2 platelets thin film as additive-free anode for 

sodium ion batteries with superior volumetric capacity  

Abstract 

   One of the key issues hampering the practical applications of powerful and thin sodium-ion batteries 

(SIBs) is low volumetric capacity. The purpose of this study is to report an innovative sputtering strategy 

to directly construct the vertically-aligned WS2 columnar platelet film with low-tortuosity pores (VA/LT-

WS2) on an Al foil as an additive-free anode. Profiting from a 6 nm carbon overlayer on the top of the 

thickness-controllable film electrode (VA/LT-WS2/C), the vertical feature of WS2 and carbon layer 

enable high efficiency of ion and electron transportation pathways, respectively. The 2.8 m VA/LT-

WS2/C film anode exhibits a high volumetric capacity of 1,339 mAh·cm-3 at 100 mA·g-1, of which 30.2% 

is recorded when the current density gets a 50-fold increase from 100 to 5,000 mA·g-1. Its gravimetric 

capacity of 366.8 mAh·g-1 is comparable to the reported WS2 based anode materials for SIBs. Moreover, 

it is interesting to note that the discontinuous carbon layer (6 nm thickness) protects the presence of solid 

electrolyte interphase (SEI) layer from cracking caused by the volume expansion of WS2 anode, and less 

than 16.7% volumetric capacity fading is presented after 300 cycles. It outperforms most of the recently 

reported outstanding SIBs anode materials. The SIB full cell exhibited a reversible volumetric capacity 

of 554 mAh·cm-3 at 50 mA·g-1 when the additive-free anode was applied in the VA/LT-WS2/C // 

Na2V3(PO4)3/C full cell, demonstrating the potential of the physical sputtering VA/LT-WS2/C for further 

battery development.  

Keywords 

Fast deposition, Vertically-aligned WS2 platelet, Additive-free, Sodium ion battery anode, High 

volumetric capacity 

1. Introduction 

  The new and strict requirements evoked by the continuous upward trend of portable devices and 

electronic products are the main driving force for developing rechargeable batteries for energy storage 

applications.[1-3] The sodium-ion batteries (SIBs) have received great attentions in recent years owing to 

the recoverable sodium reserves (natural abundance of 2.4 at. %) and the low exploitation cost, in 

comparison to the limited reserves of lithium in the earth crust (0.0065 at. %) for lithium-ion batteries 

(LIBs).[4,5] SIBs have the same operating principles as LIBs since sodium is a cognate element lithium. 

Nevertheless, one of existing obstructions to develop high-performance SIBs anode materials is the 
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sluggish kinetics for large size Na+ (radius of 1.02 Å for Na+ vs 0.76 Å for Li+) diffusion into the laminar 

structural active materials, such as the graphite derivatives. The transition metal disulphides (TMDs, e.g., 

MoS2, WS2 and SnS2), as 2D layered materials, have been identified as promising potential anode 

materials due to their weak van der Waals force between layers and large interlayer spacing (~6.2 Å) 

endowing them with excellent theoretical electrochemical intercalation of Na+.[6,7] For the storage of 

intercalated sodium, the conversion reaction between Na+ and TMDs could create the new reaction 

products of Na2S and transition metal phases. Each transition metal ion can assist to 2~6 electrons, which 

is more than the case of intercalation reaction of Na/carbon system.[8,9] However, the anisotropic shape 

of TMDs and their horizontally stacked electrode results in a tortuous Na+ diffusion pathway and poor 

electrical conductivity, resulting in significantly delaying the response time for electrochemical Na+ 

intercalation.[10] Consequently, the vertically-aligned TMDs structures on the current collector can enable 

electron transport due to the higher conductivity inside of the (xy0) crystal plane and shortening the Na+ 

diffusion pathway.[11-14]  

  The vertically-aligned TMDs on conductive substrates have achieved considerable success, but the low 

packing mass density of electrode active materials suppressed the SIBs’ volumetric energy density.[15,16] 

Especially, due to the emergence of miniaturized wireless devices, such as micro-electromechanical 

systems, smart medical implants, thin and bendable personal electronics and so on, the thickness-

controllable batteries with integrated power supplier are widely needed.[17-19] As one of the crucial 

components for the thickness-controllable battery, the packing thickness of electrode active materials 

should be tremendously reduced to micro- or even nano-scale as compared to common battery. The 

volumetric capacity (mAh cm-3) has become to be a more important and reasonable evaluating criteria for 

thickness-controllable batteries than gravimetric capacity.[20-23] The most of current multistep chemical 

strategies in terms of the high cost and harmful-environment are not applicable for easily developing the 

high performance and thickness-controllable active materials for the thin film electrodes. [24-28] These 

two key issues of inapplicable synthesis strategies of active materials and the low volumetric capacity of 

electrode severely hamper the practical applications of powerful and thin SIBs. Besides, most 

conventional electrodes are currently facing the problems of the raised cost, the hindered diffusion paths 

of ions, and the reduced battery energy density due to addition of additives. Recently, physical 

approaches are widely studied to vertically-aligned active materials on the current collector. For example, 

graphite and LiCoO2 particles were vertically-oriented on Cu foil by magnetic field force for LIBs.[29, 30] 

Vertically-aligned Ti3C2Tx flakes on Al membrane were achieved by mechanical shearing of a discotic 

lamellar liquid-crystal phase of Ti3C2Tx for supercapacitors.[31] These significant successes stimulate us 
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to explore an alternative straightforward and green synthetic strategy for TMDs thin film with open path 

for Na ions delivery, (xy0) crystal plane orientation for electron transport, high mass density of active 

material and a tight coupling interface between TMDs and current collector for charge-transfer, to finally 

achieve high volumetric capacity for the thickness-controllable SIBs anode without additives.  

  Herein, we propose a novel sputtering strategy to directly deposit the vertically-aligned WS2 columnar 

platelet thin film with concomitant low-tortuosity pores (VA/LT-WS2) at room temperature for the 

thickness-controllable SIBs anode. The excellent adhesion between the binder-free VA/LT-WS2 films 

and the Al foil, directly constructed in the high-powered sputtering plasma environments, enables the 

structural stability of the electrode and the fast charge transfer at the interface. The corresponding Na 

storage mechanism for the WS2 electrode can be proposed in the following insertion process: 

WS2 + xNa+ + xe- → NaxWS2           Equation (1) 

and the conversion reaction: 

NaxWS2 + (4-x) Na++ (4-x)e- → 2Na2S + W        Equation (2) 

, and the reversible reaction during the de-sodiation process can be described as: 

Na2S→ 2Na+ + S+ 2e−         Equation (3) 

, which produced a theoretical gravimetric specific capacity of 432 mAh·g-1.[32-35] An ultrathin carbon 

(thickness of 6 nm) coated vertical WS2 platelet thin film anode further suppressed the formation of 

excessive negative solid electrolyte interphase (SEI) during the charge/discharge process. We refer to the 

vertically-aligned WS2 film with coated carbon layer as VA/LT-WS2/C. The vertical columnar WS2 film 

coated with 6 nm carbon layer, proposed as thin anode candidate for SIBs, delivers a remarkably high 

reversible volumetric capacity of 1,339 mAh·cm-3 at a current density of 100 mA·g-1 and only shows a 

total fluctuation of 16.7% after 300 cycles. The inherent pores around the vertically-aligned platelets in 

monolithic film can buffer the volume expansion during Na ion insertion/extraction processes. This 

construction approach of porous structure film enables the monolithic anode thickness to be tailored from 

a few microns to dozens of microns via simply changing the deposition time.  

2. Experimental Section 

2.1 WS2 film deposition 

  The columnar WS2 films on Al foil were fabricated by a sputtering technology equipped with WS2 and 

C targets. The maximum area of the deposited film depends on the target size. The Al foil (40 mm L 

40 mm W 0.015 mm thick, MTI Corporation), cleaned by acetone, was mounted on a rotated carousel 

in the vacuum chamber. Prior to the deposition, the Al foil substrates were bombarded by Ar plasma at 
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the pressure of 10 Pa for 30 minutes. For the deposition of the VA/LT-WS2 film under the background 

pressure of 1.0×10-3 Pa, the source power density of WS2 target was 0.115 W/mm2, the Ar pressure was 

1.3 Pa and bias voltage was -90 V. The WS2 films with thickness of 2.8 were deposited for 48 minutes. 

The carbon coated WS2 film on Al foil was fabricated as the carbon layer was deposited on the as-

prepared WS2 film surface by sputtering the carbon target for 5 minutes under the Ar pressure of 0.3 Pa 

and bias voltage of -90 V. The loading mass of WS2 was calculated by weighing the cleaned Al foil 

before and after the WS2 film deposition.  

2.2 Synthesis of Na3V2(PO4)3/C 

  0.06 M NH4VO3 was completely dissolved in a 0.05 M citric acid solution under constant stirring, which 

resulted in a gradual change in colour from orange-red to dark blue. This was followed by the sequential 

addition of 0.045 M Na2CO3 and 0.09 M NH4H2PO4. The above solution was transferred into a Tefon-

coated hydrothermal container and kept at 180 °C for 24 h. The gel-like resultant was vacuum-dried until 

formation of xerogel. The xerogel was grinded to fine powder, then annealed at 800 °C for 8 h under Ar 

atmosphere [8].  

2.3 Material characterization 

   The morphologies of VA/LT-WS2 and VA/LT-WS2/C were investigated by a field emission scanning 

electron microscopy (FESEM, JSM-7001F). The film thickness can be measured from its cross-section 

by FESEM. The phase structure of the films was characterized by an X-ray diffraction (XRD, Rigaku-

G2005304) using Cu Kα radiation. The Raman spectrum was analysed using a Raman microscope 

(Thermo Scientific, DRX) with an excitation wavelength of 532 nm. The porous structure and the specific 

surface area of film was evaluated using the nitrogen (N2) adsorption-desorption measurement apparatus 

(TriStar 3000 V6.07A instrument). The Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda 

(BJH) models were used to determine the specific surface area and the pore size of the sample, 

respectively. The nanostructure of the film was observed by a high-resolution transmission electron 

microscope (HRTEM, JEM, ARM 200F) operating at 200 kV, attached by energy dispersive X-ray 

spectroscopy. The specimens for HRTEM analysis were prepared by focused ion beam system (FIB, 

JEOL, JIB-4600F). The adhesion of the VA/LT-WS2 and VA/LT-WS2/C film on Al foil was evaluated 

using a custom-made bending tester. The films were subjected to 60° bending for 100 cycles at a rate of 

1.0 Hz.  

2.4 Electrochemical test 

   Electrochemical measurements were carried out using CR2032 coin-type cells. The VA/LT-WS2 and 

VA/LT-WS2/C film on Al foil were directly used as the anode electrode. It was prepared by directly 
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cutting the foil into disks (14 mm) without any conductive additive or binder. The coin cells were 

assembled in an Ar-filled glove box ([O2]<1 ppm, [H2O]<1 ppm). Sodium metal was used as both the 

counter and reference electrodes. Glass fibre was used as separator. The electrolyte was 1.0 M NaClO4 

dissolved in propylene carbonate (PC) with 5.0 wt. % fluoroethylene carbonate (FEC) as additive. Cyclic 

voltammograms (CVs) and galvanostatic tests were performed at 0.2 V·s-1 between 0.01 and 3.0 V using 

a WBCS battery test system. The alternating-current (AC) impedance spectrum was measured in the 

frequency range of 100 kHz-0.01 Hz. A SIB full cell was assembled using VA/LT-WS2/C as the anode 

and Na3V2 (PO4)/C as cathode. The voltage window was adjusted to 1.0~3.25 V and the mass loading 

ratio of the anode and cathode as 1:3 for the full cell. 

3. Results and discussions 

  The WS2 thin films were deposited on an Al foil in the carefully-controlled sputtering plasma 

environment (see the experimental section). However, the possible problem originating from direct 

deposition of separated columnar platelets is lattice mismatch between WS2 active material and Al foil 

substrate and the limited contact area between them. These issues will cause off-pilling of active materials 

from the substrate when the mechanical strain increased during repeated insertion/extraction process. 

100 times’ bending test was performed to qualitatively evaluate the mechanical adhesion between the as-

deposited WS2 thin film and the Al foil current collector. The digital image of the bended electrode is 

shown in Figure 1a. The intact feature of the bended electrode revealed the strong interface coupling of 

the bottomed WS2 layer and the Al foil, which is crucial to ensure a good structural stability towards 

long-term cycling performance. X-ray diffraction (XRD) examination was carried out to identify the 

crystal structure of the typical VA/LT-WS2/C thin film electrode. As illustrated in Figure 1b (bottom), 

apart from the diffraction peaks from the electron current collector of Al foil, the peaks associated with 

(100) preferred orientation (located at 33.5 °) and concomitant (110) orientation (located at 59.7 °)  of 

the hcp-WS2 crystal edge plane were observed. This suggests that the c axis of the WS2 crystal was 

parallel to the Al foil surface. The carbon coated layer was further examined by Raman spectra, as shown 

Figure 1b (top). The Raman peak located at 1365 cm-1 corresponds to the breathing mode of D band, 

and the one at around 1598 cm-1 is derived from the bond stretching of sp2 carbon (G band). The low 

ID/IG intensity ratio of 0.56 suggests the relatively high degree of the sp2 content of the carbon layer, 

which would increase the electrical conductivity.[36] In addition, two Raman peaks at around 352 cm-1 

(E1
2g mode) and 418 cm-1 (A1g mode) correspond to hcp-WS2, in a good agreement with XRD 
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characterization.[37] The absence of Raman peaks at 260 cm-1 and 808 cm-1 confirms no formation of 

tungsten carbide by-product at the interface between WS2 and C layers.  

  

 

Figure 1 As-deposited 2.8 μm VA/LT-WS2/C thin film on the Al foil current collector: (a) digital image 

of electrode after 100 times’ bending test, (b) XRD and Raman spectra, (c) cross-sectional and (d) surface 

FESEM images. The inset curve in (c) is the nitrogen adsorption-desorption isotherm of the VA/LT-

WS2/C thin film. 

The cross-sectional and surface morphologies of the VA/LT-WS2/C thin film anode were investigated 

by FESEM (Figure 1c-d). The thickness of film deposited for 48 minutes was 2.8 m (Figure 1c). WS2 

columnar platelets with a fully consistent height of 2.8 µm are clearly observed on the Al foil (Figure 

1c). All the film platelets exhibit less than 100 nm thickness and a high aspect ratio, as observed from 

the surface morphology of the VA/LT-WS2/C thin film (Figure 1d). To shed light on the interior structure 

of VA/LT-WS2/C film, the nitrogen adsorption-desorption isotherm analysis was performed and the 

result is shown in the inset of Figure 1c. The typical hysteresis loop (P/P0 in the range of 0.4~0.9), 

specific surface area of 53.7 m2·g-1 and the peak value of 12.9 nm in the pore width distribution curve 

(Figure S1) suggest the mesoporous feature of the low-tortuosity pore structure of WS2 film. The 

ultrathin carbon layer coated on the WS2 film did not bury the abundance of pores and edge features 

(Figure 1d). Moreover, the thimbleful amount of this ultrathin carbon layer allows us to evaluate the 
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mass loading of electrode based on WS2 active material film only. The mass per unit area of WS2 is about 

1.02 mg·cm-2 (the average deviation of 0.01 mg·cm-2) and the tapping density (density (Dt)) is 3.65 g·cm-

3 (~48.7% of the natural WS2). Thus, the estimated porosity over 50% of VA/LT-WS2 array is expected 

to provide sufficient access for the electrolyte throughout the active materials characterized by low-

tortuosity pore structure.  

   Previously, most of vertically-aligned TMDs sheets were synthesised via the complicated and multistep 

chemical strategies.[9-11] In comparison, by optimizing deposition experiment parameters (bias voltage, 

Ar pressure and sputtering power source density) in this work, the high packing mass density of 

vertically-aligned WS2 platelet film for the additive-free anode can be directly and easily constructed on 

the current collector using the sputtering technology. And the growth velocity of WS2 columnar platelets 

reached up to ~58 nm/min, which was much faster than that of the reported atomic layer deposition 

method.[38-40] The procedure is schematically outlined in Figure 2. High vacuum condition (1.0×10-3 Pa) 

was achieved before WS2 film deposition to avoid any influence of residual species on purity of 

sputtering plasma in the chamber. The vertically-aligned WS2 films on the Al foil (Figure 1c-d) were 

deposited when the high energy sputtering plasma was produced in the Ar ion atmosphere under the 

aforementioned experiment conditions. The ultrathin carbon layer can be easily coated on the as-deposted 

WS2 thin film when it was located in the carbon plasma. For tailoring WS2 film thickness, the vertically-

aligned WS2 thick film with thickness of 16.0 m was obtained (Figure S2 and Figure S3) when the 

depostion time was extended to 288 minutes in the WS2 plasma and other conditions maintained constant. 

This thick WS2 film still possesses the same columnar platelet and porosity characterization. The 

influence of the WS2 target’s sputtering energy on film stucture and performace was also investigated. 

When the sputtering source power density of WS2 target was increased from 0.115 W·mm-2 to 0.20 

W·mm-2, the resulting WS2 thin film still has VA-structure but it consists of coarse columnar platelets 

and enlarged pores (Figure S4). As a consequence, the vertically-aligned WS2 structure can be easily 

tailored by carefully tuning experiment parameters.  



Page 8/22 

 

 

Figure 2. Schematic illustration of the direct depostion of VA/LT-WS2/C thin film on the Al foil 

current collecter. 

  The nanostructure of the VA/LT-WS2/C thin film electrode with tapping density was further analyzed. 

A FIB sample of the cross-sectional VA/LT-WS2/C (2.8 m) thin film electrode was prepared with two 

protection layers of the first-deposited Ir and the second-deposited mixture of Pt and C to avoid any 

damage in the FIB process (Figure S5). TEM image of the representative zone of the cross-sectional 

VA/LT-WS2/C thin film is shown in the Figure 3a. It can be seen that the columnar platelets possess the 

vertical alignment and porous features. This structure is ascribed to rapid growth of the separated platelets 

throughout the film in the high energy sputtering plasma environment. In comparison to the 

homogeneous elemental maps of the Al foil, the fluctuating distribution W and S elements further 

demonstrates the porosity feature throughout the columnar platelet film (Figure S6). These nanopores 

decreased the tapping density of the VA/LT-WS2/C thin film anode, but they could act as a buffer zone 

for volume expansion of WS2 platelets during sodiation/de-sodiation process. The corresponding selected 

area electron diffracton (SAED) pattern of the representative zone of thin film presents the hexageonal 

structure of WS2 (the inset of Figure 3a). The clear (100) and (110) rings, well consistent with the XRD 

results, are the straight evidences for the identification of the WS2 crystal structure with c axis parallel to 

the Al foil current collecter surface. Figure 3b exhibits the cross-sectional HRTEM image with high 

resolution of the VA/LT-WS2/C thin film at WS2/Al interface. It can be found that the firstly-formed 

dense basal orientation crystalline WS2 layer with thickness of ~22 nm can act as an intermediate 

transition layer to enable the full contact between WS2 film and Al foil. In the sequential depostion 

process in high energy sputtering conditions, the nanosturcture evloved into a vertically-aligned WS2 

crystal characterized by columnar platelets and a number of concomitant pores from the initial parallelly-

aligned WS2 crystal planes (Figures 3b,c). The HRTEM image of columnar platelets (see Figure 3c) 



Page 9/22 

 

exhibits the 6.2 Å interlayer space corresponding to the vertically-aligned (002) plane of hcp-WS2, in 

good line with the XRD pattern. The WS2 thin film composed of columnar platelets and a number of 

pores can be created with insufficient bulk diffusion and sufficient surface diffusion of sputtered adatoms 

during the film growth process. The high target sputtering power and low resputtering degree in the 

sputtering plasma produced a high growth velocity in the [hk0] direction of the sputtered adatoms to 

finally form the columnar platelets. An ultrathin discontinuous carbon layer (thickness of 6 nm) was 

coated on the columnar platelet top of the VA/LT-WS2/C thin film (Figure 3d, Figures S7, S8). The 

measurement criteria of the deposited carbon layer thickness was given in supplementary information 

(Figure S9). The pores of the VA/LT-WS2/C thin film were’t clogged by the carbon layer. A part of 

carbon can diffuse into the VA/LT-WS2/C thin film during the carbon deposition process(Figure S7). 

The specific purpose of covering the ultrathin carbon on the WS2 film surface is to improve electrical 

conductivity in consideration of instrinsic semiconductive characteristics of WS2. The representative 

single vertially-aligned columnar platelet of WS2 crystal is shown in Figure 3e. The columnar platelets 

are expected to act as the direct channel for efficient delivery of Na ions and rapid electron transport to 

the current collector. Moreover, the discontinuous carbon layer is also expected to ease the loss of the 

sulfide and prevent consumption of Na ions due to the formation of surface-electrolyte interphase (SEI) 

and other side reactions in the charging and discharging process of anode.[41, 42]  

    

 

 Figure 3 (a) TEM image of representative zone with inset of selected area electron diffracton (SAED) 

pattern of the cross-sectional VA/LT-WS2/C thin film anode, and high resolution TEM images (b) at 

WS2/Al interface and (c) of representative zone from the selected red square in (a), and (d) the distribution 
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of the discontinuous carbon layer at the subsurface zone and (e) the representative single vertially-aligned 

columnar platelet of WS2 crystal. 

  With special emphasis on development of anodes for practical applications of thin and powerful SIBs, 

the 2.8 m VA/LT-WS2 and VA/LT-WS2/C thin film anodes were mainly assessed in this study.                                   

To evaluate the Na ion insertion/extraction behavior of VA/LT-WS2 and VA/LT-WS2/C thin film anodes, 

their electrochemical activities were investigated via cyclic voltammentry (CV) measurements at 0.2 

mV·s-1 over the potential range of 0.01-3.0 V. The recorded curves are plotted in Figures 4a-b. Three 

cathodic peaks located at around 0.89, 0.51 and 0.098 V and a prominent anodic peak at 1.87 V during 

the first cycle for both VA/LT-WS2/and VA/LT-WS2/C thin films. In detail, the peak appearing in the 

vicinity of 0.89 V can be attributed to the Na+ intercalation into WS2 interlayer space, forming NaxWS2, 

accompanied by the phase transformation from the 2H to the 1T structure of NaxWS2, as illustrated in 

Equeation (1).[37, 38] The peak at 0.51 V is due to the electrochemical conversion reaction with the 

formation of Na2S, as illustrated in Equation (2). In the anodic scans, the pronounted peak at 1.87 V 

indicates the Na extraction from Na2S, as illustrated in Equation (3). The change of crystal structure the 

VA/LT-WS2/C electrode upon Na+ intercalation was determined by ex-situ XRD, which demonstrated 

the reversible intercalation/deintercalation process over the operated potential range. (Figure S10). The 

cathodic peak at 0.098 V, which disappeared after first cycle, can be associated with SEI layer 

formation.[27, 28, 43, 44] Remarkably, this peak intensity of VA/LT-WS2/C thin film anode was reduced in 

comparision to the VA/LT-WS2, indicating that the simple coating of discontinuous carbon layer on the 

top of vertically-aligned WS2 platelets can effectively suppress the growth of the excessive irreversible 

SEI layer. 

  Figures 4c-d compare the galvanostatic charge/discharge profiles of both VA/LT-WS2 and VA/LT-

WS2/C thin film anodes recorded for the first five cycles at a current density of 500 mA·g-1. In the first 

charge/discharge cycle, the coulombic efficiency (CE) of the VA/LT-WS2/C thin film anodes is 72%, 

superior to that of VA/LT-WS2 thin film anode (64%), which can be ascribed to SEI layer suppression 

by carbon layer. And the first discharge processes of WS2 films exhibit the correlative plateau regimes 

(at around 0.85, 0.50 and 0.21 V), which are identified to the first discharge CV profile, indicating the 

insertion, conversion and SEI formation of WS2 anode.[34] For the VA/LT-WS2/C thin film anode, the 

charge/discharge curves after first scanning became much consistent and gravimetric specific capacity 

reaches 277 mAh·g-1 with an improved CE of ~95%, which was much better than the VA/LT-WS2 thin 

film anode. Thus, it is evidenced that both VA/LT-WS2 and VA/LT-WS2/C thin film anodes show less 

clear voltage plateaus, suggesting that the vertical structure creates efficient Na+ diffusion channels.  
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Figure 4 First two cycles voltammogram curves at a scanning rate of 0.2 mV·s-1 of (a) the VA/LT-WS2 

and (b) VA/LT-WS2/C thin film anodes, and charge/discharge curves of the first five cycles at 500 mA·g-

1 for the (c) the VA/LT-WS2 and (d) VA/LT-WS2/C thin film anodes.  

  The rate capacities of the VA/LT-WS2 and VA/LT-WS2/C thin film anodes are shown in Figure 5a. 

The new half cells were tested for five cycles at current densities ranging from 100 to 5,000 mA·g-1. 

When the gravimetric specific current ramp up stepwise from 100 to 200, 500, 1,000, 2,000 and 5,000 

mA·g-1, the average gravimetric specific capacities of VA/LT-WS2 anode / VA/LT-WS2/C anode are 

231.4/343.2, 156.6/302.3, 118.7/279.5, 91.3/242.6, 36.6/187.2 and 8.6/103.8 mAh·g-1, respectively. The 

volumetric capacity (VC) can be derived from the following formula: 

Cv=CgDt 

where Cv is the VC (mAh·cm-3), Cg is the spesific capacity (mAh·g-1) and Dt is the density (g·cm-3) of 

the active materials on the electrode. Note that the corresponding impressive volumetric capacities of 

844.6/1,252.7, 571.6/1,103.4, 433.3/1,020.2, 333.4/885.5, 134.0/683.3 and 31.4/378.9 mAh·cm-3 were 

obtained, respectively. Obviously, the high VC of the anode was ascribed to the high tapping density of 

3.65 g·cm-3 for the vertically-aligend WS2 active materials. Moreover, the VA/LT-WS2/C thin film anode 

displays superior rate performance to the VA/LT-WS2 thin film anode. Besides the positive contribution 

of carbon layer on SEI layer suppression, the carbon layer could also enhance the conductivity of VA/LT-
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WS2/C thin film anode. The aforementioned analysis results of low ratio of ID/IG (Raman spectrum) of 

0.56 could verify the relatively high degree of graphitization of the carbon layer which has inherent high 

electrical conductivity. To further demonstrate this point, the measurement of electrochemical impedance 

spectroscopy (EIS) of electrodes was performed, and the Nyquist plots of VA/LT-WS2 and VA/LT-

WS2/C thin film anodes are shown in Figure 5b. The Nyquist plots consist of two typical regions: the 

single depressed semicircle corresponding to the charge transfer resistance in the high-medium frequency 

region and an inclined line corresponding to the Na ion diffusion into the WS2 active materials in the low 

frequency region (Warburg).[45, 46] The two electrodes show a similar and high slope of the inclined lines 

in the Warburg region, demonstrating the significant enhancement of the Na+ ion diffusion in the vertical 

columnar platelets. Obviously, the carbon coated VA/LT-WS2/C thin film features a much smaller 

semicircle diameter than that of VA/LT-WS2 thin film, indicating a lower charge-transfer resistance that 

arises from the high electrical conductivity of the carbon layer.  

  

      

Figure 5 (a) Rate performances of VA/LT-WS2 and VA/LT-WS2/C thin film anodes at current density 

from 100 to 5,000 mA·g-1, (b) Nyquist plots after runing 10 cycles of the VA/LT-WS2 and VA/LT-

WS2/C thin film anodes at 100 mA·g-1, (c) cycling performance of VA/LT-WS2 and VA/LT-WS2/C thin 

film anodes at 100 mA·g-1, (d) the reversible volumetric capacity of VA/LT-WS2/C compared with the 

previous studies on different electrodes, and surface morphology FESEM images of (e) VA/LT-WS2 and 

(f) VA/LT-WS2/C thin film anodes after 200 and 300 cycles at 100 mA·g-1, respectively.  
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  The cycling performances of VA/LT-WS2 and VA/LT-WS2/C thin film electrodes were evaluated at a 

current density of 100 mA·g-1 (Figure 5c). It can be found that the VA/LT-WS2 thin film electrode 

presents ~56.2% capacity retention after 200 cycles. While the volumetric capacity of VA/LT-WS2/C 

thin film electrode is declined from 1,339 mAh·cm-3 (gravimetric capacity of 366.8 mAh·g-1) to 1,122 

mAh·cm-3 (gravimetric capacity of 307.4 mAh·g-1) after the 300th cycle (corresponding to 83.3% of the 

initial capacity). The initial coulombic efficiency (CE) of VA/LT-WS2/C is around 79.9%, after which 

the CE remarkably increases and then gradually reaches 98.4%, probably ascribing to electrochemical 

activation of electrode [8]. The volumetric capacity is the most relevant figure-of-merit critical in practical 

application for thin and powerful SIBs as compared to gravimetric specific/areal capacity.[17-20] As far as 

we know, these are no previous reports on sputtering deposited TMDs film as anode materials or 

volumetric capacities of any other WS2 active material for SIBs anodes.[26, 47] The volumetric capacity of 

the VA/LT-WS2/C electrode outperforms most of the recently reported outstanding anode materials for 

SIBs, no matter the common or thin-film SIBs anodes (shown in Figure 5d and Table. S1). [10, 15, 48-50] 

Besides, the gravimetric capacity of VA/LT-WS2/C electrode is comparable to the reported WS2 based 

anode materials for SIBs.[14,27,28,33] It demonstrates the potentially rewarding performance of the sputtered 

VA/LT-WS2/C thin film anode can be achieved by carefully tailoring the film structure. Besides, another 

important advantage of the directly sputtered VA/LT-WS2/C thin film on Al foil as anode material is the 

simplified assembly steps (listed in Table. S1) which does not need any binder. For the as-deposited 

thick VA/LT-WS2/C film anode with thickness of 16.0 μm in this study, it can still anchor onto the 

current collector surface well (Figure S2) and maintain the high volumetric capacity of 914.5 mAh cm-

3 (gravimetric capacity of 250. 7 mAh·g-1 and areal capacity of 1.46 mAh·cm-2) at a current density of 

100 mA·g-1 (Figure S11). The galvanostatic intermittent titration technique (GITT) was further 

employed to investigate the Na ion diffusivity and understand the underlying mass diffusion kinetics of 

the VA/LT-WS2 electrode. The result (as presented in Figure S12) demonstrates that the deposited 

porous and columnar WS2 film has the higher Na ion transportation that is almost one order of magnitude 

higher than that of slurry casted WS2 electrode. The morphology of 2.8 μm VA/LT-WS2 thin film anode 

displays several bulge after running 200 cycles (Figure 5e), while the VA/LT-WS2/C thin film anode 

after running 300 cycles reveals a flat surface with distinguishable SEI layer (Figure 5f). The results 

suggested that the carbon layer can serve as a conductive layer to facilitate electron transport and also a 

protection layer to maintain a continuous SEI layer. The serving VA/LT-WS2/C electrode still maintained 

the vertically-aligned array structure (Figure S13). This enables vertically-orientated WS2 platelets to 

invariably immobilize on the current collector of Al foil and stable performance during the long-term 
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sodiation/de-sodiation processes. In addition to the role of the thin carbon overlayer, the moderate porous 

feature of the WS2 columnar platelets played a crucial factor to alleviate electrode deterioration.  

  It was generally accepted that high porosity of the anode active material provided enough space for the 

free volume expansion during Na ion insertion/extraction, which can well mitigate mechanical stress to 

stabilize electrode structure.[52-54] However, in our case, another high-porous VA/LT-WS2/C thin film 

displayed rapid capacity fading (Figure S14). The porosity feature of the VA/LT-WS2/C thin film anode 

was evidenced by observing their internal morphology (Figure S15). Significantly, the high-porous 

VA/LT-WS2/C thin film anode exhibited huge surface cracks after running 200 cycles (Figure S16). 

Presumably, the excessive porosity may lead to electrode collapse because the separated coarse WS2 

columnar platelets with weak strength experienced structural destruction. Besides, the deposited dense 

WS2 film was easily peeling off from the flexible Al current collector due to the residual stress and low 

flexibility of the dense film (Figure S17), which can’t either serve as the additive-free anode for SIBs.  

   This WS2 thin film active material with vertically-aligned porous and columnar structure was rapidly 

and easily fabricated on the electron collector of the Al foil via an attractive sputtering deposition strategy, 

and it had impressive cycling stability and great volumetric capacity via covering carbon thin layer. The 

advantages of this innovative sputtering strategy can be ascribed to: (i) the interfacial dense crystalline 

WS2 layer (~22 nm) enabled strongly coupling and invariable immobilization of WS2  and Al foil current 

collector to avoid the easily exfoliation of platelets in the root by the electrode deformation as verified 

by the bending test, (ii) the vertical WS2 platelet film with low-tortuosity open channles ensured an 

optimal pathway for fast transport of the electrode ions which indeed led to the significantly-improved 

rate performance, especially in the relative dense and large mass loading electrode,[11, 13, 55-58] (iii) the 

abundance of tailored pores with low-tortuosity feature could not only enhance the affinity of the 

electrolyte and increase the contact areas between WS2 platelet active material and the electrolyte, 

leading to an enhanced Na ion accessibility and further reduction of Na ion diffusion distance, but also 

buffer the volume expansion during Na ion insertion/extraction processes, being beneficial for improving 

the structural stability, and (iv) the tightly carbon overlayer on the top of WS2 columnar platelets can 

suppress the formation of excessive negative SEI layer and reduce the charge-transfer resistance at 

electrolyte/electrode interface. As a result, the rapid and easy preparation strategy of sputtering further 

implies that this kind of VA/LT-WS2/C thin film is a highly competitive candidate for anode of SIBs.  
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Figure 6. (a) CV curve of Na3V2(PO4)3/C at a scanning rate of 0.1 mV·s-1, (b) charge/discharge profiles 

of Na3V2(PO4)3/C half cells and VA/LT-WS2/C // Na3V2(PO4)3/C full cell at a current density of 50 

mA·g-1, (c) CV curve of the VA/LT-WS2/C // Na3V2(PO4)3/C full cell at a scan rate of 0.05 mV·s-1 and 

(d) cycling performance of VA/LT-WS2/C // Na3V2(PO4)3/C full cell at a current density of 50 mA·g-1. 

  The physical sputtering VA/LT-WS2/C, with impressive electrochemical performance, is a promising 

strategy for SIBs application. Herein, a SIB full cell was assembled using VA/LT-WS2/C as the anode 

and Na3V2 (PO4)3/C as cathode.[8] Figures 6a,b present the CV curve of Na3V2(PO4)3/C at a scanning 

rate of 0.1 mV·s-1 and the charge/discharge profile in the same voltage window as the CV curve, 

respectively. The sharp oxidation peak at ≈3.52 V in Na3V2(PO4)3/C CV curve is assigned to the V4+ to 

V3+ redox potential which is essentially related to the phase transformation from Na3V2(PO4)3 to 

NaV2(PO4)3.[51] The split reduction peaks may be accompanied by the stepwise intercalation of Na+ from 

NaV2(PO4)3 to Na2V2(PO4)3 then to Na3V2(PO4)3.[8] The charge/discharge profile shows the charge 

capacities of 121.2 and 139.1 mAh·g-1 with the potential plateau of ≈3.46 V at the current density of 50 

mA·g-1 (Figure 6b). The CV curve of the full cell was measured at a scanning rate of 0.05 mV·s-1 at the 

voltage window of 1.0 to 3.25 V (Figure 6c), and the result exhibits an operating voltage of ≈1.6 V. The 
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gravimetric capacity of full cell reaches 152 mAh·g-1 (volumetric capacity of 554 mAh·cm-3) in the 

charge-discharge profile at a current density of 50 mA·g-1 (Figure 6b). The specific capacity is calculated 

based on the mass of the anode. The capacity can maintain 87.5 % of the initial performance after 50 

cycles (Figure 6d), which demonstrates the potentiality of the physical sputtering VA/LT-WS2/C 

monolithic electrode on Al foil as anode active material for SIBs. On basis of this successful exploration 

of physical sputtering strategy, other TMDs (like SnS2, MoS2, MoSe2, and so on) sputtering electrodes 

would be further constructed to achieve the possible much better performance.  

4. Conclusion 

   In summary, we demonstrated an innovative strategy of constructing the vertically-aligned WS2 

columnar platelet thin film (with/without carbon coated layer) on an Al foil as an additive-free anode 

material for thickness-controllable sodium ion batteries (SIBs) through sputtering technology. The 

continuous vertical alignment and low-tortuosity pore structure facilitated the transport of ions in the 

anode, and the ultrathin carbon layer (6 nm) promotes conductivity of electrode and formation of flat 

solid electrolyte interphase layers, thereby resulting in the high and stable rate performance: the 

volumetric capacity of 1,339 mAh·cm-3 (gravimetric capacity of 366.8 mAh·g-1 and areal capacity of 

0.374 mAh·cm-2) at 100 mA·g-1 and less than 16.7% capacity fading after 300 cycles for the 2.8 m 

VA/LT-WS2/C thin film electrode. Moreover, the excellent adhesion between WS2 film active material 

and Al foil without binder is beneficial for the anchoring of the WS2 columnar platelet film on the current 

collector. This VA/LT-WS2/C thin film electrode outperforms most of the recently reported outstanding 

materials for SIBs anode. The SIB full cell composed of the VA/LT-WS2/C anode and a Na3V2(PO4)3/C 

cathode exhibited a volumetric capacity of 554 mAh·cm-3 at 50 mA·g-1 and maintained 87.5 % of the 

initial performance after 50 cycles. In addition to the natural abundance and low cost of Na, this cost 

efficiency physical sputtering construction technology for vertically-aligned and thin transition metal 

disulphides (TMDs) film on current collection is an innovative way to further promote the development 

of rechargeable batteries with thickness-controllable and additive-free anode electrodes.  
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Highlights 

 An innovative physical sputtering method was used to construct WS2 platelets film; 

 The platelets anchored on the Al foil as additive-free thin anode for SIBs; 

 The fabricated thin WS2 anode had the superior volumetric capacity for SIBs; 

 WS2 film growth rate was up to 58 nm/min and the film is thickness-controllable. 
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